Low Rank Circulant Approximation

 byMoody T. Chu
joined with

Robert J. Plemmons

September 12, 2000

Outline

- Background
\diamond Representing a Circulant Matrix
\diamond Basic Properties
\diamond Spectral Properties
\diamond (Inverse) Eigenvalue Problem
\diamond Conjugate Even Property
- Low Rank Approximation
\diamond TSVD
\diamond Data Matching Problem
\diamond Tree Representation
\diamond New Truncation Criteria
- Numerical Experiment
\diamond Reorganizing Tree Topology
\diamond Counter-intuitive TSVD
- Conclusion

Structured Low Rank Approximation

- Given
\diamond A target matrix $A \in R^{n \times n}$,
\diamond An integer $k, 1 \leq k<\operatorname{rank}(A)$,
\diamond A class of matrices Ω with linear structure,
\diamond a fixed matrix norm $\|\cdot\|$;
Find
\diamond A matrix $\hat{B} \in \Omega$ of rank k, and
$\diamond\|A-\hat{B}\|=\min _{B \in \Omega, \operatorname{rank}(B)=k}\|A-B\|$.
- Example of linear structure:
\diamond Toeplitz or block Toeplitz matrices.
\diamond Hankel or banded matrices.
\diamond Circulant matrices.
- Applications:
\diamond Signal and image processing with Toeplitz structure.
\diamond Model reduction problem in speech encoding and filter design with Hankel structure.
\diamond Regularization of ill-posed inverse problems.

Representing a Circulant Matrix

- Basic form:

$$
C=\left[\begin{array}{ccccc}
c_{0} & c_{1} & & \ldots & c_{n-1} \\
c_{n-1} & c_{0} & c_{1} & \ldots & c_{n-2} \\
c_{n-2} & c_{n-1} & c_{0} & \ldots & c_{n-3} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
c_{1} & c_{2} & & c_{n-1} & c_{0}
\end{array}\right]
$$

\diamond Uniquely determined by the first row c.
\diamond Denoted by $\operatorname{Circul}(c)$.
\diamond Mainly interested in $c \in R^{n}$.

- Polynomial form:
\diamond Define

$$
\Pi:=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \tag{1}\\
0 & 0 & 1 & & 0 \\
\vdots & & \ddots & \ddots & \vdots \\
0 & & & & 1 \\
1 & 0 & & \ldots & 0
\end{array}\right] .
$$

\diamond If $c:=\left[c_{0}, \ldots, c_{n-1}\right]$, then

$$
\begin{equation*}
\operatorname{Circul}(c)=\sum_{k=0}^{n-1} c_{k} \Pi^{k} \tag{2}
\end{equation*}
$$

Basic Properties

- Rewrite

$$
\begin{equation*}
\operatorname{Circul}(c)=P_{c}(\Pi) \tag{3}
\end{equation*}
$$

\diamond Characteristic polynomial

$$
\begin{equation*}
P_{c}(x)=\sum_{k=0}^{n-1} c_{k} x^{k} . \tag{4}
\end{equation*}
$$

- Algebraic properties:
\diamond Closed under multiplication.
\diamond Commute under multiplication.
- Spectral properties:
\diamond Closely related to the Fourier analysis.
\diamond Explicit solution for the eigenvalue and the inverse eigenvalue problems.
\diamond FFT calculation.

More Spectral Properties

- Define

$$
\begin{aligned}
& \Omega:=\operatorname{diag}\left(1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right) . \\
& \diamond \omega:=\exp \left(\frac{2 \pi i}{n}\right) .
\end{aligned}
$$

- Define the Fourier matrix F where

$$
F^{*}:=\frac{1}{\sqrt{n}}\left[\begin{array}{lllll}
1 & 1 & 1 & \ldots & 1 \tag{6}\\
1 & \omega & \omega^{2} & \ldots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \ldots & \omega^{2 n-2} \\
\vdots & & & & \vdots \\
1 & \omega^{n-1} & \omega^{n-2} & \ldots & \omega
\end{array}\right] .
$$

$\diamond F$ is unitary.

- The forward shift matrix Π is unitarily diagonalizable.

$$
\begin{equation*}
\Pi=F^{*} \Omega F \tag{7}
\end{equation*}
$$

- The circulant matrix $\operatorname{Circul}(c)$ with any given row vector c has a spectral decomposition

$$
\begin{equation*}
\operatorname{Circul}(c)=F^{*} P_{c}(\Omega) F \tag{8}
\end{equation*}
$$

(Inverse) Eigenvalue Problem

- Forward problem:
\diamond Eigenvalues of $C \operatorname{ircul}(c)$:

$$
\begin{equation*}
\lambda=\left[P_{c}(1), \ldots P_{c}\left(\omega^{n-1}\right)\right] \tag{9}
\end{equation*}
$$

\diamond Can be computed from

$$
\begin{equation*}
\lambda^{T}=\sqrt{n} F^{*} c^{T} \tag{10}
\end{equation*}
$$

- Inverse problem:
\diamond Given any vector $\lambda:=\left[\lambda_{0}, \ldots, \lambda_{n-1}\right] \in C^{n}$, define

$$
\begin{equation*}
c^{T}=\frac{1}{\sqrt{n}} F \lambda^{T} \tag{11}
\end{equation*}
$$

$\diamond \operatorname{Circul}(c)$ has eigenvalue λ.

- Both matrix-vector multiplication involved can be done via the fast Fourier transform (FFT).
\diamond Overhead is $O\left(n \log _{2} n\right)$ flops.
- If all the eigenvalues are distinct, then there are precisely n ! many distinct circulant matrices with the prescribed spectrum.

Real Circulant Matrix

- $c^{T}=\frac{1}{\sqrt{n}} F \lambda^{T}$ is real if and only if $\lambda^{T}=\sqrt{n} F^{*} c^{T}$ is conjugate even.
\diamond If $n=2 m, \lambda=\left[\lambda_{0}, \lambda_{1}, \ldots, \lambda_{m-1}, \lambda_{m}, \overline{\lambda_{m-1}}, \ldots, \overline{\lambda_{1}}\right.$.
$\triangleright \lambda_{0}, \lambda_{m} \in R$. (Absolutely real.)
\diamond If $n=2 m+1, \lambda:=\left[\lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}, \overline{\lambda_{m}}, \ldots, \overline{\lambda_{1}}\right]$.
$\triangleright \lambda_{0} \in R$. (Absolutely real.)
- Singular value decomposition of $\operatorname{Circul}(c)$:

$$
\begin{equation*}
\operatorname{Circul}(c)=\left(F^{*} P_{c}(\Omega)\left|P_{c}(\Omega)\right|^{-1}\right)\left|P_{c}(\Omega)\right| F \tag{12}
\end{equation*}
$$

\diamond Singular values are $\left|P_{c}\left(\omega^{k}\right)\right|$.
\diamond At most $\left\lceil\frac{n+1}{2}\right\rceil$ distinct singular values.

Low Rank Approximation

- Given $A \in R^{n \times n}$, its nearest circulant matrix approximation $\operatorname{Circul}(c)$ is given by the projection

$$
\begin{equation*}
c_{k}:=\frac{1}{n}\left\langle A, \Pi^{k}\right\rangle, \quad k=0, \ldots, n-1 \tag{13}
\end{equation*}
$$

$\diamond \operatorname{Circul}(c)$ is generally of full rank even if A has lower rank to begin with.

- How to reduce the rank?
\diamond The truncated singular value decomposition (TSVD) gives rise to the nearest low rank approximation in Frobenius norm.
\diamond The TSVD of $\operatorname{Circul}(\hat{c})$ is automatically circulant.

A Numerical Algorithm?

- Given A and rank $\ell \leq n$,

1. Use the projection to find the nearest circulant matrix approximation $C \operatorname{ircul}(c)$ of A.
2. Use the inverse FFT to calculate the spectrum λ of the matrix $\operatorname{Circul}(c)$.
3. Arrange all elements of $|\lambda|$ in descending order, including those with equal modulus.
4. Let $\hat{\lambda}$ be the vector consisting of elements of λ, but those corresponding to the last $n-\ell$ singular values in the descending order are set to zero.
5. Apply the FFT to $\hat{\lambda}$ to compute a nearest circulant matrix $\operatorname{Circul}(\hat{c})$ of rank ℓ to A.

- The resulting matrix $\operatorname{Circul}(\hat{\lambda})$ is complex-valued in general.
\diamond Need to preserve the conjugate even structure.
\diamond Need to modify the TSVD strategy.

Data Matching Problem

- All circulant matrices of the same size have the same set of unitary eigenvectors.
- The low rank real circulant approximation problem is equivalent to
(DMP) Given a conjugate-even vector $\lambda \in C^{n}$, find its nearest conjugate-even approximation $\hat{\lambda} \in C^{n}$ subject to the constraint that $\hat{\lambda}$ has exactly $n-\ell$ zeros.
- How to solve DMP?
\diamond Write $\hat{\lambda}=\left[\hat{\lambda}_{1}, 0\right] \in C^{n}$ with $\hat{\lambda}_{1} \in C^{\ell}$ being arbitrary.
\diamond Consider the problem of minimizing

$$
F(P, \hat{\lambda})=\left\|P \hat{\lambda}^{T}-\lambda^{T}\right\|^{2}
$$

with a permutation matrix P.
$\triangleright P$ is used to search the match.
\diamond Write $P=\left[P_{1}, P_{2}\right]$ with $P_{1} \in R^{n \times \ell}$.
\diamond A least squares problem:

$$
F(P, \hat{\lambda})=\left\|P_{1} \hat{\lambda}_{1}^{T}-\lambda^{T}\right\|^{2}
$$

\diamond The optimal solution is

$$
\hat{\lambda}_{1}=\lambda P_{1}
$$

\triangleright The entries of $\hat{\lambda}_{1}$ must be a portion of λ.
\diamond The objective function becomes

$$
F(P, \hat{\lambda})=\left\|\left(P_{1} P_{1}^{T}-I\right) \lambda\right\|^{2}
$$

$\triangleright P_{1} P_{1}^{T}-I$ is but a projection.
\triangleright The optimal permutation P should be such that $P_{1} P_{1}^{T}$ projects λ to its first ℓ components with largest modulus.

- Without the conjugate-even constraints, the answer to the data matching problem corresponds precisely to the usual TSVD selection criterion.
- With the conjugate-even constraint, the above criterion remains effective subject to the conjugate-even structure inside λ.

An Example

- Consider the case $n=6$.
- Assume $\lambda_{1}, \lambda_{2} \notin$.
- Six possible conjugate-even structures.
- Tree graph:
\diamond Each node in the tree represents an element of λ.
\diamond Arrange the nodes from top to bottom in descending order of their moduli.
\diamond In case of a tie,
\triangleright Complex conjugate nodes stay at the same level. \triangleright Real node is below the complex nodes.
- If $\lambda_{1}, \overline{\lambda_{1}}, \lambda_{0}, \lambda_{2}, \overline{\lambda_{2}}, \lambda_{3}$, then

Figure 1: Tree graph of $\lambda_{1}, \overline{\lambda_{1}}, \lambda_{0}, \lambda_{2}, \overline{\lambda_{2}}, \lambda_{3}$ with $\left|\lambda_{1}\right| \geq\left|\lambda_{0}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right|$.

Figure 2: Tree graphs of $\hat{\lambda}$ with rank 5, 3, and 2.

Figure 3: Tree graphs of $\hat{\lambda}$ with rank 4.

Figure 4: Tree graph of $\hat{\lambda}$ with rank 1.

rank λ	5	4	3	2	1	other possibilities	

Figure 5: Possible solutions to the DMP when $n=6$.

One More Catch

- There could be real-valued elements other than the two (when n is even) absolutely real elements in a conjugateeven λ.
\diamond The eigenvalues of a symmetric circulant matrix are conjugate-even and all real.
\diamond Non-absolutely-real, conjugate-even, real-valued elements must appear in pair.
\triangleright The truncation criteria are further complicated.
\triangleright The topology of the trees could be changed.
- Consider the case $n=6$ and $\lambda_{2}=\overline{\lambda_{2}}$. we illustrate our point below.

Figure 6: Tree graph of $\lambda_{1}, \overline{\lambda_{1}}, \lambda_{0}, \lambda_{2}, \lambda_{2}, \lambda_{3}$ with $\left|\lambda_{1}\right| \geq\left|\lambda_{0}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right|$.

Figure 7: Tree graph of $\hat{\lambda}$ with rank 4 when $\lambda_{2}=\overline{\lambda_{2}}$.

A Numerical Algorithm!

- For the case $n=2 m$, we have assumed
$\diamond 2$ absolutely real elements $\left|\lambda_{0}\right| \geq\left|\lambda_{m}\right|$.
$\diamond 2 m-2$ elements are "potentially" complex-valued , that they are paired up (necessarily), and are arranged in descending order, i.e., $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq$ $\left|\lambda_{m-1}\right|$.
- No ordering relationship between the absolutely real elements and the potentially complex elements is assumed.
\diamond Such an ordering relationship determines the truncation criteria.
\diamond Assuming that there are exactly $m+1$ distinct absolute values of elements in λ, then there are exactly $\binom{m+1}{2}$ many possible conjugate-even structures for the case $n=2 m$.
- Any algorithm needs to be smart enough to explore the conjugate even structure, to truncate, and to reassemble the conjugate even structure.

Example 1

Consider the 8×8 symmetric $\operatorname{Circul}(c)$:

$$
c=[0.5404,0.2794,0.1801,-0.0253,-0.2178,-0.0253,0.1801,0.2794]
$$

- Eigenvalues (in descending order):
[1.1909, 1.1892, 1.1892, $0.3273,0.3273, \mathbf{0 . 1 7 4 6},-0.0376,-0.0376]$
- For rank 7 approximation, the usual TSVD would set -0.0376 to zero, resulting in a complex matrix.
- Use the conjugate-even eigenvalues

$$
\hat{\lambda}=[1.1909,1.1892,0.3273,-0.0376, \mathbf{0}-0.0376,0.3273,1.1892]
$$

to obtain the best real-valued, rank 7, approximation $\operatorname{Circul}(\hat{c})$ via the FFT:

$$
\hat{c}=[0.5186,0.3657,0.0670,-0.0680,-0.0572,-0.0680,0.0670,0.3657]
$$

- To obtain the best real-value, rank 4 , circulant approximation, use eigenvalues $\hat{\lambda}$

$$
\hat{\lambda}=[1.1909,1.1892,0,0,0.3273,0,0,1.1892]
$$

\diamond The last pair of eigenvalues in λ are set to zero while the value 0.1746 together with one 0.3273 cause a topology change in the graph tree.

Example 2

Consider the $9 \times 9 \operatorname{Circul}(c)$ with
$c=[1.6864,1.7775,1.9324,2.9399,1.9871,1.7367,4.0563,1.2848,2.5989]$.

- Eigenvalues: structure given by [20.0000,
$-2.8130+1.9106 \mathrm{i},-2.8130-1.9106 \mathrm{i}, 3.0239-1.0554 \mathrm{i}, 3.0239+1.0554 \mathrm{i}$, $-1.3997+0.7715 \mathrm{i},-1.3997-0.7715 \mathrm{i},-1.2223-0.2185 \mathrm{i},-1.2223+0.2185 \mathrm{i}]$.
- To obtain a real-valued, rank 8 , circulant approximation of rank 8, we have no choice but to select the set the largest eigenvalue (singular value) of $\operatorname{Circul}(c)$ to zero to produce $\hat{c}=[-0.5358,-0.5872,-1.1736,-0.3212,1.0198,1.4013,-0.0761,-0.4115,0.6844]$. as its first row.
\diamond Setting the largest singular value to zero to obtain the nearest low rank approximation is quite counterintuitive to the usual sense of TSVD.

Conclusion

- For any given real data matrix, its nearest real circulant approximation can simply be determined from the average of its diagonal entries.
- The nearest low rank approximation to a circulant matrix can be determined effectively from the TSVD and the FFT.
- To construct real circulant matrix with specified spectrum, the eigenvalues must appear in conjugate even form.
- The truncation criteria for a nearest low rank, real, circulant matrix approximation must be modified.
- We have proposed a fast algorithm to accomplish all of these objectives.
- Extensions to the block case with possible applications to image reconstruction (not discussed in this talk) are possible.

