Evolution of Lax Dynamics and Its Applications

Moody T. Chu
North Carolina State University
presented at
LMS Durham Symposium
July 13-23, 2000

Outline

- Introduction:
\diamond Motivation
\diamond Basic Form
- General Theory:
$\diamond Q R$-type Framework
\diamond Gradient-type Framework
- Application:
\diamond Isospectral flows
\diamond Projected gradient flows
\diamond Generalized flows
- Generalization:
\diamond Inverse stochastic eigenvalue problem
- Computation:
- Conclusion:

The Eigenvalue Problem

- The mathematical problem:
\diamond A symmetric matrix A_{0} is given.
\diamond Solve the equation

$$
A_{0} x=\lambda x
$$

for a nonzero vector x and a scalar λ.

- An iterative method:
\diamond The $Q R$ decomposition:

$$
A=Q R
$$

where Q is orthogonal and R is upper triangular.
\diamond The $Q R$ algorithm (Francis'61):

$$
\begin{aligned}
A_{k} & =Q_{k} R_{k} \\
A_{k+1} & =R_{k} Q_{k}
\end{aligned}
$$

\diamond The sequence $\left\{A_{k}\right\}$ converges to a diagonal matrix.
\diamond Every matrix A_{k} has the same eigenvalues of A_{0}.

- A continuous method:
\diamond Lie algebra decomposition:

$$
X=X^{o}+X^{+}+X^{-}
$$

where X^{o} is the diagonal, X^{+}the strictly upper triangular, and X^{-}the strictly lower triangular part of X.
\diamond The Toda lattice (Symes'82, Deift el al'83):

$$
\begin{aligned}
\frac{d X}{d t} & =\left[X, X^{-}-X^{-^{T}}\right] \\
X(0) & =X_{0}
\end{aligned}
$$

\diamond Sampled at integer times, $\{X(k)\}$ gives the same sequence as does the $Q R$ algorithm applied to the matrix $A_{0}=\exp \left(X_{0}\right)$.

- Evolution from X_{0} to the limit point of Toda flow, which is a diagoal matrix, maintains isospectrum.
\diamond What motivates the construction of the Toda lattice?
\diamond Why is convergence guaranteed?

Least Squares Matrix Approximation

- The mathematical problem:
\diamond A symmetric matrix N and a set of real values $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ are given.
\diamond Find a least squares approximation of N that has the prescribed eigenvalues.
- A standard formulation:

$$
\begin{aligned}
\text { Minimize } F(Q) & :=\frac{1}{2}\left\|Q^{T} \Lambda Q-N\right\|^{2} \\
\text { Subject to } Q^{T} Q & =I
\end{aligned}
$$

\diamond Equality Constrained Optimization:
\triangleright Augmented Lagrangian methods.
\triangleright Sequential quadratic programming methods.
\diamond None of these techniques is easy.

- A continuous approach:
\diamond The projection of the gradient of F can easily be calculated.
\diamond Projected gradient flow (Chu\&Driessel'90):

$$
\begin{aligned}
\frac{d X}{d t} & =[X,[X, N]] \\
X(0) & =\Lambda
\end{aligned}
$$

$\triangleright X:=Q^{T} \Lambda Q$.
\triangleright Flow $X(t)$ moves in a descent direction to reduce $\|X-N\|^{2}$.
\diamond The optimal solution X can be fully characterized by the spectral decomposition of N and is unique.

- Evolution from a starting point to the limit point, which solves the least squares problem, is built on the basis of systematically reducing the difference between the current position and the target position.

Basic Form

- Lax dynamics:

$$
\begin{aligned}
\frac{d X(t)}{d t} & =[X(t), k(t)] \\
X(0) & =X_{0}
\end{aligned}
$$

- Parameter dynamics:

$$
\begin{aligned}
\frac{d g(t)}{d t} & =g(t) k(t) \\
g(0) & =I
\end{aligned}
$$

- Isospectral relationship:

$$
X(t)=g(t)^{-1} X_{0} g(t)
$$

- Some choices of $k(t)$:

$$
\begin{aligned}
k(t) & =X(t)^{-}-X(t)^{-T} \\
k(t) & =[X(t), N] \\
k(t) & =k(X(t)), \text { where } k \text { is } \ldots
\end{aligned}
$$

Notation

$$
\begin{aligned}
G l(n) & :=\{n \times n \text { real nonsingular matrices }\} \\
g l(n) & :=\{n \times n \text { real matrices }\} \\
X_{0} & :=\text { A given matrix in } g l(n) \\
M\left(X_{0}\right) & :=\left\{g^{-1} X_{0} g \mid g \in G l(n)\right\} \\
{[A, B] } & :=A B-B A \text { (Lie bracket) } \\
T & :=\text { Subspace of } g l(n) \\
P_{T} & :=\text { Projection mapping from } g l(n) \text { to } T
\end{aligned}
$$

$Q R$-type Framework

- Subspace splitting of $g l(n)$:

$$
g l(n)=T_{1}+T_{2}
$$

$\diamond T_{1}$ and T_{2} are subspaces of $g l(n)$.
\diamond This is a subspace decomposition only, not necessarily a subalgebra decomposition of $g l(n)$.
\diamond Given T_{1}, one may choose $T_{2}=g l(n)-T_{1}$. This is not necessarily a direct sum decomposition.

- Examples:
\diamond Toda flow:
$\triangleright T_{1}=$ Subspace of skew symmetric matrices,

$$
k(X):=\left(X^{-}\right)-\left(X^{-}\right)^{T}
$$

\diamond General flow:
$\triangleright T_{1}=$ Arbitrary linear subspace,

$$
k(X):=\text { Projection of } X \text { onto subspace } T_{1}
$$

\triangleright Time-1 mapping of the solution still enjoys a $Q R-$ type algorithm.

Dynamical Systems

- Lax dynamics:

$$
\begin{aligned}
\frac{d X(t)}{d t} & :=\left[X(t), P_{1}(X(t))\right] \\
X(0) & :=X_{0} .
\end{aligned}
$$

$\diamond P_{1}:=$ Projection onto T_{1}.

- Parameter dynamics:

$$
\begin{aligned}
\frac{d g_{1}(t)}{d t} & :=g_{1}(t) P_{1}(X(t)) \\
g_{1}(0) & :=I .
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{d g_{2}(t)}{d t} & :=P_{2}(X(t)) g_{2}(t) \\
g_{2}(0) & :=I .
\end{aligned}
$$

$\diamond P_{2}:=$ Projection onto T_{2}.

Similarity Property

$$
X(t)=g_{1}(t)^{-1} X_{0} g_{1}(t)=g_{2}(t) X_{0} g_{2}(t)^{-1} .
$$

- Define $Z(t)=g_{1}(t) X(t) g_{1}(t)^{-1}$.
- Check

$$
\begin{aligned}
\frac{d Z}{d t}= & \frac{d g_{1}}{d t} X g_{1}^{-1}+g_{1} \frac{d X}{d t} g_{1}^{-1}+g_{1} X \frac{d g_{1}^{-1}}{d t} \\
= & \left(g_{1} P_{1}(X)\right) X g_{1}^{-1} \\
& +g_{1}\left(X P_{1}(X)-P_{1}(X) X\right) g_{1}^{-1} \\
& +g_{1} X\left(-P_{1}(X) g_{1}^{-1}\right) \\
= & 0 .
\end{aligned}
$$

- Thus $Z(t)=Z(0)=X(0)=X_{0}$.

Decomposition Property

$$
\exp \left(t X_{0}\right)=g_{1}(t) g_{2}(t)
$$

- Trivially $\exp \left(X_{0} t\right)$ satisfies the IVP

$$
\frac{d Y}{d t}=X_{0} Y, Y(0)=I
$$

- Define $Z(t)=g_{1}(t) g_{2}(t)$.
- Then $Z(0)=I$ and

$$
\begin{aligned}
\frac{d Z}{d t} & =\frac{d g_{1}}{d t} g_{2}+g_{1} \frac{d g_{2}}{d t} \\
& =\left(g_{1} P_{1}(X)\right) g_{2}+g_{1}\left(P_{2}(X) g_{2}\right) \\
& =g_{1} X g_{2} \\
& =X_{0} Z \text { (by Similarity Property). }
\end{aligned}
$$

- By the uniqueness theorem in the theory of ordinary differential equations, $Z(t)=\exp \left(X_{0} t\right)$.

Reverse Property

$$
\exp (t X(t))=g_{2}(t) g_{1}(t)
$$

- By Decomposition Property,

$$
\begin{aligned}
g_{2}(t) g_{1}(t) & =g_{1}(t)^{-1} \exp \left(X_{0} t\right) g_{1}(t) \\
& =\exp \left(g_{1}(t)^{-1} X_{0} g_{1}(t) t\right) \\
& =\exp (X(t) t)
\end{aligned}
$$

Abstraction

- QR-type Decomposition:
\diamond Lie algebra decomposition of $g l(n) \Longleftrightarrow$ Lie group decomposition of $G l(n)$ in the neighborhood of I.
\diamond Arbitrary subspace decomposition $g l(n) \Longleftrightarrow$ Product of two nonsingular matrices in the neighborhood of I, i.e.,

$$
\exp \left(X_{0} t\right)=g_{1}(t) g_{2}(t)
$$

\diamond The product $g_{1}(t) g_{2}(t)$ will be called the abstract $g_{1} g_{2}$ decomposition of $\exp \left(X_{0} t\right)$.

- $Q R$-type Algorithm:
\diamond By setting $t=1$, we have

$$
\begin{aligned}
& \exp (X(0))=g_{1}(1) g_{2}(1) \\
& \exp (X(1))=g_{2}(1) g_{1}(1) .
\end{aligned}
$$

\diamond The dynamical system for $X(t)$ is autonomous \Longrightarrow The above phenomenon will occur at every feasible integer time.
\diamond Corresponding to the abstract $g_{1} g_{2}$ decomposition, the above iterative process for all feasible integers will be called the abstract $g_{1} g_{2}$ algorithm.

Relation to Classical Algorithms

	Case 1	Case 2	Case 3
T_{1}	$o(n)$	$l(n)$	$l(n)+d(n) / 2$
T_{2}	$r(n)+d(n)$	$r(n)+d(n)$	$r(n)+d(n) / 2$
$k(t)=P_{1}(X(t))$	$X^{-}-X^{-T}$	X^{-}	$X^{-}+X^{0} / 2$
$P_{2}(X(t))$	$X^{+}+X^{0}+X^{-T}$	$X^{+}+X^{0}$	$X^{+}+X^{0} / 2$
$g_{1}(t)$	$\mathrm{Q}(t) \in O(n)$	$\mathrm{L}(t) \in L(n)$	$\mathrm{G}(t) \in L(n)$
$g_{2}(t)$	$\mathrm{R}(t) \in R(n)$	$\mathrm{U}(t) \in R(n)$	$\mathrm{H}(t) \in R(n)$
Algorithm	QR	LU	Cholesky

$o(n):=\{$ Skew-symmetric matrices in $g l(n)\}$
$O(n):=\{$ Orthogonal matrices in $G l(n)\}$
$r(n):=\{$ Strictly upper triangular matrices in $g l(n)\}$
$R(n):=\{$ Upper triangular matrices in $G l(n)\}$
$l(n):=\{$ Strictly lower triangular matrices in $g l(n)\}$
$L(n):=\{$ Lower triangular matrices in $G l(n)\}$
$d(n):=\{$ Diagonal matrices in $G l(n)\}$
$X^{+}:=$The strictly upper triangular matrix of X
$X^{o}:=$ The diagonal matrix of X
X^{-}:= The strictly lower triangular matrix of X

Nonclassical Examples

- Assume:

$$
\begin{aligned}
X_{0} & :=\text { symmetric } \\
\Delta & :=\text { Active index subset } \\
\hat{X}(t) & :=\text { Portion of } X(t) \text { conforming to } \Delta \\
P_{1}(X(t)) & :=\hat{X}(t)-(\hat{X}(t))^{T} \\
P_{2}(X(t)) & :=X(t)-P_{1}(X(t))
\end{aligned}
$$

Then:
For all $(i, j) \in \Delta, x_{i j}(t) \longrightarrow 0$ as $t \longrightarrow \infty$.
\diamond The above result suggests a way to produce (or knock out) any prescribed pattern that is symmetric to the diagonal of a symmetric matrix.

- Assume

$$
\begin{aligned}
X_{0} & :=\text { general (distinct eigenvalues) } \\
\Delta & \subset\{(i, j) \mid 1 \leq j<i \leq n\} \\
& :=\text { a rectangular index subset } \\
\hat{X}(t) & :=\text { Portion of } X(t) \text { conforming to } \Delta \\
P_{1}(X(t)) & :=\hat{X}(t)-(\hat{X}(t))^{T} \\
P_{2}(X(t)) & :=X(t)-P_{1}(X(t))
\end{aligned}
$$

Then
For all $(i, j) \in \Delta, x_{i j}(t) \longrightarrow 0$ as $t \longrightarrow \infty$.

- Assume

$$
\begin{aligned}
X_{0} & :=\text { Hamiltonian } \in g l(2 n) \\
& :=\left[\begin{array}{cc}
A_{0}, & N_{0} \\
K_{0}, & -A_{0}^{T}
\end{array}\right] \\
K, N & :=\text { symmetric } \in g l(n) \\
P_{1}(X(t)) & :=\left[\begin{array}{cc}
0, & -K(t) \\
K(t), & 0
\end{array}\right]
\end{aligned}
$$

Then
a) $\left[X, P_{1}(X)\right]$ is Hamiltonian
b) g_{1} is both orthogonal and sympletic
c) $X(t)$ remains Hamiltonian
d) $K(t) \longrightarrow 0$ as $t \longrightarrow \infty$.
\diamond The Hamiltonian eigenvalue problem for X_{0} practically becomes the eigenvalue problem for

$$
\lim _{t \rightarrow \infty} A(t)
$$

\diamond No explicit iterative scheme is known for the Hamiltonian eigenvalue problem due to the lack of knowledge of the structure of $g_{2}(t)$ in the abstract decomposition of $\exp \left(X_{0} t\right)$.

Gradient-type Framework

- Least squares approximations for various types of real and symmetric matrices subject to spectral constraints share a common structure.
- The projected gradient can be formulated explicitly.
- A descent flow can be followed numerically.
- The procedure can be extended to general matrices subject to singular value constraints.

Spectrally Constrained Problem

- Notation:

$$
\begin{aligned}
S(n) & :=\{\text { All real symmetric matrices }\} \\
O(n) & :=\text { All real orthogonal matrices }\} \\
\|X\| & :=\text { Frobenius matrix norm of } X \\
\Lambda & :=\text { A given matrix in } S(n) \\
M(\Lambda) & :=\left\{Q^{T} \Lambda Q \mid Q \in O(n)\right\} \\
V & :=\text { A single matrix or a subspace in } S(n) \\
P(X) & :=\text { The projection of } X \text { into } V
\end{aligned}
$$

- General problem:

$$
\begin{aligned}
\text { Minimize } F(X) & :=\frac{1}{2}\|X-P(X)\|^{2} \\
\text { Subject to } X & \in M(\Lambda)
\end{aligned}
$$

- Special cases:
\diamond Problem A: Given a symmetric matrix, find its least squares approximation with prescribed spectrum.
\diamond Problem B: Construct a symmetric Toeplitz matrix that has a prescribed set of eigenvalues.
\diamond Problem C: Find the spectrum of a given a symmetric matrix.

Reformulation

- Idea:

1. $X \in M(\Lambda)$ satisfies the spectral constraint.
2. $P(X) \in V$ has the desirable structure in V.
3. Minimize the undesirable part $\|X-P(X)\|$.

- Working with the parameter Q is easier:

$$
\begin{aligned}
\text { Minimize } F(Q):= & \frac{1}{2}\left\langle Q^{T} \Lambda Q-P\left(Q^{T} \Lambda Q\right)\right. \\
& \left.Q^{T} \Lambda Q-P\left(Q^{T} \Lambda Q\right)\right\rangle
\end{aligned}
$$

Subject to $Q^{T} Q=I$
$\diamond\langle A, B\rangle=\operatorname{trace}\left(A B^{T}\right)$ is the Frobenius inner product.

Feasible Set $O(n) \&$ Gradient of F

- The set $O(n)$ is a regular surface.
- The tangent space of $O(n)$ at any orthogonal matrix Q is given by

$$
T_{Q} O(n)=Q K(n)
$$

where

$$
K(n)=\{\text { All skew-symmetric matrices }\}
$$

- The normal space of $O(n)$ at any orthogonal matrix Q is given by

$$
N_{Q} O(n)=Q S(n)
$$

- The Fréchet Derivative of F at a general matrix A acting on B :

$$
F^{\prime}(A) B=2\left\langle\Lambda A\left(A^{T} \Lambda A-P\left(A^{T} \Lambda A\right)\right), B\right\rangle
$$

- The gradient of F at a general matrix A :

$$
\nabla F(A)=2 \Lambda A\left(A^{T} \Lambda A-P\left(A^{T} \Lambda A\right)\right)
$$

The Projected Gradient

- A splitting of $R^{n \times n}$:

$$
\begin{aligned}
R^{n \times n} & =T_{Q} O(n)+N_{Q} O(n) \\
& =Q K(n)+Q S(n)
\end{aligned}
$$

- A unique orthogonal splitting of $X \in R^{n \times n}$:

$$
X=Q\left\{\frac{1}{2}\left(Q^{T} X-X^{T} Q\right)\right\}+Q\left\{\frac{1}{2}\left(Q^{T} X+X^{T} Q\right)\right\}
$$

- The projection of $\nabla F(Q)$ into the tangent space:

$$
\begin{aligned}
g(Q) & =Q\left\{\frac{1}{2}\left(Q^{T} \nabla F(Q)-\nabla F(Q)^{T} Q\right)\right\} \\
& =Q\left[P\left(Q^{T} \Lambda Q\right), Q^{T} \Lambda Q\right]
\end{aligned}
$$

An Isospectral Descent Flow

- A descent flow on the manifold $O(n)$:

$$
\frac{d Q}{d t}=Q\left[Q^{T} \Lambda Q, P\left(Q^{T} \Lambda Q\right)\right]
$$

- A descent flow on the manifold $M(\Lambda)$:

$$
\begin{aligned}
\frac{d X}{d t} & =\frac{d Q^{T}}{d t} \Lambda Q+Q^{T} \Lambda \frac{d Q}{d t} \\
& =[X, \underbrace{[X, P(X)]}_{k(X)} .
\end{aligned}
$$

- The entire concept can be obtained by utilizing the Riemannian geometry on the Lie group $O(n)$.

The Second Order Derivative

- Extend the projected gradient g to the function

$$
G(Z):=Z\left[P\left(Z^{T} \Lambda Z\right), Z^{T} \Lambda Z\right]
$$

for general matrix Z.

- The Fréchet derivative of G :

$$
\begin{aligned}
G^{\prime}(Z) H & =H\left[P\left(Z^{T} \Lambda Z\right), Z^{T} \Lambda Z\right] \\
& +Z\left[P\left(Z^{T} \Lambda Z\right), Z^{T} \Lambda H+H^{T} \Lambda Z\right] \\
& +Z\left[P^{\prime}\left(Z^{T} \Lambda Z\right)\left(Z^{T} \Lambda H+H^{T} \Lambda Z\right), Z^{T} \Lambda Z\right]
\end{aligned}
$$

- The projected Hessian at a critical point $X=Q^{T} \Lambda Q$ for the tangent vector $Q K$ with $K \in K(n)$:

$$
\begin{aligned}
& \left\langle G^{\prime}(Q) Q K, Q K\right\rangle= \\
& \left\langle[P(X), K]-P^{\prime}(X)[X, K],[X, K]\right\rangle
\end{aligned}
$$

Example: Problem A

- Given $N \Longrightarrow P(X)=N$.
- The descent flow:

$$
\begin{aligned}
\frac{d X}{d t} & =[X, \underbrace{[X, N]}_{k(X)}] \\
X(0) & =\Lambda .
\end{aligned}
$$

- Assume
\diamond The given eigenvalues are $\lambda_{1}>\ldots>\lambda_{n}$.
\diamond The eigenvalues of N are $\mu_{1}>\ldots>\mu_{n}$.
- At a critical point Q, the first order condition:

$$
\left[Q^{T} \Lambda Q, N\right]=0
$$

$\Longrightarrow Q N Q^{T}$ must be a diagonal matrix whose elements must be a permutation of μ_{1}, \ldots, μ_{n}.

- The projected Hessian:

$$
\begin{aligned}
\left\langle G^{\prime}(Q) Q K, Q K\right\rangle & =\langle[N, K],[X, K]\rangle \\
& =\langle E \hat{K}-\hat{K} E, \Lambda \hat{K}-\hat{K} \Lambda\rangle \\
& =2 \sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right)\left(\mu_{i}-\mu_{j}\right) \hat{k}_{i j}^{2} .
\end{aligned}
$$

- If a matrix Q is optimal, then:
\diamond Columns of $Q^{T}=\left[q_{1}, \ldots, q_{n}\right]$ must be the normalized eigenvectors of N corresponding in the order to μ_{1}, \ldots, μ_{n}.
\diamond The solution to Problem A is unique. \diamond The solution is given by

$$
X=\lambda_{1} q_{1} q_{1}^{T}+\ldots+\lambda_{n} q_{n} q_{n}^{T}
$$

- We have reproved the Wielandt-Hoffman theorem.
- The dynamics in Problem A enjoys a special sorting property.
\diamond Can be applied to data matching problem and a variety of combinatorial optimizations, including simplex method and the interior point methods for the LP problem.

Example: Problem B

- Given $T=\{$ All symmetric Toeplitz matrices $\} \Longrightarrow$

$$
P(X)=\sum_{i=1}^{n}\left\langle X, E_{i}\right\rangle E_{i} .
$$

$\diamond E_{1}, \ldots, E_{n}$ is a natural basis of T.

- The descent flow:

$$
\begin{aligned}
\frac{d X}{d t} & =[X, \underbrace{[X, P(X)]}_{k(X)} \\
X(0) & =\text { Any thing on } M(\Lambda) \text { but diagonal matrices. }
\end{aligned}
$$

- The Lax dynamics offers a globally convergent method for solving the inverse Toeplitz eigenvalue problem.
- Better yet dynamics (Toeplitz annihilator):

$$
k_{i j}:= \begin{cases}x_{i+1, j}-x_{i, j-1}, & \text { if } 1 \leq i<j \leq n \\ 0, & \text { if } 1 \leq i=j \leq n \\ x_{i-1, j}-x_{i, j+1}, & \text { if } 1 \leq j<i \leq n\end{cases}
$$

Example: Problem C

- Take $V=\{$ All diagonal matrices $\}$ and $\Lambda=X_{0}=$ the matrix whose eigenvalues are to be found.
- The objective of Problem C is the same as that of the Jacobi method, i.e., to minimize the off-diagonal elements.
- The descent flow:

$$
\begin{aligned}
\frac{d X}{d t} & =[X, \underbrace{[X, \operatorname{diag}(X)]}_{k(X)} \\
X(0) & =X_{0}
\end{aligned}
$$

- Let X be a critical point. Then
\diamond If X is a diagonal matrix, then X is a global minimizer.
\diamond If X is not a diagonal matrix $\operatorname{but} \operatorname{diag}(X)$ is a scalar matrix, then X is a global maximizer.
\diamond If X is not a diagonal matrix and $\operatorname{diag}(X)$ is not a scalar matrix, then X is a saddle point.

Isospectral Flows

- $Q R$ flow for normal matrices (Chu'84).
- Generalized Toda flow (Chu'84, Watkins'84),

$$
\frac{d X}{d t}=\left[X, \Pi_{0}(G(X))\right]
$$

where $G(z)$ is analytic over spectrum of $X(0)$.

- $Q Z$ flow (Chu'86).
- Continuous Rayleigh quotient flow (Chu'86).
- SV D flow (Chu'86),

$$
\frac{d Y}{d t}=Y N-M Y
$$

where

$$
\begin{aligned}
M(t) & :=\Pi_{0}\left(Y(t) Y(t)^{T}\right) \\
N(t) & :=\Pi_{0}\left(Y(t)^{T} Y(t)\right) .
\end{aligned}
$$

- Abstract $Q R$-type flow (Chu'88).
- Scaled Toda-like flow (Chu'95),

$$
\frac{d X}{d t}=[X, A \circ X] .
$$

Projected Gradient Flows

- Brockett's double bracket flow (Brockett'88).
- Least squares approximation with spectral constraints (Chu\&Driessel'90).
- Simultaneous reduction problem (Chu'91),

$$
\begin{aligned}
\frac{d X_{i}}{d t} & =\left[X_{i}, \sum_{j=1}^{p} \frac{\left[X_{j}, P_{j}^{T}\left(X_{j}\right)\right]-\left[X_{j}, P_{j}^{T}\left(X_{j}\right)\right]^{T}}{2}\right] \\
X_{i}(0) & =A_{i}
\end{aligned}
$$

- Nearest normal matrix problem (Chu'91),

$$
\begin{aligned}
\frac{d W}{d t} & =\left[W, \frac{1}{2}\left[W, \operatorname{diag}\left(W^{*}\right)\right]-\left[W, \operatorname{diag}\left(W^{*}\right)\right]^{*}\right] \\
W(0) & =A
\end{aligned}
$$

- Inverse eigenvalue problem for non-negative matrices (Chu\&Driessel'91).
- Inverse singular value problem (Chu'92).

Generalized Flows

- Matrix differential equations (Chu'92).
- Schur-Horn theorem (Chu'95),

$$
\dot{X}=[X,[\operatorname{diag}(X)-\operatorname{diag}(a), X]]
$$

- Least squares inverse eigenvalue problem (Chu\&Chen'96).
- Inverse generalized eigenvalue problem (Chu\&Guo'98).
- Inverse stochastic eigenvalue problem (Chu\&Guo'98).
- Adaptive Optics with Deformable Mirror Control,

$$
\max _{U \in O(n)} \sum_{i=1}^{n} \max _{1 \leq j \leq m}\left\{\left(U^{T} M_{j} U\right)_{i i}\right\}
$$

$\diamond M_{j}=$ Adaptive optics performance characterization and $U=$ Basis of control modes.
\diamond Parameter dynamics:

$$
\begin{aligned}
\frac{d U}{d t} & =U\left(U^{T} \mathcal{K}(M U)-(\mathcal{K}(M U))^{T} U\right) \\
U(0) & =\text { any orthogonal matrix }
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{K}(M U) & :=\left[M_{k_{1}} u_{1}, \ldots, M_{k_{n}} u_{n}\right] \\
k_{i} & :=\arg \max _{j}\left\{\left(U^{T} M_{j} U\right)_{i i}\right\} .
\end{aligned}
$$

Inverse Stochastic Eigenvalue Problem

- Construct a stochastic matrix with prescribed spectrum - A hard problem (Karpelevic'51, Minc'88).
\diamond No strings of symmetry.
- Reformulation:

Minimize $\quad F(P, R):=\frac{1}{2}\left\|P J P^{-1}-R \circ R\right\|^{2}$
Subject to $P \in G l(n), R \in g l(n)$.
$\diamond J=$ Real matrix carrying spectral information. $\diamond \circ=$ Hadamard product.

- Steepest descent flow:

$$
\begin{aligned}
& \frac{d P}{d t}=\left[\left(P J P^{-1}\right)^{T}, \alpha(P, R)\right] P^{-T} \\
& \frac{d R}{d t}=2 \alpha(P, R) \circ R . \\
& \diamond \alpha(P, R):=P J P^{-1}-R \circ R .
\end{aligned}
$$

- ASVD flow for P (Bunse-Gerstner et al'91, Wright'92):

$$
\begin{aligned}
P(t) & =X(t) S(t) Y(t)^{T} \\
\dot{P} & =\dot{X} S Y^{T}+X \dot{S} Y^{T}+X S \dot{Y}^{T} \\
X^{T} \dot{P} Y & =\underbrace{X^{T} \dot{X}}_{Z} S+\dot{S}+S \underbrace{\dot{Y}^{T} Y}_{W}
\end{aligned}
$$

Define $Q:=X^{T} \dot{P} Y$. Then

$$
\begin{aligned}
\frac{d S}{d t} & =\operatorname{diag}(Q) \\
\frac{d X}{d t} & =X Z \\
\frac{d Y}{d t} & =Y W
\end{aligned}
$$

$\diamond Z, W$ are skew-symmetric matrices obtainable from Q and S.

Numerical Computation

- Special features in Lax dynamics or parameter dynamics:
\diamond Only asymptotically stable equilibria are needed for the original problem.
\diamond An explicit Lyapunov function is available.
\diamond Orbits are required to stay on a prescribed manifold.
- Challenge to the current numerical ODE techniques:
\diamond The size of the differential system can easily be large.
\diamond Need an ODE solver that can effectively approximate the asymptotically stable equilibrium point.
\diamond Need an ODE solver that can trace trajectories on a manifold constraint (DAE).
- Lots of ongoing research:
\diamond Numerical Hamiltonian methods (Sanz-Serna'94).
\diamond Projected unitary schemes (Dieci et al'94).
\diamond Modified GL RK methods (Calvo et al'95).
\diamond Adaptive neural networks method (Dehaene'95).
\diamond This conference - many experts, many approaches.

Conclusion

- Area of applications is broad.
- Sheds critical insights into the understanding of the dynamics of discrete methods.
- Unifies different discrete methods as special cases of its discretization and often gives rise to the design of new numerical algorithms.
- May be used as benchmark problems for testing new ODE techniques.
- New ODE techniques may further benefit the numerical computation.
- Enable to tackle existence problems that are seemingly impossible to be solved by conventional discrete methods.
- Usually offers a global method for solving the underlying problem.

