Low Rank Circulant Approximation

by

Moody T. Chu

joined with

Robert J. Plemmons

September 12, 2000

Outline

- Background
 - \diamond Representing a Circulant Matrix
 - \diamond Basic Properties
 - \diamond Spectral Properties
 - \diamond (Inverse) Eigenvalue Problem
 - ♦ Conjugate Even Property
- Low Rank Approximation
 - $\diamond \mathrm{TSVD}$
 - ♦ Data Matching Problem
 - \diamond Tree Representation
 - \diamond New Truncation Criteria
- Numerical Experiment
 - ♦ Reorganizing Tree Topology
 - \diamond Counter-intuitive TSVD
- Conclusion

Structured Low Rank Approximation

• Given

- \diamond A target matrix $A \in \mathbb{R}^{n \times n}$,
- \diamond An integer $k, 1 \leq k < \operatorname{rank}(A),$
- \diamond A class of matrices Ω with linear structure,
- \diamond a fixed matrix norm $\|\cdot\|$;

Find

- \diamond A matrix $\hat{B} \in \Omega$ of rank k, and
- $\diamond \|A \hat{B}\| = \min_{B \in \Omega, \operatorname{rank}(B) = k} \|A B\|.$
- Example of linear structure:
 - ♦ Toeplitz or block Toeplitz matrices.
 - \diamond Hankel or banded matrices.
 - \diamond Circulant matrices.
- Applications:
 - ♦ Signal and image processing with Toeplitz structure.
 - Model reduction problem in speech encoding and fil-ter design with Hankel structure.
 - ◇ Regularization of ill-posed inverse problems.

• Basic form:

$$C = \begin{bmatrix} c_0 & c_1 & \dots & c_{n-1} \\ c_{n-1} & c_0 & c_1 & \dots & c_{n-2} \\ c_{n-2} & c_{n-1} & c_0 & \dots & c_{n-3} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ c_1 & c_2 & c_{n-1} & c_0 \end{bmatrix}$$

- \diamond Uniquely determined by the first row c.
- \diamond Denoted by Circul(c).
- \diamond Mainly interested in $c \in \mathbb{R}^n$.
- Polynomial form:

 \diamond Define

$$\Pi := \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & & & 1 \\ 1 & 0 & \dots & 0 \end{bmatrix}.$$
(1)

$$\diamond \text{ If } c := [c_0, \dots, c_{n-1}], \text{ then}$$

$$Circul(c) = \sum_{k=0}^{n-1} c_k \Pi^k.$$
 (2)

• Rewrite

$$Circul(c) = P_c(\Pi) \tag{3}$$

 \diamond Characteristic polynomial

$$P_c(x) = \sum_{k=0}^{n-1} c_k x^k.$$
 (4)

- Algebraic properties:
 - \diamond Closed under multiplication.
 - \diamond Commute under multiplication.
- Spectral properties:
 - \diamond Closely related to the Fourier analysis.
 - ♦ Explicit solution for the eigenvalue and the inverse eigenvalue problems.
 - \diamond FFT calculation.

• Define

$$\Omega := \operatorname{diag}(1, \omega, \omega^2, \dots, \omega^{n-1}).$$
(5)

 $\diamond \, \omega := \exp(\frac{2\pi i}{n}).$

• Define the Fourier matrix F where

$$F^* := \frac{1}{\sqrt{n}} \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2n-2} \\ \vdots & & & \vdots \\ 1 & \omega^{n-1} & \omega^{n-2} & \dots & \omega \end{bmatrix}.$$
 (6)

 $\diamond F$ is unitary.

• The forward shift matrix Π is unitarily diagonalizable.

$$\Pi = F^* \Omega F. \tag{7}$$

• The circulant matrix Circul(c) with any given row vector c has a spectral decomposition

$$Circul(c) = F^* P_c(\Omega) F.$$
 (8)

(Inverse) Eigenvalue Problem

• Forward problem:

 \diamond Eigenvalues of Circul(c):

$$\lambda = [P_c(1), \dots P_c(\omega^{n-1})].$$
(9)

 \diamond Can be computed from

$$\lambda^T = \sqrt{n} F^* c^T. \tag{10}$$

• Inverse problem:

 \diamond Given any vector $\lambda := [\lambda_0, \dots, \lambda_{n-1}] \in C^n$, define

$$c^T = \frac{1}{\sqrt{n}} F \lambda^T.$$
 (11)

 $\diamond Circul(c)$ has eigenvalue λ .

• Both matrix-vector multiplication involved can be done via the fast Fourier transform (FFT).

 \diamond Overhead is $O(n \log_2 n)$ flops.

• If all the eigenvalues are distinct, then there are precisely n! many distinct circulant matrices with the prescribed spectrum.

- $c^T = \frac{1}{\sqrt{n}} F \lambda^T$ is real if and only if $\lambda^T = \sqrt{n} F^* c^T$ is conjugate even.
- Singular value decomposition of Circul(c):

$$Circul(c) = (F^*P_c(\Omega)|P_c(\Omega)|^{-1})|P_c(\Omega)|F \qquad (12)$$

♦ Singular values are $|P_c(\omega^k)|$. ♦ At most $\lceil \frac{n+1}{2} \rceil$ distinct singular values. • Given $A \in \mathbb{R}^{n \times n}$, its nearest circulant matrix approximation Circul(c) is given by the projection

$$c_k := \frac{1}{n} \langle A, \Pi^k \rangle, \quad k = 0, \dots, n - 1, \qquad (13)$$

- $\diamond Circul(c)$ is generally of full rank even if A has lower rank to begin with.
- How to reduce the rank?
 - The truncated singular value decomposition (TSVD) gives rise to the nearest low rank approximation in Frobenius norm.
 - \diamond The TSVD of $Circul(\hat{c})$ is automatically circulant.

A Numerical Algorithm?

- Given A and rank $\ell \leq n$,
 - 1. Use the projection to find the nearest circulant matrix approximation Circul(c) of A.
 - 2. Use the inverse FFT to calculate the spectrum λ of the matrix Circul(c).
 - 3. Arrange all elements of $|\lambda|$ in descending order, including those with equal modulus.
 - 4. Let $\hat{\lambda}$ be the vector consisting of elements of λ , but those corresponding to the last $n - \ell$ singular values in the descending order are set to zero.
 - 5. Apply the FFT to $\hat{\lambda}$ to compute a nearest circulant matrix $Circul(\hat{c})$ of rank ℓ to A.
- The resulting matrix $Circul(\hat{\lambda})$ is complex-valued in general.
 - \diamond Need to preserve the conjugate even structure.
 - \diamond Need to modify the TSVD strategy.

- All circulant matrices of the same size have the same set of unitary eigenvectors.
- The low rank real circulant approximation problem is equivalent to

(DMP) Given a conjugate-even vector $\lambda \in C^n$, find its nearest conjugate-even approximation $\hat{\lambda} \in C^n$ subject to the constraint that $\hat{\lambda}$ has exactly $n - \ell$ zeros.

• How to solve DMP?

- \diamond Write $\hat{\lambda} = [\hat{\lambda}_1, 0] \in C^n$ with $\hat{\lambda}_1 \in C^\ell$ being arbitrary.
- ♦ Consider the problem of minimizing

$$F(P, \hat{\lambda}) = \|P\hat{\lambda}^T - \lambda^T\|^2$$

with a permutation matrix P.

 $\triangleright P$ is used to search the match.

 \diamond Write $P = [P_1, P_2]$ with $P_1 \in \mathbb{R}^{n \times \ell}$.

 \diamond A least squares problem:

$$F(P, \hat{\lambda}) = \|P_1 \hat{\lambda}_1^T - \lambda^T\|^2$$

 \diamond The optimal solution is

$$\hat{\lambda}_1 = \lambda P_1.$$

 \triangleright The entries of $\hat{\lambda}_1$ must be a portion of λ .

 \diamond The objective function becomes

$$F(P, \hat{\lambda}) = ||(P_1 P_1^T - I)\lambda||^2.$$

 $\triangleright P_1 P_1^T - I$ is but a projection.

- ▷ The optimal permutation P should be such that $P_1P_1^T$ projects λ to its first ℓ components with largest modulus.
- Without the conjugate-even constraints, the answer to the data matching problem corresponds precisely to the usual TSVD selection criterion.
- With the conjugate-even constraint, the above criterion remains effective subject to the conjugate-even structure inside λ .

An Example

- Consider the case n = 6.
- Assume $\lambda_1, \lambda_2 \notin$.
- Six possible conjugate-even structures.
- Tree graph:
 - \diamond Each node in the tree represents an element of λ .
 - Arrange the nodes from top to bottom in descending order of their moduli.
 - \diamond In case of a tie,
 - \triangleright Complex conjugate nodes stay at the same level.
 - \triangleright Real node is below the complex nodes.
- If $\lambda_1, \overline{\lambda_1}, \lambda_0, \lambda_2, \overline{\lambda_2}, \lambda_3$, then

Figure 1: Tree graph of $\lambda_1, \overline{\lambda_1}, \lambda_0, \lambda_2, \overline{\lambda_2}, \lambda_3$ with $|\lambda_1| \ge |\lambda_0| > |\lambda_2| \ge |\lambda_3|$.

Figure 2: Tree graphs of $\hat{\lambda}$ with rank 5, 3, and 2.

Figure 3: Tree graphs of $\hat{\lambda}$ with rank 4.

Figure 4: Tree graph of $\hat{\lambda}$ with rank 1.

Figure 5: Possible solutions to the DMP when n = 6.

- There could be real-valued elements other than the two (when n is even) absolutely real elements in a conjugateeven λ .
 - ♦ The eigenvalues of a symmetric circulant matrix are conjugate-even and all real.
 - ♦ Non-absolutely-real, conjugate-even, real-valued elements must appear in pair.
 - ▷ The truncation criteria are further complicated.
 - \triangleright The topology of the trees could be changed.
- Consider the case n = 6 and $\lambda_2 = \overline{\lambda_2}$. we illustrate our point below.

Figure 6: Tree graph of $\lambda_1, \overline{\lambda_1}, \lambda_0, \lambda_2, \lambda_2, \lambda_3$ with $|\lambda_1| \ge |\lambda_0| > |\lambda_2| \ge |\lambda_3|$.

Figure 7: Tree graph of $\hat{\lambda}$ with rank 4 when $\lambda_2 = \overline{\lambda_2}$.

- For the case n = 2m, we have assumed
 - $\diamond 2$ absolutely real elements $|\lambda_0| \ge |\lambda_m|$.
 - ♦ 2m 2 elements are "potentially" complex-valued , that they are paired up (necessarily), and are arranged in descending order, i.e., $|\lambda_1| \ge |\lambda_2| \ge \ldots \ge$ $|\lambda_{m-1}|$.
- No ordering relationship between the absolutely real elements and the potentially complex elements is assumed.
 - Such an ordering relationship determines the truncation criteria.
 - \diamond Assuming that there are exactly m + 1 distinct absolute values of elements in λ , then there are exactly $\binom{m+1}{2}$ many possible conjugate-even structures for the case n = 2m.
- Any algorithm needs to be smart enough to explore the conjugate even structure, to truncate, and to reassemble the conjugate even structure.

Consider the 8×8 symmetric Circul(c):

c = [0.5404, 0.2794, 0.1801, -0.0253, -0.2178, -0.0253, 0.1801, 0.2794].

• Eigenvalues (in descending order):

 $\begin{bmatrix} 1.1909, 1.1892, 1.1892, 0.3273, 0.3273, 0.1746, -0.0376, -0.0376 \end{bmatrix}$

- For rank 7 approximation, the usual TSVD would set -0.0376 to zero, resulting in a complex matrix.
- Use the conjugate-even eigenvalues

 $\hat{\lambda} = [$ 1.1909, 1.1892, 0.3273, -0.0376, **0** -0.0376, 0.3273, 1.1892],

to obtain the best real-valued, rank 7, approximation $Circul(\hat{c})$ via the FFT:

 $\hat{c} = [0.5186, 0.3657, 0.0670, -0.0680, -0.0572, -0.0680, 0.0670, 0.3657].$

• To obtain the best real-value, rank 4, circulant approximation, use eigenvalues $\hat{\lambda}$

 $\hat{\lambda} = [$ 1.1909, 1.1892, 0, 0, 0.3273, 0, 0, 1.1892].

 \diamond The last pair of eigenvalues in λ are set to zero while the value 0.1746 together with one 0.3273 cause a topology change in the graph tree. Consider the $9 \times 9 \ Circul(c)$ with

- c = [1.6864, 1.7775, 1.9324, 2.9399, 1.9871, 1.7367, 4.0563, 1.2848, 2.5989].
- Eigenvalues: structure given by

20.0000,

-2.8130 + 1.9106i, -2.8130 - 1.9106i, 3.0239 - 1.0554i, 3.0239 + 1.0554i,

-1.3997 + 0.7715i, -1.3997 - 0.7715i, -1.2223 - 0.2185i, -1.2223 + 0.2185i.

• To obtain a real-valued, rank 8, circulant approximation of rank 8, we have no choice but to select the set the *largest* eigenvalue (singular value) of Circul(c) to zero to produce

 $\hat{c} = [-0.5358, -0.5872, -1.1736, -0.3212, 1.0198, 1.4013, -0.0761, -0.4115, 0.6844].$

as its first row.

Setting the largest singular value to zero to obtain the nearest low rank approximation is quite counterintuitive to the usual sense of TSVD.

- For any given real data matrix, its nearest real circulant approximation can simply be determined from the average of its diagonal entries.
- The nearest low rank approximation to a circulant matrix can be determined effectively from the TSVD and the FFT.
- To construct real circulant matrix with specified spectrum, the eigenvalues must appear in conjugate even form.
- The truncation criteria for a nearest low rank, real, circulant matrix approximation must be modified.
- We have proposed a fast algorithm to accomplish all of these objectives.
- Extensions to the block case with possible applications to image reconstruction (not discussed in this talk) are possible.