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Warning

The following presentation contains no essential materi-
als. It raises more questions than answers, and will cause
more anxieties than satisfactions. If you are here looking
for a definitive result, then you are in the wrong room.
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Forward Problem

Exogenous variables +— | Endogenous variables
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Data collection System model
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Data analysis
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Matrix techniques

e Solving linear equations.
e Spectral analysis.

o SVD

o TLS



Inverse Problem

e Information gathering devices have only finite band-

width.
e Data collected are not exact.
¢ Instrumental noises in signals received by antenna

arrays.

¢ Atmospheric turbulence in astronomical images re-
ceived by telescopes.

¢ Blurring effect in image or signal process.
¢ Intrinsic physical constraints are not satisfied even in
laboratory setting.

e Need to reconstruct data so that

¢ Inexactness 1s reduced.

o A certain feasibility conditions are satisfied.



Some Typical Constraints

e Feasibility constraints:

¢ Bounds on data.
¢ Non-negativity on data.

¢ Fixed data on non-free standing components.
e Structural constraints:

¢ Banded matrices.

¢ Toeplitz or block Toeplitz matrices.
o Hankel matrices.

¢ Toeplitz plus Hankel matrices.

¢ Circulant or block circulant matrices.
e Spectral constraints:

o Prescribed information about eigenvalues/vectors.

¢ Prescribed singular value information.
e Other types of constraints:

¢ Rank condition.
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Structured Low Rank Approximation

e Given
o A target matrix A € R™™",
o An integer k, 1 < k < rank(A),
¢ A class of matrices €2 with linear structure,

¢ a fixed matrix norm || - ||;

Find a matrix B € Q of rank k such that

|A— B = min |A— B|.
BeQ, rank(B)=k



Applications

e Noise removal in signal /image processing with Toeplitz
structure. (Classical)

¢ rank = noise level where SNR is high.

e Model reduction problem in speech encoding and filter
design with Hankel structure. (Cadzow’90, Park’97)

¢ rank = # of sinusoidal components in the signal.

e GCD approximation for multivariate polynomials with
Sylvester structure. (Corless’95)

¢ rank = degree of GCD.

e Molecular structure modeling for protein folding with
nonnegative matrices. (Hayden’90)

o rank < 5.
e LSI application.

¢ rank = # of factors capturing the random nature of
the indexing matrix but structure = 7

e Preconditioning/regularization of ill-posed inverse prob-

lems. (Nagy'97)



Inverse Eigenvalue Problem

e (Glven

o A set of scalars Ay, ..., \,,

¢ A class of matrices ) with linear structure,

Find a matrix X € €2 such that
o(X)={M,..., \}.

e GGiven
o A set of scalars Ay, ..., A,
o A set of vectors vy, ..., v,

¢ A class of matrices €2 with linear structure,

Find a matrix X € €2 such that
XUZ':)\Z'UZ', ’I,Zl,k
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Applications

e Construct a mass-spring system with specific type and
prescribed natural frequency/mode. (Classical)

o Given A, find X € () such that
g A+ X)={)M,..., \u}.

e Control the vibration of a string by placing weights at
designated points. (Tire balancing)

e State-feedback/output-feedback pole assignment prob-
lem in control. (Classical)

o Given A, B, C, find X such that
oA+ BXC)={\,..., \n}.
e Preconditioning or stabilizing process. (Classical)

¢ Given A and a domain D € C, find X € () such
that
o(XA) CD.

e Construct a symmetric Toeplitz matrix with prescribed
spectrum. (Lauri’88, Laundau’92)

e Construct a row-stochastic matrix with specific transit
structure and prescribed spectrum. (Chu&Guo’98)



Matrix Completion Problem
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e (Glven

o A set of scalars Ay, ..., \,,

o A class of matrices ) with partially fixed entries,

Find (complete) a matrix X € €2 such that
o(X)=4A1,..., \u}.
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Applications

e Schur-Horn Theorem:

¢ Given vectors a, A € R" such that

aj f; ce f; Aj, s

Ay <ot < A

¢ Then a Hermitian matrix A with eigenvalues A and
diagonal entries a exists if and only if @ majorizes

A, le.,
k k
> Am;, < Y oaj, fork=1,...n,
i=1 i=1
n
X Am; = X aj;.
1=1 =1

¢ Construct such a Hermitian matrix with given diag-
onals and eigenvalues. (Chu’95, Zha&Zhang’95)
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e Sing-Thompson Theorem:

¢ Given vectors d, s € R" such that

S1 2 S2 2 ...Sp,

|di| = |do| > ... [dnl|.

¢ Then a real matrix with singular values s and main
diagonal entries d (possibly in different order) exists
if and only if

k k
> |dz‘ < 2182', fOI'kZl,...,n,
1=1 1=

n—1 n—1

(5 1) = ldal < ('S 1) = sn

¢ Construct such a square matrix with given diagonals
and singular values. (Chu’99)
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Inverse Testing Problem

e Given
¢ A statement of property P,
Find a matrix X with property P.

e The property P can be any of those previously men-
tioned.

e The property P can be any more general conditions.
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Applications

e Weyl-Horn Theorem.
o Given vectors A € C" and o« € R" such that

A >0 >\,
Qp 2 ... 2 Qp,

¢ Then a matrix with eigenvalues Ay, ..., A, and sin-
gular values aq, ..., a, exists if and only if
k k
H|)\]‘ S Qi kzl,...,n—l,
j=1 j=1

I A\ = 1
4 A= 1 ay

J

¢ Construct such a matrix with prescribed singular val-
ues and eigenvalues. (Chu’00, Li&Mathias’00)

e Educational testing problem: (Fletcher’85)

¢ Given S symmetric and positive definite, find the
largest trace of a non-negative diagonal matrix D
such that S — D is positive semi-definite.

e Nearest correlation matrix approximation. (Higham’00)
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Fundamental Questions

e Solvability: Determine a necessary or a sufficient condi-
tion under which an inverse data reconstruction problem
has a solution.

e Computability: Develop a procedure by which, know-
ing a priori that the given inverse problem is solvable,
an approximate data matrix can be constructed numer-
ically.

e Stability: Determine how sensitive a reconstructed ma-
trix is subject to perturbation of the given inexact data.

Many pieces of this puzzle are missing!
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Conclusion

e The inverse problem of matrix construction arises in
many areas of important applications.

e Matrices under construction are supposed to satisty cer-
tain specific constraints.

e The constraints could be inherited intrinsically from the
physical feasibility of a certain mechanical structure or
could be driven extrinsically by the desirable property
of a certain design parameter.

e We have studied a few cases where such an inverse prob-
lem of data reconstruction is needed.

e We did not talk about any technical details on how such
a problem could be solved.

e Indeed, theories and numerical methods are far from
being complete. Many open questions need to be an-
swered.



