Structured Lower Rank Approximation

by

Moody T. Chu (NCSU)
joint with

Robert E. Funderlic (NCSU)

and
Robert J. Plemmons (Wake Forest)
March 25, 1998

Outline

- Introduction:
\diamond Problem Description
\diamond Difficulties
- Algebraic Structure:
\diamond Algebraic Varieties
\diamond Rank Deficient 3×3 Toeplitz Matrices
- Constructing Lower Rank Structured Matrices:
\diamond Lift and Project Method
\diamond Parameterization by SVD
- Implicit Optimization
\diamond Engineerers' Misconception
\diamond Simplex Search Method
- Explicit Optimization
\diamond constr in MATLAB
\diamond LANCELOT on NEOS

Structure Preserving Rank Reduction Problem

- Given
\diamond A target matrix $A \in R^{n \times n}$,
\diamond An integer $k, 1 \leq k<\operatorname{rank}(A)$,
\diamond A class of matrices Ω with linear structure,
\diamond a fixed matrix norm $\|\cdot\|$;
Find
\diamond A matrix $\hat{B} \in \Omega$ of rank k, and
\diamond

$$
\begin{equation*}
\|A-\hat{B}\|=\min _{B \in \Omega, \operatorname{rank}(B)=k}\|A-B\| \tag{1}
\end{equation*}
$$

- Example of linear structure:
\diamond Toeplitz or block Toeplitz matrices.
\diamond Hankel or banded matrices.
- Applications:
\diamond Signal and image processing with Toeplitz structure.
\diamond Model reduction problem in speech encoding and filter design with Hankel structure.
\diamond Regularization of ill-posed inverse problems.

Difficulties

- No easy way to characterize, either algebraically or analytically, a given class of structured lower rank matrices.
- Lack of explicit description of the feasible set \Longrightarrow Difficult to apply classical optimization techniques.
- Little discussion on whether lower rank matrices with specified structure actually exist.

An Example of Existence

- Physics sometimes sheds additional light.
- The Toeplitz matrix

$$
H:=\left[\begin{array}{cccc}
h_{n} & h_{n+1} & \ldots & h_{2 n-1} \\
\vdots & & & \vdots \\
h_{2} & h_{3} & \ldots & h_{n+1} \\
h_{1} & h_{2} & \ldots & h_{n}
\end{array}\right]
$$

with

$$
h_{j}:=\sum_{i=1}^{k} \beta_{i} z_{i}^{j}, \quad j=1,2, \ldots, 2 n-1
$$

where $\left\{\beta_{i}\right\}$ and $\left\{z_{i}\right\}$ are two sequences of arbitrary nonzero numbers satisfying $z_{i} \neq z_{j}$ whenever $i \neq j$ and $k \leq n$, is a Toeplitz matrix of rank k.

- The general Toeplitz structure preserving rank reduction problem as described in (1) remains open.
\diamond Existence of lower rank matrices of specified structure does not guarantee closest such matrices.
\diamond No $x>0$ for which $1 / x$ is minimum.
- For other types of structures, the existence question usually is a hard algebraic problem.

Another Hidden Catch

- The set of all $n \times n$ matrices with rank $\leq k$ is a closed set.
- The approximation problem

$$
\min _{B \in \Omega, \operatorname{rank}(B) \leq k}\|A-B\|
$$

is always solvable, so long as the feasible set is nonempty.
\diamond The rank condition is to be less than or equal to k, but not necessarily exactly equal to k.

- It is possible that a given target matrix A does not have a nearest rank k structured matrix approximation, but does have a nearest rank $k-1$ or lower structured matrix approximation.

Our Contributions

- Introduce two procedures to tackle the structure preserving rank reduction problem numerically.
- The procedures can be applied to problems of any norm, any linear structure, and any matrix norm.
- Use the symmetric Toeplitz structure with Frobenius matrix norm to illustrate the ideas.

Structure of Lower Rank Toeplitz Matrices

- Identify a symmetric Toeplitz matrix by its first row,

$$
T=T\left(\left[t_{1}, \ldots, t_{n}\right]\right)=\left[\begin{array}{cccc}
t_{1} & t_{2} & \ldots & t_{n} \\
t_{2} & t_{1} & \ddots & t_{n-1} \\
\vdots & \ddots & \ddots & \\
t_{n-1} & & & t_{2} \\
t_{n} & t_{n-1} & \ldots & t_{2}
\end{array} t_{1} .\right.
$$

$\diamond \mathcal{T}=$ The affine subspace of all $n \times n$ symmetric Toeplitz matrices.

- Spectral decomposition of symmetric rank k matrices:

$$
\begin{equation*}
M=\sum_{i=1}^{k} \alpha_{i} y^{(i)} y^{(i)^{T}} \tag{2}
\end{equation*}
$$

- Write $T=T\left(\left[t_{1}, \ldots, t_{n}\right]\right)$ in terms of $(2) \Longrightarrow$

$$
\begin{equation*}
\sum_{i=1}^{k} \alpha_{i} y_{j}^{(i)} y_{j+s}^{(i)}=t_{s+1}, s=0,1, \ldots, n-2,1 \leq j \leq n-s \tag{3}
\end{equation*}
$$

\diamond Lower rank matrices form an algebraic variety, i.e, solutions of polynomial systems.

Some Examples

- The case $k=1$ is trivial.
\diamond Rank-one Toeplitz matrices form two simple oneparameter families,

$$
\begin{aligned}
& T=\alpha_{1} T([1, \ldots, 1]), \text { or } \\
& T=\alpha_{1} T\left(\left[1,-1,1, \ldots,(-1)^{n-1}\right]\right)
\end{aligned}
$$

with arbitrary $\alpha_{1} \neq 0$.

- For 4×4 symmetric Toeplitz matrices of rank 2, there are 10 unknowns in 6 equations.

$$
\begin{cases}\alpha_{1} & :=\frac{\alpha_{2}\left(y_{1}^{(2)^{2}}-y_{2}^{(2)^{2}}\right)}{-y_{1}^{(1)^{2}}+y_{2}^{(1)^{2}}}, \\ y_{3}^{(1)} & :=\frac{y_{2}^{(1)} y_{1}^{(2)} y_{1}^{(1)}+2 y_{2}^{(2)} y_{2}^{(1)^{2}}-y_{2}^{(2)} y_{1}^{(1)^{2}}}{y_{2}^{(1)} y_{1}^{(2)}+y_{1}^{(1)} y_{2}^{(2)}}, \\ y_{4}^{(1)} & :=-\frac{y_{2}^{(1)^{3} y_{1}^{(2)^{2}}-4 y_{2}^{(1)^{3}} y_{2}^{(2)^{2}}-4 y_{1}^{(1)} y_{1}^{(2)} y_{2}^{(2)} y_{2}^{(1)^{2}}-2 y_{2}^{(1)} y_{1}^{(1)^{2}} y_{1}^{(2)^{2}}+3 y_{2}^{(1)} y_{2}^{(2)^{2}} y_{1}^{(1)^{2}}+2 y_{1}^{(2)} y_{2}^{(2)} y_{1}^{(1)^{3}}}}{y_{1}^{(1)^{2}{ }^{(2)^{2}}+2 y_{2}^{(1)} y_{1}^{(2)} y_{1}^{(1)} y_{2}^{(2)}+y_{1}^{(1)^{2}} y_{2}^{(2)^{2}}}} \\ y_{3}^{(2)} & := \\ y_{4}^{(2)} & :=\frac{y_{2}^{(1)} y_{1}^{(2)^{2}}-2 y_{2}^{(1)} y_{2}^{(2)^{2}}-y_{1}^{(2)} y_{2}^{(2)} y_{1}^{(1)}}{y_{2}^{(1)} y_{1}^{(2)}+y_{1}^{(1)} y_{2}^{(2)}}, \\ \end{cases}
$$

\diamond Explicit description of algebraic equations for higher dimensional lower rank symmetric Toeplitz matrices becomes unbearably complicated.

Let's See It!

- Rank deficient $T\left(\left[t_{1}, t_{2}, t_{3}\right]\right)$

$$
\diamond \operatorname{det}(T)=\left(t_{1}-t_{3}\right)\left(t_{1}^{2}+t_{1} t_{3}-2 t_{2}^{2}\right)=0
$$

\diamond A union of two algebraic varieties.

Figure 1: Lower rank, symmetric, Toeplitz matrices of dimension 3 identified in R^{3}.

- The number of local solutions to the structured lower rank approximation problem is not unique.

Constructing Lower Rank Toeplitz Matrices

- Idea:
\diamond Rank k matrices in $R^{n \times n}$ form a surface $\mathcal{R}(k)$.
\diamond Rank k Toeplitz matrices $=\mathcal{R}(k) \cap \mathcal{T}$.
- Two approaches:
\diamond Parameterization by SVD:
\triangleright Identify $M \in \mathcal{R}(k)$ by the triplet (U, Σ, V) of its singular value decomposition $M=U \Sigma V^{T}$.
- U and V are orthogonal matrices, and
- $\Sigma=\operatorname{diag}\left\{s_{1}, \ldots, s_{k}, 0, \ldots, 0\right\}$ with $s_{1} \geq \ldots \geq$ $s_{k}>0$.
Δ Enforce the structure.
\diamond Alternate projections between $\mathcal{R}(k)$ and \mathcal{T} to find intersections. (Cheney \& Goldstein'59, Catzow'88)

Lift and Project Algorithm

- Given $A^{(0)}=A$, repeat projections until convergence:
\diamond LIFT. Compute $B^{(\nu)} \in \mathcal{R}(k)$ nearest to $A^{(\nu)}$:
\triangleright From $A^{(\nu)} \in \mathcal{T}$, first compute its SVD

$$
A^{(\nu)}=U^{(\nu)} \Sigma^{(\nu)} V^{(\nu)^{T}}
$$

\triangleright Replace $\Sigma^{(\nu)}$ by $\operatorname{diag}\left\{s_{1}^{(\nu)}, \ldots, s_{k}^{(\nu)}, 0, \ldots, 0\right\}$ and define

$$
B^{(\nu)}:=U^{(\nu)} \Sigma^{(\nu)} V^{(\nu)^{T}}
$$

\diamond PROJECT. Compute $A^{(\nu+1)} \in \mathcal{T}$ nearest to $B^{(\nu)}$:
\triangleright From $B^{(\nu)}$, choose $A^{(\nu+1)}$ to be the matrix formed by replacing the diagonals of $B^{(\nu)}$ by the averages of their entries.

- The general approach remains applicable to any other linear structure, and symmetry can be enforced.
\diamond The only thing that needs to be modified is the projection in the projection (second) step.

Geometric Sketch

Figure 2: Algorithm 1 with intersection of lower rank matrices and Toeplitz matrices

Black-box Function

- Descent property:

$$
\left\|A^{(\nu+1)}-B^{(\nu+1)}\right\|_{F} \leq\left\|A^{(\nu+1)}-B^{(\nu)}\right\|_{F} \leq\left\|A^{(\nu)}-B^{(\nu)}\right\|_{F}
$$

\diamond Descent with respect to the Frobenius norm which is not necessarily the norm used in the structure preserving rank reduction problem.

- If all $A^{(\nu)}$ are distinct then the iteration converges to a Toeplitz matrix of rank k.
\diamond In principle, the iteration could be trapped in an impasse where $A^{(\nu)}$ and $B^{(\nu)}$ would not improve any more, but not experienced in practice.
- The lift and project iteration provides a means to define a black-box function

$$
P: \mathcal{T} \longrightarrow \mathcal{T} \cap \mathcal{R}(k)
$$

\diamond The $P(T)$ is presumably piecewise continuous since all projections are continuous.

The graph of $P(T)$

- Consider $P: R^{2} \longrightarrow R^{2}$:
\diamond Use the $x y$-plane to represent the domain of P for 2×2 symmetric Toeplitz matrices $T\left(t_{1}, t_{2}\right)$.
\diamond Use the z-axis to represent the image $p_{11}(T)$ and $\left.p_{12}(T)\right)$, respectively.

Figure 3: Graph of $P(T)$ for 2-dimensional symmetric Toeplitz T.

- Toeplitz matrices of the form $T\left(t_{1}, 0\right)$ or $T\left(0, t_{2}\right)$, corresponding to points on axes, converge to the zero matrix.

Implicit Optimization

- Implicit formulation:

$$
\begin{equation*}
\min _{T=\operatorname{toeplitz}\left(t_{1}, \ldots, t_{n}\right)}\left\|T_{0}-P(T)\right\| . \tag{4}
\end{equation*}
$$

$\diamond T_{0}$ is the given target matrix.
$\diamond P(T)$, regarded as a black box function evaluation, provides a handle to manipulate the objective function $f(T):=\left\|T_{0}-P(T)\right\|$.
\diamond The norm used in (4) can be any matrix norm.

- Engineers' misconception:
$\diamond P(T)$ is not necessarily the closest rank k Toeplitz matrix to T.
\diamond In practice, $P\left(T_{0}\right)$ has been used "as a cleansing process whereby any corrupting noise, measurement distortion or theoretical mismatch present in the given data set (namely, T_{0}) is removed."
\diamond More needs to be done in order to find the closest lower rank Toeplitz approximation to the given T_{0} as $P\left(T_{0}\right)$ is merely known to be in the feasible set.

Numerical Experiment

- An ad hoc optimization technique:
\diamond The simplex search method by Nelder and Mead requires only function evaluations.
\diamond Routine fmins in MATLAB, employing the simplex search method, is ready for use in our application.
- An example:
\diamond Suppose $T_{0}=T(1,2,3,4,5,6)$.
\diamond Start with $T^{(0)}=T_{0}$, and set worst case precision to 10^{-6}.
\diamond Able to calculate all lower rank matrices while maintaining the symmetric Toeplitz structure. Always so?
\diamond Nearly machine-zero of smallest calculated singular value $(\mathrm{s}) \Longrightarrow T_{k}^{*}$ is computationally of rank k.
$\diamond T_{k}^{*}$ is only a local solution.
$\diamond\left\|T_{k}^{*}-T_{0}\right\|<\left\|P\left(T_{0}\right)-T_{0}\right\|$ which, though represents only a slight improvement, clearly indicates that $P\left(T_{0}\right)$ alone does not give rise to an optimal solution.

rank k	5	4	3	2	1
\# of iterations	110	81	46	36	17
\# of SVD calls	1881	4782	2585	2294	558
		$\left[\begin{array}{l}1.1046 \\ 1.8880 \\ 3.1045 \\ 3.9106 \\ 5.0635 \\ 5.9697\end{array}\right]$	$\left[\begin{array}{l}1.2408 \\ 1.8030 \\ 3.0352 \\ 4.1132 \\ 4.8553 \\ 6.0759\end{array}\right]$	$\left[\begin{array}{l}1.4128 \\ 1.7980 \\ 2.8171 \\ 4.1089 \\ 5.2156 \\ 5.7450\end{array}\right]$	$\left[\begin{array}{l}1.9591 \\ 2.1059 \\ 2.5683 \\ 3.4157 \\ 4.7749 \\ 6.8497\end{array}\right]$

Table 1: Test results for a case of $n=6$ symmetric Toeplitz structure

Explicit Optimization

- Difficult to compute the gradient of $P(T)$.
- Other ways to parameterize structured lower rank matrices:
\diamond Use eigenvalues and eigenvectors for symmetric matrices;
\diamond Use singular values and singular vectors for general matrices.
\diamond Robust, but might have overdetermined the problem.

An Illustration

- Define

$$
M\left(\alpha_{1}, \ldots, \alpha_{k}, y^{(1)}, \ldots, y^{(k)}\right):=\sum_{i=1}^{k} \alpha_{i} y^{(i)} y^{(i)^{T}}
$$

- Reformulate the symmetric Toeplitz structure preserving rank reduction problem explicitly as
$\min \quad\left\|T_{0}-M\left(\alpha_{1}, \ldots, \alpha_{k}, y^{(1)}, \ldots, y^{(k)}\right)\right\|(5)$
subject to $\quad m_{j, j+s-1}=m_{1, s}$,

$$
\begin{align*}
& s=1, \ldots n-1 \tag{6}\\
& j=2, \ldots, n-s+1
\end{align*}
$$

if $M=\left[m_{i j}\right]$.
\diamond Objective function in (5) is described in terms of the non-zero eigenvalues $\alpha_{1}, \ldots, \alpha_{k}$ and the corresponding eigenvectors $y^{(1)}, \ldots, y^{(k)}$ of M.
\diamond Constraints in (6) are used to ensure that M is symmetric and Toeplitz.

- For other types of structures, we only need modify the constraint statement accordingly.
- The norm used in (5) can be arbitrary but is fixed.

Redundant Constraints

- Symmetric centro-symmetric matrices have special spectral properties:
$\diamond\lceil n / 2\rceil$ of the eigenvectors are symmetric; and
$\diamond\lfloor n / 2\rfloor$ are skew-symmetric.
$\triangleright v=\left[v_{i}\right] \in R^{n}$ is symmetric (or skew-symmetric) if $v_{i}=v_{n-i}$ (or $v_{i}=-v_{n-i}$).
- Symmetric Toeplitz matrices are symmetric and centrosymmetric.
- The formulation in (5) does not take this spectral structure into account in the eigenvectors $y^{(i)}$.
\diamond More variables than needed have been introduced.
\diamond May have overlooked any internal relationship among the $\frac{n(n-1)}{2}$ equality constraints.
\diamond May have caused, inadvertently, additional computation complexity.

Using constr in MATLAB

- Routine constr in MATLAB:
\diamond Uses a sequential quadratic programming method.
\diamond Solve the Kuhn-Tucker equations by a quasi-Newton updating procedure.
\diamond Can estimate derivative information by finite difference approximations.
\diamond Readily available in Optimization Toolbox.
- Our experiments:
\diamond Use the same data as in the implicit formulation.
\diamond Case $k=5$ is computationally the same as before.
\diamond Have trouble in cases $k=4$ or $k=3$,
\triangleright Iterations will not improve approximations at all. \triangleright MATLAB reports that the optimization is terminated successfully.

Using LANCELOT on NEOS

- Reasons of failure of MATLAB are not clear.
\diamond Constraints might no longer be linearly independent.
\diamond Termination criteria in constr might not be adequate.
\diamond Difficult geometry means hard-to-satisfy constraints.
- Using more sophisticated optimization packages, such as LANCELOT.
\diamond A standard Fortran 77 package for solving large-scale nonlinearly constrained optimization problems.
\diamond Break down the functions into sums of element functions to introduce sparse Hessian matrix.
\diamond Huge code. See
http://www.rl.ac.uk/departments/ccd/numerical/lancelot/sif/sifhtml.html.
\diamond Available on the NEOS Server through a socket-based interface.
\diamond Uses the ADIFOR automatic differentiation tool.
- LANCELOT works.
\diamond Find optimal solutions of problem (5) for all values of k.
\diamond Results from LANCELOT agree, up to the required accuracy 10^{-6}, with those from fmins.
\diamond Rank affects the computational cost nonlinearly.

rank k	5	4	3	2	1
\# of variables	35	28	21	14	7
\# of f/c calls	108	56	47	43	19
total time	12.99	4.850	3.120	1.280	.4300

Table 3: Cost overhead in using LANCELOT for $n=6$.

Conclusions

- Structure preserving rank reduction problems arise in many important applications, particularly in the broad areas of signal and image processing.
- Constructing the nearest approximation of a given matrix by one with any rank and any linear structure is difficult in general.
- We have proposed two ways to formulate the problems as standard optimization computations.
- It is now possible to tackle the problems numerically via utilizing standard optimization packages.
- The ideas were illustrated by considering Toeplitz structure with Frobenius norm.
- Our approach can be readily generalized to consider rank reduction problems for any given linear structure and of any given matrix norm.

f-COUNT	FUNCTION	MAX\{g\}	STEP	Procedures
29	0.958964	$8.65974 \mathrm{e}-15$	1	
77	0.958964	$2.66454 \mathrm{e}-14$	$1.91 \mathrm{e}-06$	
131	0.958964	$2.70894 \mathrm{e}-14$	$2.98 \mathrm{e}-08$	Hessian modified twice
185	0.958964	$2.70894 \mathrm{e}-14$	$2.98 \mathrm{e}-08$	
239	0.958964	$2.73115 \mathrm{e}-14$	$2.98 \mathrm{e}-08$	
289	0.958964	$2.77556 \mathrm{e}-14$	$4.77 \mathrm{e}-07$	
337	0.958964	$2.77556 \mathrm{e}-14$	$1.91 \mathrm{e}-06$	
393	0.958964	$2.77556 \mathrm{e}-14$	$7.45 \mathrm{e}-09$	Hessian modified twice
445	0.958964	$5.28466 \mathrm{e}-14$	$1.19 \mathrm{e}-07$	
501	0.958964	$5.68434 \mathrm{e}-14$	$7.45 \mathrm{e}-09$	
557	0.958964	$5.70655 \mathrm{e}-14$	$7.45 \mathrm{e}-09$	Hessian not updated
613	0.958964	$5.66214 \mathrm{e}-14$	$7.45 \mathrm{e}-09$	
667	0.958964	$5.55112 \mathrm{e}-14$	$2.98 \mathrm{e}-08$	Hessian modified twice
713	0.958964	$3.17302 \mathrm{e}-13$	$7.63 \mathrm{e}-06$	
761	0.958964	$2.61569 \mathrm{e}-13$	$1.91 \mathrm{e}-06$	
812	0.958964	$2.60014 \mathrm{e}-13$	$-2.38 \mathrm{e}-07$	Hessian modified twice
856	0.958964	$2.57794 \mathrm{e}-13$	$3.05 \mathrm{e}-05$	Hessian modified twice
900	0.958964	$2.56462 \mathrm{e}-13$	$3.05 \mathrm{e}-05$	Hessian modified twice
948	0.958964	$2.57128 \mathrm{e}-13$	$1.91 \mathrm{e}-06$	
994	0.958964	$2.56684 \mathrm{e}-13$	$7.63 \mathrm{e}-06$	
1038	0.958964	$3.42837 \mathrm{e}-13$	$3.05 \mathrm{e}-05$	
1083	0.958964	$3.41727 \mathrm{e}-13$	$-1.53 \mathrm{e}-05$	Hessian modified twice
1124	0.958964	$3.92575 \mathrm{e}-13$	0.000244	Hessian modified twice
1161	0.958964	$5.04485 \mathrm{e}-13$	0.00391	Hessian modified twice
1200	0.958964	$5.12923 \mathrm{e}-13$	0.000977	Hessian modified twice
1233	0.958964	$5.61551 \mathrm{e}-13$	0.0625	Hessian modified twice
1272	0.958964	$5.86642 \mathrm{e}-13$	0.000977	Hessian modified twice
1308	0.958964	$4.84279 \mathrm{e}-13$	0.00781	Hessian modified twice
1309	0.958964	$4.84723 \mathrm{e}-13$		1
0ptimization $00 n v e r g e d$	Successfully			

Table 2: A typical output of intermediate results from constr.

