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Structured Low Rank Approximation

e (Glven

o A target matrix A € R™",
o An integer k, 1 < k < rank(A),
¢ A class of matrices €2 with linear structure,

o a fixed matrix norm || - ||;
Find
o A matrix B € Q of rank k, and

o | A= BJ| = mingq rankp 14— Bl

e Eixample of linear structure:

¢ Toeplitz or block Toeplitz matrices.
¢ Hankel or banded matrices.

¢ Circulant matrices.
e Applications:

¢ Signal and image processing with Toeplitz structure.

¢ Model reduction problem in speech encoding and fil-
ter design with Hankel structure.

¢ Regularization of ill-posed inverse problems.



Representing a Circulant Matrix

e Basic form:

Co C1 ... Chq

Ch—1 €Cop €C1 ... Cp—9

C = Ch—2 Ch—-1 Cop ... Cp_3
1 2 Ch—1 Co |

¢ Uniquely determined by the first row c.
o Denoted by Clircul(c).
¢ Mainly interested in ¢ € R™.

e Polynomial form:

¢ Define _
01 0 ...0
00 1 0
[I=]: .
0 1
10 ...0]
olfc:=lcy,...,ch 1], then

n—1
Clircul(c) = kZ cpI1F.
=0



Basic Properties

e Rewrite

Clircul(c) = P.(II)

¢ Characteristic polynomial
~1
P.(x) = 'Y et
k=0
e Algebraic properties:
¢ Closed under multiplication.

¢ Commute under multiplication.

e Spectral properties:

o Closely related to the Fourier analysis.

o Explicit solution for the eigenvalue and the inverse

eigenvalue problems.

o FF'T calculation.



More Spectral Properties

e Define
Q= diag(1,w,w?, ..., w" 1. (5)

2m’).

n

o w = exp(

e Define the Fourier matrix F' where

11 1 |
| 1 w w? oWt
Ff=— 1w w .. w2, (6)
NG
1wn—1 wn—2 W

¢ F' 1s unitary.

e The forward shift matrix II is unitarily diagonalizable.

[l = F*QF. (7)

e The circulant matrix C'ircul(c) with any given row vec-
tor ¢ has a spectral decomposition

Circul(c) = F*P.(Q))F. (8)



(Inverse) Eigenvalue Problem

e Forward problem:
o Eigenvalues of Clircul(c):
A=[P(1),... P(w" ). (9)
¢ Can be computed from
N = /nF*ct. (10)
e Inverse problem:

o Given any vector A == [Ag, ..., A\p_1] € C", define
1
= —_F) 11
C U (1)

o Clircul(c) has eigenvalue .

e Both matrix-vector multiplication involved can be done
via the fast Fourier transform (FFT).

o Overhead is O(nlogyn) flops.

e If all the eigenvalues are distinct, then there are precisely
n! many distinct circulant matrices with the prescribed
spectrum.



Real Circulant Matrix

ocl = %F)\T is real if and only if AT = /nF*c! is

conjugate even.
olfn =2m, A =1[Ao, A\l Mty Ay A1y - - -, A1
> Ao, A € R. (Absolutely real.)
olfm=2m+1, A=A, A1, s Ay Ay« - -5 A1,
> Ao € R. (Absolutely real.)

e Singular value decomposition of C'ircul(c):
Circul(c) = (F*PAQ)| P DI PQIF (12)

o Singular values are |P.(w")].

o At most ["1] distinct singular values.



Low Rank Approximation

e Given A € R™", its nearest circulant matrix approxi-
mation Circul(c) is given by the projection
1
e = —(ATY, k=0,...,n—1, (13)
n

o Clircul(c) is generally of full rank even if A has lower
rank to begin with.

e How to reduce the rank?

o The truncated singular value decomposition (TSVD)
gives rise to the nearest low rank approximation in
Frobenius norm.

o The TSVD of Clircul(¢) is automatically circulant.
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A Numerical Algorithm?

e Given A and rank ¢ < n,

L.

Use the projection to find the nearest circulant ma-
trix approximation Circul(c) of A.

. Use the inverse FFT to calculate the spectrum A of

the matrix Circul(c).

. Arrange all elements of |A| in descending order, in-

cluding those with equal modulus.

. Let A be the vector consisting of elements of A, but

those corresponding to the last n — £ singular values
in the descending order are set to zero.

. Apply the FFT to ) to compute a nearest circulant

matrix Circul(¢) of rank £ to A.

AN

e The resulting matrix Circul()) is complex-valued in
general.

¢ Need to preserve the conjugate even structure.
¢ Need to modity the TSVD strategy.
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Data Matching Problem

e All circulant matrices of the same size have the same set
of unitary eigenvectors.

e The low rank real circulant approximation problem is
equivalent to

(DMP) Given a conjugate-even vector A\ € C",
ﬁnd its nearest conjugate-even approrimation
A eCn subject to the constraint that \ has ez-
actly n — £ zeros.

e How to solve DMP?
o Write A = [3\1, 0] € C"™ with A\ € C! being arbitrary.
¢ Consider the problem of minimizing
F(P,\) = ||[PAT = \T||?
with a permutation matrix P.
> P is used to search the match.
o Write P = [P, P,| with P, € R™**

¢ A least squares problem:

F(P,A) = |[PA] = AT
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¢ The optimal solution is
A\l = AP,

> The entries of A\; must be a portion of \.

¢ The objective function becomes
F(P,X) = (PPl = DA

> PPl — I is but a projection.
> The optimal permutation P should be such that

PPl projects A to its first ¢ components with
largest modulus.

e Without the conjugate-even constraints, the answer to
the data matching problem corresponds precisely to the
usual T'SVD selection criterion.

e With the conjugate-even constraint, the above criterion

remains effective subject to the conjugate-even structure
inside .



13

An Example

e Consider the case n = 6.

e Assume A1, \g €.

e Six possible conjugate-even structures.
e Tree graph:

¢ Each node in the tree represents an element of .

¢ Arrange the nodes from top to bottom in descending
order of their moduli.

¢ In case of a tie,

> Complex conjugate nodes stay at the same level.
> Real node is below the complex nodes.

o If )\17)\—17 )\07 )\27 )\—27 )\37 then

A1 A

A2 A2

A3

Figure 1: Tree graph of A1, A1, Ao, Ao, Ao, Az with [Ar| > [Ao| > [Aa| > |As].
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rank = 5 rank = 3 rank = 2

Figure 2: Tree graphs of A with rank 5, 3, and 2.

2| Xa? < [Xo]® + [As]? 2| X2? > [Xo]* + [As]?

Figure 3: Tree graphs of \ with rank 4.

Figure 4: Tree graph of \ with rank 1.
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Figure 5: Possible solutions to the DMP when n = 6.
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One More Catch

e There could be real-valued elements other than the two
(when n is even) absolutely real elements in a conjugate-
even .

¢ The eigenvalues of a symmetric circulant matrix are
conjugate-even and all real.

¢ Non-absolutely-real, conjugate-even, real-valued ele-
ments must appear 1 pair.

> The truncation criteria are further complicated.
> The topology of the trees could be changed.

e Consider the case n = 6 and Ay = \y. we illustrate our
point below.
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)\1 )\1

)\2 )\2

A3

Figure 6: Tree graph of )\1,)\_1, )\0,)\2,)\2,)\3 with |)\1| > |)\0| > |)\2| > |)\3|

)\1 )\1

A

Figure 7: Tree graph of \ with rank 4 when Ay = Xy.
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A Numerical Algorithm!

e For the case n = 2m, we have assumed

o 2 absolutely real elements [\g| > ||

o 2m — 2 elements are “potentially” complex-valued
, that they are paired up (necessarily), and are ar-
ranged in descending order, i.e., |A| > |Ag| > ... >
| A1)

e No ordering relationship between the absolutely real ele-
ments and the potentially complex elements is assumed.

¢ Such an ordering relationship determines the trunca-
tion criteria.

¢ Assuming that there are exactly m + 1 distinct ab-

solute values of elements in A, then there are exactly
m+ 1

™

for the case n = 2m.

) many possible conjugate-even structures

e Any algorithm needs to be smart enough to explore the
conjugate even structure, to truncate, and to reassemble
the conjugate even structure.
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Example 1

Consider the 8 x 8 symmetric Circul(c):
¢ = [0.5404, 0.2794, 0.1801, -0.0253, -0.2178, -0.0253, 0.1801, 0.2794].
e Eigenvalues (in descending order):

[1.1909, 1.1892, 1.1892, 0.3273, 0.3273, 0.1746, -0.0376, -0.0376]

e For rank 7 approximation, the usual TSVD would set
-0.0376 to zero, resulting in a complex matrix.

e Use the conjugate-even eigenvalues

AN

A = [1.1909, 1.1892, 0.3273, -0.0376, 0 -0.0376, 0.3273, 1.1892|,

to obtain the best real-valued, rank 7, approximation

Clircul(¢) via the FFT:

¢ = [0.5186, 0.3657, 0.0670, -0.0680, -0.0572, -0.0680, 0.0670, 0.3657|.

e To obtain the best real-value, rank 4, circulant approx-
imation, use eigenvalues A

AN

A = [1.1909, 1.1892, 0, 0, 0.3273, 0, 0, 1.1892].

¢ The last pair of eigenvalues in A are set to zero while
the value 0.1746 together with one 0.3273 cause a
topology change in the graph tree.
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Example 2

Consider the 9 x 9 Clircul(c) with
c = [1.6864, 1.7775, 1.9324, 2.9399, 1.9871, 1.7367, 4.0563, 1.2848, 2.5989).
e Figenvalues: structure given by

20.0000,
-2.8130 + 1.9106i, -2.8130 - 1.9106i, 3.0239 - 1.0554i, 3.0239 + 1.0554i,
-1.3997 + 0.7715i, -1.3997 - 0.7715i, -1.2223 - 0.2185i, -1.2223 + 0.2185i).

e To obtain a real-valued, rank 8, circulant approximation
of rank 8, we have no choice but to select the set the
largest eigenvalue (singular value) of Circul(c) to zero
to produce

¢ = |-0.5358, -0.5872, -1.1736, -0.3212, 1.0198, 1.4013, -0.0761, -0.4115, 0.6844.

as 1ts first row.

o Setting the largest singular value to zero to obtain
the nearest low rank approximation is quite counter-
intuitive to the usual sense of TSVD.
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Conclusion

e For any given real data matrix, its nearest real circu-
lant approximation can simply be determined from the
average of its diagonal entries.

e The nearest low rank approximation to a circulant ma-
trix can be determined eftectively from the TSVD and
the FF'T'.

e To construct real circulant matrix with specified spec-
trum, the eigenvalues must appear in conjugate even
form.

e The truncation criteria for a nearest low rank, real, cir-
culant matrix approximation must be modified.

e We have proposed a fast algorithm to accomplish all of
these objectives.

e Fixtensions to the block case with possible applications
to image reconstruction (not discussed in this talk) are
possible.



