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Structure Preserving Rank Reduction Problem

e (Glven

o A target matrix A € R™™",
o An integer k, 1 < k < rank(A),
¢ A class of matrices €2 with linear structure,

¢ a fixed matrix norm || - |[;

Find
o A matrix B € Q of rank k, and
o

|A— B = min |A— Bj|.

BeQ,rank(B)=k

e Example of linear structure:

¢ Toeplitz or block Toeplitz matrices.

¢ Hankel or banded matrices.

e Applications:

¢ Signal and image processing with Toeplitz structure.

¢ Model reduction problem in speech encoding and fil-

ter design with Hankel structure.

¢ Regularization of ill-posed inverse problems.



Difliculties

e No easy way to characterize, either algebraically or ana-
Iytically, a given class of structured lower rank matrices.

e Lack of explicit description of the feasible set = Difh-
cult to apply classical optimization techniques.

e Little discussion on whether lower rank matrices with
specified structure actually exist.



An Example of Existence

e Physics sometimes sheds additional light.
e The Toeplitz matrix
_ hn hTH—l S h/2n—1 _

H — : :
h2 h/g . e hn_|_1

by hy ... hy

with
L .
h; = 'Zlﬂizf, j=1,2,...,2n—1,
1=
where {3;} and {z;} are two sequences of arbitrary

nonzero numbers satisfying z; # z; whenever ¢ # j
and k < n, is a Toeplitz matrix of rank £.

e The general Toeplitz structure preserving rank reduc-
tion problem as described in (1) remains open.

¢ Existence of lower rank matrices of specified struc-
ture does not guarantee closest such matrices.

o No x > 0 for which 1/ is minimum.

e For other types of structures, the existence question usu-
ally is a hard algebraic problem.



Another Hidden Catch

e The set of all n x n matrices with rank < k 1s a closed
set.

e The approximation problem

min |A — B
BeQ,rank(B)<k
is always solvable, so long as the feasible set is non-
empty.

¢ The rank condition is to be less than or equal to &,
but not necessarily exactly equal to k.

e [t is possible that a given target matrix A does not have
a nearest rank £ structured matrix approximation, but
does have a nearest rank k—1 or lower structured matrix
approximation.



Our Contributions

e Introduce two procedures to tackle the structure pre-
serving rank reduction problem numerically.

e The procedures can be applied to problems of any norm,
any linear structure, and any matrix norm.

e Use the symmetric Toeplitz structure with Frobenius
matrix norm to illustrate the ideas.
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Structure of Lower Rank Toeplitz Matrices

e Identify a symmetric Toeplitz matrix by its first row,

t1 1y by
ta 1y bn—1
T=T(t,....t,))=1] : -
tn—1 t9
t teg ..ty |

¢ T = The affine subspace of all n x n symmetric
Toeplitz matrices.

e Spectral decomposition of symmetric rank £ matrices:

(2)

k . :
M — '21 Oély(z)y(z)T

o Write T'=T'([t1,...,t,]) in terms of (2) =
L .
‘21 a2y§z)y§23 = ts_{_l, S = O, ]_, .o ,TL—Q, 1 < ] < n—s

B

¢ Lower rank matrices form an algebraic variety, i.e,
solutions of polynomial systems.



Some Examples

e The case k = 1 1s trivial.

¢ Rank-one Toeplitz matrices form two simple one-
parameter families,

T = onT(1,...,1]), or
T = oqT(1,-1,1,..., (=)™ 1)
with arbitrary aq # 0.

e For 4 x 4 symmetric Toeplitz matrices of rank 2, there
are 10 unknowns in 6 equations.

()
(675] = 7y§1)2+y£1)2 9
2 2
(1) p ey 42y Py Byt
Y3 = [ONCEmOME) )
(1)3 (22)2y1 (1% (%2)2 M, (2),(2) (1)2 (1), (12 (2)2 (1), ()2 (1)2 (2, (2), (1)3
% y(l) e Y YT AYs Yy Ay Y Y Y =2y Yy Yy B3y Y Yy A2y sy
4 = 2 2 2 p) )
s s 23;%) yf) +2y Ny Py Py 4y D7y
2w 2 Py
Ys = D@, )
(1)2 (g)22 ?(J;) yl(l)y22 (2)3 (1), (1), (2)3 (1), (1), (2)2 (2) (2), (1)2 (2)2 (1)2 (2)3
y(2) B3y YT Yy —Ays Yy A2y Yy Yy —4ys Y Yy Y 25y Y Y Yo
4 = 3 3 3 3 .
L yél) in) +2yg1)y§2)y§l)yé2)+y§1) yéZ)

¢ Explicit description of algebraic equations for higher
dimensional lower rank symmetric Toeplitz matrices
becomes unbearably complicated.
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Let’s See It!

e Rank deficient T([tl, tz, t3]>
o det(T) = (t; — t3)(t7 + t1t3 — 2t3) = 0.

¢ A union of two algebraic varieties.

Figure 1: Lower rank, symmetric, Toeplitz matrices of dimension 3 identified in R3.

e The number of local solutions to the structured lower
rank approximation problem is not unique.
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Constructing Lower Rank Toeplitz Matrices

e Idea:

¢ Rank k£ matrices in R™*" form a surface R(k).
o Rank k Toeplitz matrices = R(k)nT.

e T'wo approaches:

¢ Parameterization by SVD:
> [dentify M € R(k) by the triplet (U, %, V') of its
singular value decomposition M = ULV’
- U and V are orthogonal matrices, and
-3 = diag{sy,..., s, 0,...,0} with sy > ... >
s > 0.
> Enforce the structure.

o Alternate projections between R(k) and T to find
intersections. (Cheney & Goldstein’59, Catzow’88)
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Lift and Project Algorithm

e Given A = A repeat projections until convergence:

o LIFT. Compute B") € R(k) nearest to A"):
> From AW € T, first compute its SVD

AW — sy e’

> Replace ©*) by diag{sgy), o 3,(:), 0,...,0} and
define

BW — ywyw !

o PROJECT. Compute A¥*YD € T nearest to B®):

> From B, choose A“*1) to be the matrix formed
by replacing the diagonals of B by the averages
of their entries.

e The general approach remains applicable to any other
linear structure, and symmetry can be enforced.

¢ The only thing that needs to be modified is the pro-
jection in the projection (second) step.



(Geometric Sketch
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Figure 2: Algorithm 1 with intersection of lower rank matrices and Toeplitz matrices
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Black-box Function

e Descent property:
||A(y+1)_B(u+1)HF < HA(V+1)_B(V)HF < HA(V)_B(I/)HF.

¢ Descent with respect to the Frobenius norm which is
not necessarily the norm used in the structure pre-
serving rank reduction problem.

o If all A™) are distinct then the iteration converges to a
Toeplitz matrix of rank k.

¢ In principle, the iteration could be trapped in an
impasse where A®) and B%™ would not improve any
more, but not experienced in practice.

e The lift and project iteration provides a means to define
a black-box function

P:T —TNR(k).

o The P(T) is presumably piecewise continuous since
all projections are continuous.
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The graph of P(T)

e Consider P : R? — R*:
¢ Use the zy-plane to represent the domain of P for
2 x 2 symmetric Toeplitz matrices T'(t1, t2).

o Use the z-axis to represent the image pi1(7T") and
p12(T)), respectively.

Figure 3: Graph of P(T) for 2-dimensional symmetric Toeplitz T

e Toeplitz matrices of the form T'(t1,0) or T(0,t3), corre-
sponding to points on axes, converge to the zero matrix.
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Implicit Optimization

e Implicit formulation:

min Ty — P(T)||. 4
T:toeplitz(tl,...,tn)” ! ol (4)

o Tp is the given target matrix.

o P(T), regarded as a black box function evaluation,
provides a handle to manipulate the objective func-

tion £(T) = | Ty — P(T)]|
o The norm used in (4) can be any matrix norm.

e Fngineers’ misconception:

o P(T) is not necessarily the closest rank k Toeplitz
matrix to 7.

o In practice, P(Tj) has been used “as a cleansing pro-
cess whereby any corrupting noise, measurement dis-
tortion or theoretical mismatch present in the given
data set (namely, Tp) is removed.”

© More needs to be done in order to find the closest
lower rank Toeplitz approximation to the given 7} as
P(Tp) is merely known to be in the feasible set.
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Numerical Experiment

e An ad hoc optimization technique:

¢ The simplex search method by Nelder and Mead re-
quires only function evaluations.

¢ Routine fmins in MATLAB, employing the simplex
search method, is ready for use in our application.

e An example:

o Suppose Ty =T(1,2,3,4,5,6).

o Start with 70 = T}, and set worst case precision to
1079,

¢ Able to calculate all lower rank matrices while main-
taining the symmetric Toeplitz structure. Always
307

¢ Nearly machine-zero of smallest calculated singular
value(s) = T} is computationally of rank k.

o Ty is only a local solution.

o || Ty — Tyl < ||P(Ty) — Tp|| which, though repre-
sents only a slight improvement, clearly indicates
that P(Ty) alone does not give rise to an optimal
solution.
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| rank k | 5 4 3 2 1
# of iterations 110 81 46 36 17
# of SVD calls 1881 4782 2585 2294 558
1.1046 1.2408 1.4128 1.9591 2.9444
1.8880 1.8030 1.7980 2.1059 2.9444
optimal solution 3.1045 3.0352 2.8171 2.5683 2.9444
3.9106 4.1132 4.1089 3.4157 2.9444
5.0635 4.8553 5.2156 4.7749 2.9444
5.9697 6.0759 5.7450 6.8497 2.9444
| To — TF|| 0.5868 0.9851 1.4440 3.2890 8.5959
17.9851 17.9980 18.0125 18.2486 17.6667
7.4557 7.4321 7.4135 6.4939 2.0828¢—14
singular values 2.2866 2.2836 2.1222 2.0884e-14 9.8954e—15
0.9989 0.8376 1.9865e—14 7.5607e—15 6.0286e—15
0.6164 2.2454e-14 9.0753e—15 3.8479¢-15 2.6494e-15
3.4638e—15 2.0130e—14 6.5255e—15 2.5896e—15 2.1171e-15

Table 1: Test results for a case of n = 6 symmetric Toeplitz structure
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Explicit Optimization

e Difficult to compute the gradient of P(T).

e Other ways to parameterize structured lower rank ma-
trices:

¢ Use eigenvalues and eigenvectors for symmetric ma-
trices;

¢ Use singular values and singular vectors for general
matrices.

¢ Robust, but might have overdetermined the prob-
lem.
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An Illustration

e Define
\T

k .
M(ala ceey O, y(l)a s 7y(k)) = igl aly(Z)y(Z) .

e Reformulate the symmetric Toeplitz structure preserv-
ing rank reduction problem explicitly as

min ||T0—M(al,...,ak,y(l),...,y(k))H(5)
subject to M j1s-1 = M1 g, (6)
s=1,...n—1,
i=2 ... n—s+1,

if M = [m”]
& Objective function in (5) is described in terms of the
non-zero eigenvalues aq, . . ., a; and the correspond-

ing eigenvectors yV, ..., y*) of M.
o Constraints in (6) are used to ensure that M is sym-
metric and Toeplitz.

e For other types of structures, we only need modify the
constraint statement accordingly.

e The norm used in (5) can be arbitrary but is fixed.
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Redundant Constraints

e Symmetric centro-symmetric matrices have special spec-
tral properties:

o [n/2] of the eigenvectors are symmetric; and
o |n/2] are skew-symmetric.
>v = |y;] € R" is symmetric (or skew-symmetric)
if v; = v, (or v; = —v,_).

e Symmetric Toeplitz matrices are symmetric and centro-
symmetric.

e The formulation in (5) does not take this spectral struc-
ture into account in the eigenvectors y(i).

o More variables than needed have been introduced.

& May have overlooked any internal relationship among

the @ equality constraints.

o May have caused, inadvertently, additional compu-
tation complexity.
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Using constr in MATLAB

e Routine constr in MATLAB:

¢ Uses a sequential quadratic programming method.

¢ Solve the Kuhn-Tucker equations by a quasi-Newton
updating procedure.

¢ Can estimate derivative information by finite differ-
ence approximations.

¢ Readily available in Optimization Toolbox.
e Our experiments:

¢ Use the same data as in the implicit formulation.
¢ Case k = 5 is computationally the same as before.
¢ Have trouble in cases kK =4 or k = 3,

> Iterations will not improve approximations at all.

> MATLAB reports that the optimization is termi-
nated successtully.
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Using LANCELOT on NEOS

e Reasons of failure of MATLAB are not clear.

¢ Constraints might no longer be linearly independent.

¢ Termination criteria in constr might not be ade-
quate.

¢ Difficult geometry means hard-to-satisfy constraints.

e Using more sophisticated optimization packages, such
as LANCELOT.

¢ A standard Fortran 77 package for solving large-scale
nonlinearly constrained optimization problems.

¢ Break down the functions into sums of element func-
tions to introduce sparse Hessian matrix.

¢ Huge code. See

http:/ Jwww.rl.ac.uk/departments/ced/numerical /lancelot/sif [ si f html.html.

¢ Available on the NEOS Server through a socket-based
interface.

o Uses the ADIFOR automatic differentiation tool.
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e LANCELOT works.
¢ Find optimal solutions of problem (5) for all values
of k.
¢ Results from LANCELOT agree, up to the re-

quired accuracy 107% with those from fmins.

¢ Rank affects the computational cost nonlinearly.

| rankk | 5 | 4 | 3 | 2 | 1 |

# of variables | 35 28 21 14 7

# of f/c calls | 108 56 47 43 19
total time 12.99 | 4.850 | 3.120 | 1.280 | .4300

Table 3: Cost overhead in using LANCELOT for n = 6.
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Conclusions

e Structure preserving rank reduction problems arise in
many important applications, particularly in the broad
areas of signal and image processing.

e Constructing the nearest approximation of a given ma-
trix by one with any rank and any linear structure is
difficult in general.

e We have proposed two ways to formulate the problems
as standard optimization computations.

e [t is now possible to tackle the problems numerically via
utilizing standard optimization packages.

e The ideas were illustrated by considering Toeplitz struc-
ture with Frobenius norm.

e Our approach can be readily generalized to consider
rank reduction problems for any given linear structure
and of any given matrix norm.
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£-COUNT

29
77
131
185
239
289
337
393
445
501
557
613
667
713
761
812
856
900
948
994
1038
1083
1124
1161
1200
1233
1272
1308
1309

FUNCTION
.958964
.958964
.958964
.9568964
.958964
.958964
.958964
.9568964
.9568964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
0.958964

O O O O O O OO O O OO OO OO OO OOOOOOOO O o oo

B 010101 OT W W WNDNDNNDNDDNOWOI OO O1TOTNDNDNDDNDDNDNDDNDO®

MAX{g}

.65974e-15
.66454e-14
.70894e-14
.70894e-14
.73115e-14
.77556e-14
.77556e-14
.77556e-14
.28466e-14
.68434e-14
.70655e-14
.66214e-14
.55112e-14
.17302e-13
.61569e-13
.60014e-13
.57794e-13
.56462e-13
.57128e-13
.56684e-13
.42837e-13
.41727e-13
.92575e-13
.04485e-13
.12923e-13
.61551e-13
.86642e-13
.84279e-13
4.
Optimization Converged Successfully

84723e-13

STEP

1
.91e-06
.98e-08
.98e-08
.98e-08
.T7e-07
.91e-06
.45e-09
.19e-07
.45e-09
.45e-09
.45e-09
.98e-08
.63e-06
.91e-06
.38e-07
.05e-05
.05e-05
.91e-06
.63e-06
.05e-05
.53e-05
.000244
0.00391
0.000977
0.0625
0.000977
0.00781
1

P NN NNNERE NER RN e

1
W NP, W WN

|
[

Procedures

Hessian

Hessian

Hessian

Hessian

Hessian
Hessian
Hessian

Hessian
Hessian
Hessian
Hessian
Hessian
Hessian
Hessian
Hessian

modified

modified

twice

twice

not updated

modified

modified
modified
modified

modified
modified
modified
modified
modified
modified
modified
modified

twice

twice
twice
twice

twice
twice
twice
twice
twice
twice
twice
twice

Table 2: A typical output of intermediate results from constr.




