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Motivation 3

The Eigenvalue Problem

e The mathematical problem:

¢ A symmetric matrix Ay is given.

¢ Solve the equation
Aor = Az
for a nonzero vector x and a scalar \.

e An iterative method :

¢ The QR decomposition:
A=QR

where () is orthogonal and R is upper triangular.

o The QR algorithm (Francis’61):

A = QiR
Apy1 = RpQy.

o The sequence {Ay} converges to a diagonal matrix.

¢ Every matrix A; has the same eigenvalues of A.



Motivation

e A continuous method:

¢ Lie algebra decomposition:
X=X°+X"+X"

where X° is the diagonal, X the strictly upper
triangular, and X~ the strictly lower triangular part

of X.
o The Toda lattice (Symes’82, Deift el al’83):

dX T
X xT - x-
dt [ Y ]

X(0) = Xp.
o Sampled at integer times, {X(k)} gives the same

sequence as does the QR algorithm applied to the
matrix Ag = exp(Xp).

e Evolution from X, to the limit point of Toda flow,
which is a diagoal matrix, maintains isospectrum.
¢ What motivates the construction of the Toda lat-
tice?

o Why is convergence guaranteed?
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Least Squares Matrix Approximation

e The mathematical problem:

o A symmetric matrix N and a set of real values
{A1,..., A} are given.

¢ Find a least squares approximation of /N that has
the prescribed eigenvalues.

e A standard formulation:
1
Minimize F(Q) := §HQTAQ — N|J?
Subject to QT Q = I.

¢ Equality Constrained Optimization:

> Augmented Lagrangian methods.
> Sequential quadratic programming methods.

¢ None of these techniques is easy.



Motivation

e A continuous approach:

¢ The projection of the gradient of F' can easily be
calculated.

o Projected gradient flow (Chu& Driessel’90):

dX
dt — [Xv [Xv NH

X(0) = A.
> X = QTAQ.

> Flow X (¢) moves in a descent direction to reduce
|1 X — NJJ”
¢ The optimal solution X can be fully characterized
by the spectral decomposition of N and is unique.

e Evolution from a starting point to the limit point, which
solves the least squares problem, is built on the basis
of systematically reducing the difference between the
current position and the target position.



Preliminary Fact

Basic Form

e Lax dynamics:

PO x(). k)
X(0) = Xo.
e Parameter dynamics:
W _ gk
g(0) = I.

e [sospectral relationship:
X(t) = g(t)" Xog(t).
e Some choices of k(t):

k() = X(t) — X(t)
k(t) = [X(t), N]
k(t) = k(X(t)), where k is ...



QR-type Framework

Notation
Gl(n) = {n x n real nonsingular matrices}
gl(n) := {n x n real matrices}

Xo := A given matrix in gl(n)
M(Xo) = {9~ Xog|g € Gl(n)}

A, B] .= AB — BA (Lie bracket)
T := Subspace of gl(n)
Pr := Projection mapping from gl(n) to T
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(QR-type Framework

e Subspace splitting of gl(n):
o T and Ty are subspaces of gl(n).

¢ This is a subspace decomposition only, not neces-
sarily a subalgebra decomposition of gl(n).

o Given 71, one may choose Ty = gl(n) — T1. This is
not necessarily a direct sum decomposition.

e Examples:

o Toda flow:

> T} = Subspace of skew symmetric matrices,
k(X):=(X")— (X))
¢ General flow:
> T} = Arbitrary linear subspace,

k(X)) := Projection of X onto subspace Tj.

> Time-1 mapping of the solution still enjoys a () R-
type algorithm.
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Dynamical Systems

e Lax dynamics:

C”;f(t) = [X(t), P(X(1))]
X(0) = X,.

& P, := Projection onto 17.

e Parameter dynamics:

W0 — 0P )
g1<0) = 1.

and
10— p(X(0)alt
gg<0) = 1.

o Py := Projection onto 15.
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Similarity Property

X(t) = g1(t) "' Xogi(t) = galt) Xoga(t) ™.

e Define Z(t) = g1(t) X (t)g1(t) L.
e Check
dz — dgi, _4 X dgy
o _ 9y a2 X
7t 7t 91 Tt o 91 taq1 7t
- (A Xo
+g1(XP(X) — Pi(X)X)g; !

+1 X (—Pi(X)g; )
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Decomposition Property

exp(tXo) = g1(t)ga(t).

o Trivially exp(Xot) satisfies the IVP
dY
— = XY, Y (0) = 1.
At 0L, ( )

e Define Z(t) — gl(t>gz(t>

e Then Z(0) = I and

dz dg dgo

P Egz T 91@
= (91P1(X))g2 + g1(P(X)g2)
= g1X g

= XoZ (by Similarity Property).

e By the uniqueness theorem in the theory of ordinary
differential equations, Z(t) = exp(Xot).
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Reverse Property

exp(tX(t)) = g2(t)g1(?).

13

e By Decomposition Property,

g2(t)g1(t) = g1(t) " exp(Xot)gu(t)
= exp(g1(t) ™ Xoga(t)t)
= exp(X(1)t).
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Abstraction

e ()R-type Decomposition:
¢ Lie algebra decomposition of gl(n) <= Lie group
decomposition of GIl(n) in the neighborhood of 1.

o Arbitrary subspace decomposition gl(n) <= Prod-
uct of two nonsingular matrices in the neighborhood
of I,1i.e.,

exp(Xot) = g1(t)ga(?).

o The product g1(t)ge(t) will be called the abstract

g192 decomposition of exp(Xot).

e ()R-type Algorithm:
¢ By setting ¢ = 1, we have

exp(X(0)) = g1(1)g2(1)
exp(X (1)) = g2(1)g1(1).
o The dynamical system for X (¢) is autonomous =

The above phenomenon will occur at every feasible
integer time.

¢ Corresponding to the abstract g;g2 decomposition,
the above iterative process for all feasible integers
will be called the abstract g1go algorithm.
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Relation to Classical Algorithms

15

Case 1 Case 2 Case 3

Ty o(n) [(n) [(n)+d(n)/2

T, r(n)+d(n)  r(n)+d(n) r(n)+d(n)/2
Et)=P(X(1t)| X —-X" X~ X~ +X0/2
P(X(t) | Xt+X'4+X" Xt+X0 Xt X0/9
g1(t) Q(t)eO(n) L(t)eL(n) G(t)eL(n)
go(t) R(t)eR(n) U(t)eR(n) H(t)eR(n)

Algorithm QR LU Cholesky

= {Skew-symmetric matrices in gl(n)}
;= {Orthogonal matrices in Gl(n)}
= {Strictly upper triangular matrices in gl(n)}

.= {Strictly lower triangular matrices in gl(n)}
= {Lower triangular matrices in GI(n)}

(n)
(n)
(n)
R(n) := {Upper triangular matrices in GI(n)}
(n)
(n)
(n)

;= {Diagonal matrices in Gl(n)}

X" := The strictly upper triangular matrix of X
X? := The diagonal matrix of X

X~ := The strictly lower triangular matrix of X
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Nonclassical Examples

e Assume:
Xy = symmetric
A = Active index subset
X(t) := Portion of X (t) conforming to A
Pi(X (1) = X(t) — (X(1))"
Py(X(t)) = X(t) — PA(X(t))
Then:

For all (¢,7) € A, z;(t) — O as t — o0.

o The above result suggests a way to produce (or
knock out) any prescribed pattern that is symmetric
to the diagonal of a symmetric matrix.
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e Assume
X := general (distinct eigenvalues)
A C{gN <) <i<n}
= a rectangular index subset
X (t) := Portion of X (t) conforming to A
P(X (1) = X(t) = (X(1)"
Py(X (1) = X(t) — P(X(t))
Then

For all (i,5) € A, z;;(t) — 0 as t — o0.

17
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e Assume
Xy := Hamiltonian € gl(2n)
. _A()a NO
| Ky, —AL
K, N := symmetric € gl(n)
0, —-K(t
Pi(X(1)) = K(t) O( )]
Then

a) | X, Pi(X)] is Hamiltonian
b) g1 is both orthogonal and sympletic
c) X (t) remains Hamiltonian

d) K(t) — 0ast — oo.

¢ The Hamiltonian eigenvalue problem for X, practi-
cally becomes the eigenvalue problem for

tlg& A(t>'

¢ No explicit iterative scheme is known for the Hamil-
tonian eigenvalue problem due to the lack of knowl-
edge of the structure of go(t) in the abstract decom-
position of exp(Xot).
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Gradient-type Framework

e Least squares approximations for various types of real
and symmetric matrices subject to spectral constraints
share a common structure.

e The projected gradient can be formulated explicitly.
e A descent flow can be followed numerically.

e The procedure can be extended to general matrices sub-
ject to singular value constraints.



20 Gradient-type Framework

Spectrally Constrained Problem

e Notation:
S(n) = {All real symmetric matrices}
O(n) = {All real orthogonal matrices}
| X|| := Frobenius matrix norm of X

A = A given matrix in S(n)
M(A) == {Q"AQ|Q € O(n)}

V' = A single matrix or a subspace in S(n)

P(X) := The projection of X into V
e General problem:
Minimize F(X) = ;||X _ P(X)|]?
Subject to X € M(A)

e Special cases:

¢ Problem A: Given a symmetric matrix, find its least
squares approximation with prescribed spectrum.

¢ Problem B: Construct a symmetric Toeplitz matrix
that has a prescribed set of eigenvalues.

¢ Problem C: Find the spectrum of a given a symmet-
ric matrix.
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Reformulation

e Idea:

1. X € M(A) satisfies the spectral constraint.
2. P(X) € V has the desirable structure in V.
3. Minimize the undesirable part || X — P(X)]|.

e Working with the parameter () is easier:

Minimize F(Q) = ;<QT/\Q — P(Q"AQ),

Q"AQ — P(QTAQ))
Subject to QTQ = I

o (A, B) = trace(AB?') is the Frobenius inner prod-
uct.
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Feasible Set O(n) & Gradient of F

e The set O(n) is a regular surface.

e The tangent space of O(n) at any orthogonal matrix
() is given by
To0(n) = QK(n)
where

K(n) = {All skew-symmetric matrices}.

e The normal space of O(n) at any orthogonal matrix @)
is given by
NoO(n) = QS(n).

e The Fréchet Derivative of F' at a general matrix A
acting on B:

F'(A)B = 2(ANA(ATAA — P(ATAA)), B).
e The gradient of F' at a general matrix A:
VF(A) =20A(ATAA — P(ATAA)).
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The Projected Gradient

e A splitting of R™*™:
R"" = THhO(n)+ NoO(n)
= QK(n)+QS(n).

e A unique orthogonal splitting of X € R™*"™:
1 1
X =Q{QTX = XTQ)} + Q(,(QX + X"Q)}.
e The projection of VF(Q) into the tangent space:

9@ = QJ(@VF@Q) - VF(Q'Q))
- QIPQ"AQ),Q"AQ)
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An Isospectral Descent Flow

e A descent flow on the manifold O(n):

™~ QIQ"AQ. PQTAQ)]

e A descent flow on the manifold M (A):

dX_dQT N
= TAQ+ QA

- KX PO
k(X)

Q

e The entire concept can be obtained by utilizing the
Riemannian geometry on the Lie group O(n).
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The Second Order Derivative

e Eixtend the projected gradient g to the function
G(Z):= Z|P(Z'\Z), ZT A Z]
for general matrix 7.
e The Fréchet derivative of G:

G'(Z)H =H[P(Z'\Z),Z'\Z]
+Z[P(ZTANZ), Z'ANH + H'AZ]
+Z[P(ZYAZ)(ZPAH + HYAZ), ZVAZ).

e The projected Hessian at a critical point X = QTAQ
for the tangent vector QK with K € K(n):

(G'(Q)QK,QK) =
((P(X), K] = P'(X)[X, K|, [X, K]).
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Example: Problem A

e Given N = P(X)=N.

e The descent flow:

dX
dt — [Xv [Xv NH
k(X)
X(0) = A.
e Assume
¢ The given eigenvalues are Ay > ... > \,.

¢ The eigenvalues of N are uy1 > ... > Uy,.
e At a critical point (), the first order condition:
QTAQ,N] =0

—> QNQ' must be a diagonal matrix whose elements
must be a permutation of uq, ..., ty.

e The projected Hessian:
(G(QQK,QK) = (N, K[X,K]))
= (FK — KE,AK — KN\)
= 22 (Ni= Ay — L
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e If a matrix () is optimal, then:

o Columns of Q1 = [qq, ..., g,] must be the normal-
ized eigenvectors of NV corresponding in the order to
M1y -5 Hn-

¢ The solution to Problem A is unique.

¢ The solution is given by
X =Mqq" + .. 4+ Maugn’

e We have reproved the Wielandt-Hoffman theorem.

e The dynamics in Problem A enjoys a special sorting
property.
¢ Can be applied to data matching problem and a va-

riety of combinatorial optimizations, including sim-
plex method and the interior point methods for the

LP problem.
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Example: Problem B

e Given T' = {All symmetric Toeplitz matrices} =

P(X) = _§1<X, E)E,.
o Fq, ..., E, i1s a natural basis of T'.

e The descent flow:

dX
k(X)
X(0) = Any thing on M(A) but diagonal matrices.

>

e The Lax dynamics offers a globally convergent method
for solving the inverse Toeplitz eigenvalue problem.

e Better yet dynamics (Toeplitz annihilator):

Tit1; — Tij-1, 11 <1 <7< n
Ti—1j— Tij+1, 11 <jg<i<n
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Example: Problem C

e Take V' = {All diagonal matrices} and A = Xy = the

matrix whose eigenvalues are to be found.

e The objective of Problem C is the same as that of the
Jacobi method, i.e., to minimize the off-diagonal ele-
ments.

e The descent flow:

dX .
% — [Xa\[Xa dl%g(X)U
k(X)
X(0) = X,.

e Let X be a critical point. Then
o If X is a diagonal matrix, then X is a global mini-
mizer.

o If X is not a diagonal matrix but diag(X) is a scalar
matrix, then X is a global maximizer.

o If X is not a diagonal matrix and diag(X) is not a
scalar matrix, then X is a saddle point.
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Isospectral Flows

e ()R flow for normal matrices (Chu’84).

e Generalized Toda flow (Chu’84, Watkins'84),
dX

o = X, I(G(X)

where G(z) is analytic over spectrum of X (0).
e Q7 flow (Chu’86).
e Continuous Rayleigh quotient flow (Chu’86).

o SVD flow (Chus6),
dy

—=YN - MY
dt

where
M(t) = T (Y(1)Y (t)")
N(t) == Ty (Y()'Y (¢)).

e Abstract QR-type flow (Chu’88).

e Scaled Toda-like flow (Chu’95),

dX
— = |X, Ao X|.
dt [7 © ]
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Projected Gradient Flows

e Brockett’s double bracket flow (Brockett’8S).

e [east squares approximation with spectral constraints

(Chu&:Driessel90).
e Simultancous reduction problem (Chu’91),
adX; {X §: [va P]T(X]>] - [va P]T(X])]T
dt Vi 2
X;(0) = A

e Nearest normal matrix problem (Chu’91),

d;‘: — {W, ;[W, diag(W™)] — [W, diag(W*)]*]
W) = A.

e Inverse eigenvalue problem for non-negative matrices

(Chu&;Driessel’91).

e Inverse singular value problem (Chu’92).
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Generalized Flows

e Matrix differential equations (Chu’92).

e Schur-Horn theorem (Chu’95),

X = [X, [diag(X) — diag(a), X]]
e Least squares inverse eigenvalue problem (Chu&Chen’96).
e Inverse generalized eigenvalue problem (Chu&Guo’98).
e Inverse stochastic eigenvalue problem (Chu&Guo’98).

e Adaptive Optics with Deformable Mirror Control,

n
T
255y 2 125, AU MU)
o M; = Adaptive optics performance characterization

and U = Basis of control modes.

¢ Parameter dynamics:

Ogtf = UUTK(MU) — (K(MU))U)

U(0) = any orthogonal matrix

where
IC(MU) = [Mklul, c ey Mknun]
ki = argmax{(UTMjU)h}.

J
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Inverse Stochastic Eigenvalue Problem

e Construct a stochastic matrix with prescribed spec-
trum — A hard problem (Karpelevic’51, Minc’88).

¢ No strings of symmetry.
e Reformulation:
Minimize F(P,R) = ;||PJP‘1 — RoR||?
Subject to P € Gl(n), R € gl(n).
¢ J = Real matrix carrying spectral information.
¢ o = Hadamard product.

e Steepest descent flow:

P
O~ (PIP ) a(P.RPT
Ogj — 2a(P,R) o R.

oa(P,R):=PJP'—RoR.
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e ASVD flow for P (Bunse-Gerstner et al’'91, Wright’92):
P(t) = X)St)Y(t)"
P=XSYT + XSyT + xsy”
XT'Py = XIXS+S+8SYy

Z W
Define Q := XTPY. Then

}g = diag(Q).

X

— = XZ.

e

— = YW.

dt

o Z, W are skew-symmetric matrices obtainable from

() and S.
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Numerical Computation

e Special features in Lax dynamics or parameter dynam-
1CS:

¢ Only asymptotically stable equilibria are needed for
the original problem.
¢ An explicit Lyapunov function is available.

¢ Orbits are required to stay on a prescribed manifold.
e Challenge to the current numerical ODE techniques:

¢ The size of the differential system can easily be large.

¢ Need an ODE solver that can eftectively approxi-
mate the asymptotically stable equilibrium point.

¢ Need an ODE solver that can trace trajectories on
a manifold constraint (DAE).

e Lots of ongoing research:

& Numerical Hamiltonian methods (Sanz-Serna’94).
o Projected unitary schemes (Dieci et al’94).

o Modified GL RK methods (Calvo et al’95).

o Adaptive neural networks method (Dehaene’95).

¢ This conference — many experts, many approaches.
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Conclusion

e Area of applications is broad.

e Sheds critical insights into the understanding of the
dynamics of discrete methods.

e Unifies different discrete methods as special cases of its
discretization and often gives rise to the design of new
numerical algorithms.

e May be used as benchmark problems for testing new

ODE techniques.

e New ODE techniques may further benefit the numerical
computation.

e Enable to tackle existence problems that are seemingly
impossible to be solved by conventional discrete meth-
ods.

e Usually offers a global method for solving the underly-
ing problem.



