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Motivation �

The Eigenvalue Problem

� The mathematical problem�

� A symmetric matrix A� is given�

� Solve the equation

A�x � �x

for a nonzero vector x and a scalar ��

� An iterative method �

� The QR decomposition�

A � QR

where Q is orthogonal and R is upper triangular�

� The QR algorithm �Francis���	�

Ak � QkRk

Ak�� � RkQk�

� The sequence fAkg converges to a diagonal matrix�

� Every matrix Ak has the same eigenvalues of A��



� Motivation

� A continuous method�

� Lie algebra decomposition�

X � Xo 
X� 
X�

where Xo is the diagonal� X� the strictly upper
triangular� andX� the strictly lower triangular part
of X �

� The Toda lattice �Symes��
� Deift el al���	�

dX

dt
� �X�X� �X�T �

X��	 � X��

� Sampled at integer times� fX�k	g gives the same
sequence as does the QR algorithm applied to the
matrix A� � exp�X�	�

� Evolution from X� to the limit point of Toda �ow�
which is a diagoal matrix� maintains isospectrum�

�What motivates the construction of the Toda lat�
tice�

�Why is convergence guaranteed�



Motivation �

Least Squares Matrix Approximation

� The mathematical problem�

� A symmetric matrix N and a set of real values
f��� � � � � �ng are given�

� Find a least squares approximation of N that has
the prescribed eigenvalues�

� A standard formulation�

Minimize F �Q	 ��
�



jjQT�Q�N jj�

Subject to QTQ � I�

� Equality Constrained Optimization�

� Augmented Lagrangian methods�

� Sequential quadratic programming methods�

� None of these techniques is easy�



� Motivation

� A continuous approach�

� The projection of the gradient of F can easily be
calculated�

� Projected gradient �ow �Chu�Driessel���	�

dX

dt
� �X� �X�N ��

X��	 � ��

� X �� QT�Q�

� Flow X�t	 moves in a descent direction to reduce
jjX �N jj��

� The optimal solution X can be fully characterized
by the spectral decomposition of N and is unique�

� Evolution from a starting point to the limit point� which
solves the least squares problem� is built on the basis
of systematically reducing the di�erence between the
current position and the target position�



Preliminary Fact �

Basic Form

� Lax dynamics�

dX�t	

dt
� �X�t	� k�t	�

X��	 � X��

� Parameter dynamics�

dg�t	

dt
� g�t	k�t	

g��	 � I�

� Isospectral relationship�

X�t	 � g�t	��X�g�t	�

� Some choices of k�t	�

k�t	 � X�t	� �X�t	�
T

k�t	 � �X�t	� N �

k�t	 � k�X�t		� where k is ���



� QR�type Framework

Notation

Gl�n	 �� fn� n real nonsingular matricesg

gl�n	 �� fn� n real matricesg

X� �� A given matrix in gl�n	

M�X�	 �� fg��X�g j g � Gl�n	g

�A�B� �� AB �BA �Lie bracket	

T �� Subspace of gl�n	

PT �� Projection mapping from gl�n	 to T



QR�type Framework �

QR�type Framework

� Subspace splitting of gl�n	�

gl�n	 � T� 
 T��

� T� and T� are subspaces of gl�n	�

� This is a subspace decomposition only� not neces�
sarily a subalgebra decomposition of gl�n	�

� Given T�� one may choose T� � gl�n	� T�� This is
not necessarily a direct sum decomposition�

� Examples�

� Toda �ow�

� T� � Subspace of skew symmetric matrices�

k�X	 �� �X�	� �X�	T �

� General �ow�

� T� � Arbitrary linear subspace�

k�X	 �� Projection of X onto subspace T��

� Time�� mapping of the solution still enjoys aQR�
type algorithm�



�	 QR�type Framework

Dynamical Systems

� Lax dynamics�

dX�t	

dt
�� �X�t	� P��X�t		�

X��	 �� X��

� P� �� Projection onto T��

� Parameter dynamics�

dg��t	

dt
�� g��t	P��X�t		

g���	 �� I�

and

dg��t	

dt
�� P��X�t		g��t	

g���	 �� I�

� P� �� Projection onto T��



QR�type Framework ��

Similarity Property

X�t	 � g��t	
��X�g��t	 � g��t	X�g��t	

���

� De�ne Z�t	 � g��t	X�t	g��t	
���

� Check

dZ

dt
�

dg�

dt
Xg��� 
 g�

dX

dt
g��� 
 g�X

dg���

dt
� �g�P��X		Xg���


g��XP��X	� P��X	X	g���


g�X��P��X	g��� 	

� ��

� Thus Z�t	 � Z��	 � X��	 � X��



�� QR�type Framework

Decomposition Property

exp�tX�	 � g��t	g��t	�

� Trivially exp�X�t	 satis�es the IVP

dY

dt
� X�Y� Y ��	 � I�

� De�ne Z�t	 � g��t	g��t	�

� Then Z��	 � I and

dZ

dt
�

dg�

dt
g� 
 g�

dg�

dt
� �g�P��X		g� 
 g��P��X	g�	

� g�Xg�

� X�Z �by Similarity Property	�

� By the uniqueness theorem in the theory of ordinary
di�erential equations� Z�t	 � exp�X�t	�



QR�type Framework ��

Reverse Property

exp�tX�t		 � g��t	g��t	�

� By Decomposition Property�

g��t	g��t	 � g��t	
��exp�X�t	g��t	

� exp�g��t	
��X�g��t	t	

� exp�X�t	t	�



�� QR�type Framework

Abstraction

� QR�type Decomposition�

� Lie algebra decomposition of gl�n	 �� Lie group
decomposition of Gl�n	 in the neighborhood of I �

� Arbitrary subspace decomposition gl�n	�� Prod�
uct of two nonsingular matrices in the neighborhood
of I � i�e��

exp�X�t	 � g��t	g��t	�

� The product g��t	g��t	 will be called the abstract

g�g� decomposition of exp�X�t	�

� QR�type Algorithm�

� By setting t � �� we have

exp�X��		 � g���	g���	

exp�X��		 � g���	g���	�

� The dynamical system for X�t	 is autonomous ��
The above phenomenon will occur at every feasible
integer time�

� Corresponding to the abstract g�g� decomposition�
the above iterative process for all feasible integers
will be called the abstract g�g� algorithm�



QR�type Framework ��

Relation to Classical Algorithms

Case � Case � Case �

T� o�n� l�n� l�n� � d�n���

T� r�n��d�n� r�n��d�n� r�n��d�n���

k�t��P��X�t�� X��X�

T X� X��X	��

P��X�t�� X
�X	�X�

T X
�X	 X
�X	��

g��t� Q�t��O�n� L�t��L�n� G�t��L�n�

g��t� R�t��R�n� U�t��R�n� H�t��R�n�

Algorithm QR LU Cholesky

o�n� �� fSkew�symmetric matrices in gl�n�g

O�n� �� fOrthogonal matrices inGl�n�g

r�n� �� fStrictly upper triangular matrices in gl�n�g

R�n� �� fUpper triangular matrices inGl�n�g

l�n� �� fStrictly lower triangular matrices in gl�n�g

L�n� �� fLower triangular matrices inGl�n�g

d�n� �� fDiagonal matrices inGl�n�g

X
 �� The strictly upper triangular matrix ofX

Xo �� The diagonal matrix ofX

X� �� The strictly lower triangular matrix ofX



�� QR�type Framework

Nonclassical Examples

� Assume�

X� �� symmetric

� �� Active index subset
�X�t	 �� Portion of X�t	 conforming to �

P��X�t		 �� �X�t	� � �X�t		T

P��X�t		 �� X�t	� P��X�t		

Then�

For all �i� j	 � �� xij�t	 �� � as t ����

� The above result suggests a way to produce �or
knock out	 any prescribed pattern that is symmetric
to the diagonal of a symmetric matrix�



QR�type Framework ��

� Assume

X� �� general �distinct eigenvalues	

� 	 f�i� j	j� 
 j � i 
 ng

�� a rectangular index subset
�X�t	 �� Portion of X�t	 conforming to �

P��X�t		 �� �X�t	� � �X�t		T

P��X�t		 �� X�t	� P��X�t		

Then

For all �i� j	 � �� xij�t	 �� � as t ����
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�� QR�type Framework

� Assume

X� �� Hamiltonian � gl�
n	

��

�
���
A�� N�

K�� �A
T
�

�
���

K�N �� symmetric � gl�n	

P��X�t		 ��

�
���

�� �K�t	
K�t	� �

�
���

Then

a	 �X�P��X	� is Hamiltonian

b	 g� is both orthogonal and sympletic

c	 X�t	 remains Hamiltonian

d	 K�t	 �� � as t ����

� The Hamiltonian eigenvalue problem for X� practi�
cally becomes the eigenvalue problem for

lim
t��

A�t	�

� No explicit iterative scheme is known for the Hamil�
tonian eigenvalue problem due to the lack of knowl�
edge of the structure of g��t	 in the abstract decom�
position of exp�X�t	�



Gradient�type Framework ��

Gradient�type Framework

� Least squares approximations for various types of real
and symmetric matrices subject to spectral constraints
share a common structure�

� The projected gradient can be formulated explicitly�

� A descent �ow can be followed numerically�

� The procedure can be extended to general matrices sub�
ject to singular value constraints�



�	 Gradient�type Framework

Spectrally Constrained Problem

� Notation�

S�n	 �� fAll real symmetric matricesg

O�n	 �� fAll real orthogonal matricesg

jjXjj �� Frobenius matrix norm of X

� �� A given matrix in S�n	

M��	 �� fQT�QjQ � O�n	g

V �� A single matrix or a subspace in S�n	

P �X	 �� The projection of X into V

� General problem�

Minimize F �X	 ��
�



jjX � P �X	jj�

Subject to X � M��	

� Special cases�

� Problem A� Given a symmetric matrix� �nd its least
squares approximation with prescribed spectrum�

� Problem B� Construct a symmetric Toeplitz matrix
that has a prescribed set of eigenvalues�

� Problem C� Find the spectrum of a given a symmet�
ric matrix�



Gradient�type Framework ��

Reformulation

� Idea�

�� X �M��	 satis�es the spectral constraint�


� P �X	 � V has the desirable structure in V �

�� Minimize the undesirable part kX � P �X	k�

�Working with the parameter Q is easier�

Minimize F �Q	 ��
�




�
QT�Q� P �QT�Q	�

QT�Q� P �QT�Q	
�

Subject to QTQ � I

� hA�Bi � trace�ABT 	 is the Frobenius inner prod�
uct�



�� Gradient�type Framework

Feasible Set O�n� � Gradient of F

� The set O�n	 is a regular surface�

� The tangent space of O�n	 at any orthogonal matrix
Q is given by

TQO�n	 � QK�n	

where

K�n	 � fAll skew�symmetric matricesg�

� The normal space of O�n	 at any orthogonal matrix Q
is given by

NQO�n	 � QS�n	�

� The Fr�echet Derivative of F at a general matrix A

acting on B�

F ��A	B � 
h�A�AT�A� P �AT�A		� Bi�

� The gradient of F at a general matrix A�

rF �A	 � 
�A�AT�A� P �AT�A		�



Gradient�type Framework ��

The Projected Gradient

� A splitting of Rn�n�

Rn�n � TQO�n	 
NQO�n	

� QK�n	 
QS�n	�

� A unique orthogonal splitting of X � Rn�n�

X � Q

�	

	�
�



�QTX �XTQ	g 
Qf

�



�QTX 
XTQ	

�	

	� �

� The projection of rF �Q	 into the tangent space�

g�Q	 � Q

�	

	�
�



�QTrF �Q	�rF �Q	TQ	

�	

	�

� Q�P �QT�Q	� QT�Q��



�� Gradient�type Framework

An Isospectral Descent Flow

� A descent �ow on the manifold O�n	�

dQ

dt
� Q�QT�Q�P �QT�Q	��

� A descent �ow on the manifold M��	�

dX

dt
�

dQT

dt
�Q 
QT�

dQ

dt
� �X� �X�P �X	�� �z �

k�X�

��

� The entire concept can be obtained by utilizing the
Riemannian geometry on the Lie group O�n	�



Gradient�type Framework ��

The Second Order Derivative

� Extend the projected gradient g to the function

G�Z	 �� Z�P �ZT�Z	� ZT�Z�

for general matrix Z�

� The Fr�echet derivative of G�

G��Z	H � H �P �ZT�Z	� ZT�Z�


Z�P �ZT�Z	� ZT�H 
HT�Z�


Z�P ��ZT�Z	�ZT�H 
HT�Z	� ZT�Z��

� The projected Hessian at a critical point X � QT�Q
for the tangent vector QK with K � K�n	�

hG��Q	QK�QKi �

h�P �X	�K�� P ��X	�X�K�� �X�K�i�



�� Gradient�type Framework

Example� Problem A

� Given N �� P �X	 � N �

� The descent �ow�

dX

dt
� �X� �X�N �� �z �

k�X�

�

X��	 � ��

� Assume

� The given eigenvalues are �� � � � � � �n�

� The eigenvalues of N are �� � � � � � �n�

� At a critical point Q� the �rst order condition�

�QT�Q�N � � �

�� QNQT must be a diagonal matrix whose elements
must be a permutation of ��� � � � � �n�

� The projected Hessian�

hG��Q	QK�QKi � h�N�K�� �X�K�i

� hE �K � �KE�� �K � �K�i

� 

X
i�j

��i � �j	��i � �j	�k
�
ij�



Gradient�type Framework ��

� If a matrix Q is optimal� then�

� Columns of QT � �q�� � � � � qn� must be the normal�
ized eigenvectors of N corresponding in the order to
��� � � � � �n�

� The solution to Problem A is unique�

� The solution is given by

X � ��q�q�
T 
 � � � 
 �nqnqn

T �

�We have reproved the Wielandt�Ho�man theorem�

� The dynamics in Problem A enjoys a special sorting
property�

� Can be applied to data matching problem and a va�
riety of combinatorial optimizations� including sim�
plex method and the interior point methods for the
LP problem�



�� Gradient�type Framework

Example� Problem B

� Given T � fAll symmetric Toeplitz matricesg ��

P �X	 �
nX
i	�
hX�EiiEi�

� E�� � � � � En is a natural basis of T �

� The descent �ow�

dX

dt
� �X� �X�P �X	�� �z �

k�X�

�

X��	 � Any thing on M��	 but diagonal matrices�

� The Lax dynamics o�ers a globally convergent method
for solving the inverse Toeplitz eigenvalue problem�

� Better yet dynamics �Toeplitz annihilator	�

kij ��

�						

						�

xi���j � xi�j��� if � 
 i � j 
 n

�� if � 
 i � j 
 n

xi���j � xi�j��� if � 
 j � i 
 n



Gradient�type Framework ��

Example� Problem C

� Take V � fAll diagonal matricesg and � � X� � the
matrix whose eigenvalues are to be found�

� The objective of Problem C is the same as that of the
Jacobi method� i�e�� to minimize the o��diagonal ele�
ments�

� The descent �ow�

dX

dt
� �X� �X� diag�X	�� �z �

k�X�

�

X��	 � X��

� Let X be a critical point� Then

� If X is a diagonal matrix� then X is a global mini�
mizer�

� IfX is not a diagonal matrix but diag�X	 is a scalar
matrix� then X is a global maximizer�

� If X is not a diagonal matrix and diag�X	 is not a
scalar matrix� then X is a saddle point�



�	 Application

Isospectral Flows

� QR �ow for normal matrices �Chu���	�

� Generalized Toda �ow �Chu���� Watkins���	�

dX

dt
� �X����G�X		�

where G�z	 is analytic over spectrum of X��	�

� QZ �ow �Chu���	�

� Continuous Rayleigh quotient �ow �Chu���	�

� SV D �ow �Chu���	�

dY

dt
� Y N �MY

where

M�t	 �� ��

�
Y �t	Y �t	T

�

N�t	 �� ��

�
Y �t	TY �t	

�
�

� Abstract QR�type �ow �Chu���	�

� Scaled Toda�like �ow �Chu���	�

dX

dt
� �X�A �X ��



Application ��

Projected Gradient Flows

� Brockett�s double bracket �ow �Brockett���	�

� Least squares approximation with spectral constraints
�Chu�Driessel���	�

� Simultaneous reduction problem �Chu���	�

dXi

dt
�

�
����Xi�

pX
j	�

�Xj� P
T
j �Xj	���Xj� P

T
j �Xj	�

T




�
����

Xi��	 � Ai

� Nearest normal matrix problem �Chu���	�

dW

dt
�

�
��W�

�



�W� diag�W �	�� �W� diag�W �	��

�
��

W ��	 � A�

� Inverse eigenvalue problem for non�negative matrices
�Chu�Driessel���	�

� Inverse singular value problem �Chu��
	�



�� Application

Generalized Flows

� Matrix di�erential equations �Chu��
	�

� Schur�Horn theorem �Chu���	�

�X � �X� �diag�X	� diag�a	� X ��

� Least squares inverse eigenvalue problem �Chu�Chen���	�

� Inverse generalized eigenvalue problem �Chu�Guo���	�

� Inverse stochastic eigenvalue problem �Chu�Guo���	�

� Adaptive Optics with Deformable Mirror Control�

max
U�O�n�

nX
i	�

max
��j�m

��
UTMjU

�
ii

�
�

�Mj � Adaptive optics performance characterization
and U � Basis of control modes�

� Parameter dynamics�

dU

dt
� U

�
UTK�MU	� �K�MU		TU

�

U��	 � any orthogonal matrix

where

K�MU	 �� �Mk�u�� � � � �Mknun�

ki �� argmax
j

��
UTMjU

�
ii

�
�



Generalization ��

Inverse Stochastic Eigenvalue Problem

� Construct a stochastic matrix with prescribed spec�
trum � A hard problem �Karpelevic���� Minc���	�

� No strings of symmetry�

� Reformulation�

Minimize F �P�R	 ��
�



jjPJP�� � R �Rjj�

Subject to P � Gl�n	� R � gl�n	�

� J � Real matrix carrying spectral information�

� � � Hadamard product�

� Steepest descent �ow�

dP

dt
� ��PJP��	T � ��P�R	�P�T

dR

dt
� 
��P�R	 � R�

� ��P�R	 �� PJP�� �R � R�



�� Generalization

� ASVD �ow for P �Bunse�Gerstner et al���� Wright��
	�

P �t	 � X�t	S�t	Y �t	T

�P � �XSY T 
X �SY T 
XS �Y T

XT �PY � XT �X� �z �
Z

S 
 �S 
 S �Y TY� �z �
W

De�ne Q �� XT �PY � Then

dS

dt
� diag�Q	�

dX

dt
� XZ�

dY

dt
� YW�

� Z�W are skew�symmetric matrices obtainable from
Q and S�



Numerical Computation ��

Numerical Computation

� Special features in Lax dynamics or parameter dynam�
ics�

� Only asymptotically stable equilibria are needed for
the original problem�

� An explicit Lyapunov function is available�

� Orbits are required to stay on a prescribed manifold�

� Challenge to the current numerical ODE techniques�

� The size of the di�erential system can easily be large�

� Need an ODE solver that can e�ectively approxi�
mate the asymptotically stable equilibrium point�

� Need an ODE solver that can trace trajectories on
a manifold constraint �DAE	�

� Lots of ongoing research�

� Numerical Hamiltonian methods �Sanz�Serna���	�

� Projected unitary schemes �Dieci et al���	�

� Modi�ed GL RK methods �Calvo et al���	�

� Adaptive neural networks method �Dehaene���	�

� This conference � many experts� many approaches�



�� Conclusion

Conclusion

� Area of applications is broad�

� Sheds critical insights into the understanding of the
dynamics of discrete methods�

� Uni�es di�erent discrete methods as special cases of its
discretization and often gives rise to the design of new
numerical algorithms�

� May be used as benchmark problems for testing new
ODE techniques�

� New ODE techniques may further bene�t the numerical
computation�

� Enable to tackle existence problems that are seemingly
impossible to be solved by conventional discrete meth�
ods�

� Usually o�ers a global method for solving the underly�
ing problem�


