On the Inverse Problem of Constrained Data Reconstruction

by
Moody T. Chu
joined with
Robert J. Plemmons

October 25, 2000

Warning

The following presentation contains no essential materials. It raises more questions than answers, and will cause more anxieties than satisfactions. If you are here looking for a definitive result, then you are in the wrong room.

Outline

- Background
\diamond Forward Problem
\diamond Inverse Problem
\diamond Constraints
- A Few Case Studies
\diamond Low Rank Approximation Problem
\diamond Inverse Eigenvalue Problem
\diamond Matrix Completion Problem
\diamond Inverse Testing Problem
- Fundamental Questions
- Conclusion

Forward Problem

Inverse Problem

- Information gathering devices have only finite bandwidth.
- Data collected are not exact.
\diamond Instrumental noises in signals received by antenna arrays.
\diamond Atmospheric turbulence in astronomical images received by telescopes.
\diamond Blurring effect in image or signal process.
\diamond Intrinsic physical constraints are not satisfied even in laboratory setting.
- Need to reconstruct data so that
\diamond Inexactness is reduced.
\diamond A certain feasibility conditions are satisfied.

Some Typical Constraints

- Feasibility constraints:
\diamond Bounds on data.
\diamond Non-negativity on data.
\diamond Fixed data on non-free standing components.
- Structural constraints:
\diamond Banded matrices.
\diamond Toeplitz or block Toeplitz matrices.
\diamond Hankel matrices.
\diamond Toeplitz plus Hankel matrices.
\diamond Circulant or block circulant matrices.
- Spectral constraints:
\diamond Prescribed information about eigenvalues/vectors.
\diamond Prescribed singular value information.
- Other types of constraints:
\diamond Rank condition.
$\diamond \ldots$

Structured Low Rank Approximation

- Given
\diamond A target matrix $A \in R^{n \times n}$,
\diamond An integer $k, 1 \leq k<\operatorname{rank}(A)$,
\diamond A class of matrices Ω with linear structure,
\diamond a fixed matrix norm $\|\cdot\|$;
Find a matrix $\hat{B} \in \Omega$ of rank k such that

$$
\|A-\hat{B}\|=\min _{B \in \Omega, \operatorname{rank}(B)=k}\|A-B\|
$$

Applications

- Noise removal in signal/image processing with Toeplitz structure. (Classical)
\diamond rank $=$ noise level where SNR is high.
- Model reduction problem in speech encoding and filter design with Hankel structure. (Cadzow'90, Park'97)
\diamond rank $=\#$ of sinusoidal components in the signal.
- GCD approximation for multivariate polynomials with Sylvester structure. (Corless'95)
\diamond rank $=$ degree of GCD.
- Molecular structure modeling for protein folding with nonnegative matrices. (Hayden'90)
\diamond rank ≤ 5.
- LSI application.
\diamond rank $=\#$ of factors capturing the random nature of the indexing matrix but structure $=$?
- Preconditioning/regularization of ill-posed inverse problems. (Nagy'97)

Inverse Eigenvalue Problem

- Given
\diamond A set of scalars $\lambda_{1}, \ldots, \lambda_{n}$,
\diamond A class of matrices Ω with linear structure,
Find a matrix $X \in \Omega$ such that

$$
\sigma(X)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} .
$$

- Given
\diamond A set of scalars $\lambda_{1}, \ldots, \lambda_{k}$,
\diamond A set of vectors v_{1}, \ldots, v_{k},
\diamond A class of matrices Ω with linear structure,
Find a matrix $X \in \Omega$ such that

$$
X v_{i}=\lambda_{i} v_{i}, \quad i=1, \ldots k
$$

Applications

- Construct a mass-spring system with specific type and prescribed natural frequency/mode. (Classical)
\diamond Given A, find $X \in \Omega$ such that

$$
\sigma(A+X)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} .
$$

- Control the vibration of a string by placing weights at designated points. (Tire balancing)
- State-feedback/output-feedback pole assignment problem in control. (Classical)
\diamond Given A, B, C, find X such that

$$
\sigma(A+B X C)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} .
$$

- Preconditioning or stabilizing process. (Classical)
\diamond Given A and a domain $\mathcal{D} \in C$, find $X \in \Omega$ such that

$$
\sigma(X A) \subset \mathcal{D}
$$

- Construct a symmetric Toeplitz matrix with prescribed spectrum. (Lauri'88, Laundau'92)
- Construct a row-stochastic matrix with specific transit structure and prescribed spectrum. (Chu\&Guo'98)

Matrix Completion Problem

- Given
\diamond A set of scalars $\lambda_{1}, \ldots, \lambda_{n}$,
\diamond A class of matrices Ω with partially fixed entries,
Find (complete) a matrix $X \in \Omega$ such that

$$
\sigma(X)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}
$$

Applications

- Schur-Horn Theorem:
\diamond Given vectors $a, \lambda \in R^{n}$ such that

$$
\begin{gathered}
a_{j_{1}} \leq \ldots \leq a_{j_{n}}, \\
\lambda_{m_{1}} \leq \ldots \leq \lambda_{m_{n}},
\end{gathered}
$$

\diamond Then a Hermitian matrix H with eigenvalues λ and diagonal entries a exists if and only if a majorizes λ, i.e.,

$$
\begin{aligned}
& \sum_{i=1}^{k} \lambda_{m_{i}} \leq \sum_{i=1}^{k} a_{j_{i}}, \quad \text { for } k=1, \ldots n, \\
& \sum_{i=1}^{n} \lambda_{m_{i}}=\sum_{i=1}^{n} a_{j_{i}} .
\end{aligned}
$$

\diamond Construct such a Hermitian matrix with given diagonals and eigenvalues. (Chu'95, Zha\&Zhang'95)

- Sing-Thompson Theorem:
\diamond Given vectors $d, s \in R^{n}$ such that

$$
\begin{aligned}
s_{1} \geq s_{2} & \geq \ldots s_{n}, \\
\left|d_{1}\right| \geq\left|d_{2}\right| & \geq \ldots\left|d_{n}\right| .
\end{aligned}
$$

\diamond Then a real matrix with singular values s and main diagonal entries d (possibly in different order) exists if and only if

$$
\begin{aligned}
\sum_{i=1}^{k}\left|d_{i}\right| & \leq \sum_{i=1}^{k} s_{i}, \quad \text { for } k=1, \ldots, n, \\
\left(\sum_{i=1}^{n-1}\left|d_{i}\right|\right)-\left|d_{n}\right| & \leq\left(\begin{array}{l}
n-1 \\
i=1 \\
i_{i}
\end{array} s_{i}\right)-s_{n} .
\end{aligned}
$$

\diamond Construct such a square matrix with given diagonals and singular values. (Chu'99)

Inverse Testing Problem

- Given
\diamond A statement of property \mathcal{P},
Find a matrix X with property \mathcal{P}.
- The property \mathcal{P} can be any of those previously mentioned.
- The property \mathcal{P} can be any more general conditions.

Applications

- Weyl-Horn Theorem.
\diamond Given vectors $\lambda \in C^{n}$ and $\alpha \in R^{n}$ such that

$$
\begin{aligned}
\left|\lambda_{1}\right| & \geq \ldots \geq\left|\lambda_{n}\right|, \\
\alpha_{1} & \geq \ldots \geq \alpha_{n},
\end{aligned}
$$

\diamond Then a matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and singular values $\alpha_{1}, \ldots, \alpha_{n}$ exists if and only if

$$
\begin{aligned}
\prod_{j=1}^{k}\left|\lambda_{j}\right| & \leq \prod_{j=1}^{k} \alpha_{j}, \quad k=1, \ldots, n-1 \\
\prod_{j=1}^{n}\left|\lambda_{j}\right| & =\prod_{j=1}^{n} \alpha_{j}
\end{aligned}
$$

\diamond Construct such a matrix with prescribed singular values and eigenvalues. (Chu'00, Li\&Mathias'00)

- Educational testing problem: (Fletcher'85)
\diamond Given S symmetric and positive definite, find the largest trace of a non-negative diagonal matrix D such that $S-D$ is positive semi-definite.
- Nearest correlation matrix approximation. (Higham'00)

Fundamental Questions

- Solvability: Determine a necessary or a sufficient condition under which an inverse data reconstruction problem has a solution.
- Computability: Develop a procedure by which, knowing a priori that the given inverse problem is solvable, an approximate data matrix can be constructed numerically.
- Stability: Determine how sensitive a reconstructed matrix is subject to perturbation of the given inexact data.

Many pieces of this puzzle are missing!

Conclusion

- The inverse problem of matrix construction arises in many areas of important applications.
- Matrices under construction are supposed to satisfy certain specific constraints.
- The constraints could be inherited intrinsically from the physical feasibility of a certain mechanical structure or could be driven extrinsically by the desirable property of a certain design parameter.
- We have studied a few cases where such an inverse problem of data reconstruction is needed.
- We did not talk about any technical details on how such a problem could be solved.
- Indeed, theories and numerical methods are far from being complete. Many open questions need to be answered.

