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Schur-Horn Theorem

e Given arbitrary Hermitian matrix H,

o Let A = [\;] = eigenvalues.

o Let a = |a;] = diagonal entries.

o Assume
1, < ... <aj,
Amg <o S A,
¢ Then
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X A = X ay,
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> Known as a majorizing .
e Given vectors a, A € R",

¢ Assume a majorizes .

¢ Then a Hermitian matrix A with eigenvalues A and

diagonal entries a exists.

e How to solve the tnverse eigenvalue problem numeri-

cally?



Mirsky Theorem

e Any similar connection between eigenvalues and diago-
nal entries of a general matrix?

e A matrix with eigenvalues Ay, ..., A, and main diagonal
elements ay, ..., a, exists if and only if
n n
Z a; — Z )\z
1=1 1=1



Sing-Thompson Theorem

e Any connection between singular values and diagonal
entries of a general matrix”?

e Given vectors d, s € R",

& Assume

S1 = 89
|di| > |ds

. Sp,

o |dy.
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¢ Then a real matrix with singular values s and main
diagonal entries d (possibly in different order) exists
if and only if

I
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e How to solve the inverse singular value problem nu-
merically?



Weyl-Horn Theorem

e Any connection between singular values and eigenvalues
of a general matrix”?

o singular value = |eigenvalue| for Hermitian matrices.

e Given vectors A € " and a € R",

¢ Assume
Al = > A,
a1 Z ce Z .
¢ Then a matrix with eigenvalues Aqy,..., A\, and sin-
gular values aq, ..., a, exists if and only if

k k
|)\]‘§ HOZj, kzl,...,n—l,
J=1 =

7=1
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;.
=1 J

J

n Vs
) =
> If |A,| > 0, then log o majorizes log |A|.

e How to solve the inverse eigenvalue (singular value)
problem numerically?



The 2 x 2 Case

e The Weyl-Horn Condition:
{ Al
Ar]| Aol

Y

ay < (o] < M| < g
|)\1‘2 -+ |)\2|2 S Oé% -+ Oz%.

a1,
109.

1A

e The building block — A triangular matrix

A
=0

has singular value {a, @y} if and only if

p=ad +ad — [Ai* = A%

o A 1s complex-valued when eigenvalues are complex.
¢ A stable way of computing p:

_ [0, i [lar—an)? = (M| = [Aa])?] < e
: \/‘(041_042)2—(\)\1\—\)\2\)2|, otherwise.




Ideas in Horn’s Proof

e Reduce the original inverse problem to two problems of
smaller sizes.

e Problems of smaller sizes are guaranteed to be solvable
by the induction hypothesis.

e The subproblems are affized together by working on a
suitable 2 X 2 corner.

e The 2 x 2 problem has an explicit solution.



Key to the Algorithmic Success

e The eigenvalues and singular values of each of the two
subproblems can be derived explicitly.

e Fach of the two subproblems can further be down-sized.

e The original problem is divided into subproblems of size
2x2orlx1.

e The smaller problems can be conquered to build up the
original size.

e In an environment that allows a subprogram to invoke it-
self recursively, only one-step of the divide-and-conquer
procedure will be enough.

e Very similar to the radix-2 FFT = fast algorithm.
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Outline of Proof

e Suppose o; > O foralle=1,...,n. So \; # 0 for all 1.

¢ The case of zero singular values can be handled in a
similar way:.

e Define

o1 — (1,

. Qg ro_
Oi = Oi-1yy fore=2,...,n—1.

o Assume 0 := min;<;<,—1 0; occurs at the index j.

e Define

e The following three sets of inequalities are true. The
numbers satisfy the Weyl-Horn conditions.

At > Al
o = p.

o Z |)\2‘ Z Z ‘)\]‘|,
a1 Z 9 Z c. Z Q.
Aji] > o0 > [Aaa] > p,
Qjyr > > oy > o



e By induction hypothesis,
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o There exist unitary matrices Uy, V; € C7*J and tri-
angular matrices A; such that

U

o There exist unitary matrices U, V € C=9)x(n=J)

_Oél 0 ... O
0 9 0
O 0 .Oé]'_

Vii=A; =

and triangular matrix Ay such that

Us

_Oéj_|_1 0...0 ]

0 Q42 0

0 0 ..

Oy |

Vy =Ay=

_)\j_|_1 X ...
0 Ajro

X X |
X

)\n_lx

.0 p

)
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e Horn’s claim: The block matrix

A O
O Ay
can be permuted to the triangular matrix
(Ao X ... X X
0 X
: : O
)‘j X
0 .0 o 0
0 0 ... 00 p x X X
)\]‘_|_1 X
O
0 0 An—1 |

e The 2 X 2 corner can now be glued together by

o 0 VE)*:AO:{)Q ,u]

UOO,O 0 M\

e How to do the permutation, or is it a mistake?

¢ It takes more than permutation to rearrange the di-
agonals of a triangular matrix.



A MATLAB Program
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function [A]l=svd_eig(alpha,lambda);
n = length(alpha);

if n == % The 1 by 1 case
A = [lambda(1)];
elseif n == % The 2 by 2 case
[U,V,A] = two_by_two(alpha,lambda);
else % Check zero singular values

tol = nxalpha(1l)*eps;
k = sum(alpha > tol); m = sum(abs(lambda) > tol);
if k == n % Nonzero singular values
j = 1; s = alpha(1); temp = s;
for i = 2:n-1
temp = temp*alpha(i)/abs(lambda(i));
if temp < 8, j = 1; s = temp; end
end
rho = abs(lambda(1l)*lambda(n))/s;
[U0,V0,A0] = two_by_two([s;rhol], [lambda(l);lambda(n)]);
Tototo o Toto Toto To o Yoo To o To o To o Fo o To o To o o 1o To Fo o Fo Fo o Fo Fo o Fo To Fo o o Yo o o Fo fo o Fo Fo o To o o o oo Fo o oo To Fo o To Fo o o Fo o to o o
[A1] = svd_eig(alpha(l:j),[s;lambda(2:j)1); % RECURSIVE 9%
[A2] svd_eig(alpha(j+1:n), [lambda(j+1:n-1);rhol); % CALLING Y%
Voo Tolo ot To o To foTo To o To o o fo o To o To o To o To Fo o Fo o To Fo o Fo o o oo Fo o To FoTo Fo o To oo Fo o Fo o o Fo o Fo oo fo o Fo o o oo Voo To o To oo
A = [Al,zeros(j,n-j);zeros(n-j,j),A2];
Temp = A;
A(1,:)=U0(1,1)*Temp(1,:)+U0(1,2)*Temp(n,:);
A(n,:)=U0(2,1)*Temp(1,:)+U0(2,2)*Temp(n, :);
Temp = A;
A(:,1)=V0(1,1)*Temp(:,1)+V0(1,2)*Temp(:,n);
A(:,n)=V0(2,1)*Temp(:,1)+V0(2,2)*Temp(:,n);
else % Zero singular values
beta = prod(abs(lambda(l:m)))/prod(alpha(l:m-1));
[U3,V3,A3] = svd_eig([alpha(l:m-1);betal,lambda(l:m));
A = zeros(n); A(1:m,1:m) = V3’%xA3%V3;
for i = m+1:k, A(i,i+1) = alpha(i); end
A(m,m+1) = sqrt(abs(alpha(m)~2-beta”2));
end
end
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Correct that “Mistake”

e Horn's requirement:

¢ Both intermediate matrices A; and Ay are upper tri-
angular matrices.

¢ Diagonal entries are arranged in a certain order.
> Valid from the Schur decomposition theorem.

> More than permutation, not easy for computation.

> To rearrange diagonal entries via unitary similar-
ity transformations while maintaining the upper
triangular structure is expensive.

e Our contribution:

¢ The triangular structure is entirely unnecessary:.

¢ The matrix A produced from our algorithm is gen-
erally not triangular.

¢ Do not need to rearrange the diagonal entries

o Modifying the first and the last rows and columns of
A O
O A,

the block diagonal matrix . as if nothing

happened, is enough.
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e Algorithm:

o Denote Uy = [ug 5] and Vi = [vg ).

¢ Then
u 0 " [ a7 O ... O ] v 0 v *
0,11 0,12 U, 0 Das 0 |[ V0 0,11 0,12
0 ]n—l 0 . . % 0 ]n—l 0
0, ||+ - 0V,
up21 0 wup22 0 vp21 0 vp22
I A |
1s the desired matrix.
e A has the structure
A ® ® & *x % u
& )\2 X 0 0 *
O
)\j—l X
= R X X A *
x 0 0 0 )‘j+1 X X X
* 0 X )\j+2 X
O
X ... %k x ® 0 ® An |

¢ x = unchanged, original entries from A; or As.

o ® = entries of Ay or Ay that are modified by scalar
multiplications.

¢ % = possible new entries that were originally zero.
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A Variation of Horn’s Proof

e Does the algorithm really works?

o Clearly, A has singular values {ayq, ..., a,}.
o Need to show that A has eigenvalues {1, ..., A\, }.

e What has been changed?

(P1) Diagonal entries of A; and A, are in fixed orders,
0,2, ..., Ajand Ajiq, ..., Ay_1, p, respectively.

(P2) Each A; is similar through permutations, which need
not to be known, to a lower triangular matrix whose
diagonal entries constitute the same set as the diag-
onal entries of A;. (Thus, each A; has precisely its
own diagonal entries as its eigenvalues.)

(P3) The first row and the last row have the same zero
pattern except that the lower-left corner is always
7€r0.

(P4) The first column and the last column have the same
zero pattern except that the lower-left corner is al-
ways zero.

e Use graph theory to show that the affixed matrix A has
exactly the same properties.
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A Symbolic Example

e Dividing process:

{)\1 A2 Az Mg Az Ag

a1 O 3 04 5 O

. A1 A
n=s 4 {01 pf
01 A2 A3 Ag As pP1
Q] Q9 (v3 Oy Qs Qg
. 01 )\5
=2
J2 U {02 05
T2 A2 A3 Ay P2
1 9 3 (g4 (O

- A3 P2
:1
J3 v {03 P3

{03 {)\4 P3

a3 x4 Q5
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e Conquering process:

* O % *x © 2
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Computational Cost

e The divide-and-conquer feature brings on fast computa-

tion.
e The overall cost is estimated at the order of O(n?).

e A numerical experiment:

10°

10

10°

2 L L L 1
size of problem

Figure 1: log-log plot of computational flops versus problem sizes
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Rosser Test

e Rosser matrix R:

611 196 —192 407 -8 —52 —49 29 T

196 899 113 —192 —71 —43 -8 —44

—192 113 899 196 61 49 8 52

R 407 —192 196 611 8 44 59 —23
-8 -7 61 8 411 —599 208 208

—52 —43 49 44 —599 411 208 208

—49 -8 8 59 208 208 99 —911

29 —44 52 —23 208 208 —911 99 |

¢ Has one double eigenvalue, three nearly equal eigen-
values, one zero eigenvalue, two dominant eigenval-
ues of opposite sign and one small nonzero eigen-

value.
¢ The computed eigenvalues and singular values of R
are
[ —1.020049018429997¢+03 ]| [ 1.020049018429997¢+03 ]
1.020049018429997e+03 1.020049018429996e+03
1.020000000000000e403 1.020000000000000e403
\— 1.019901951359278e+03 e 1.019901951359279e+03

1.000000000000001e+03
9.999999999999998e-+02
9.804864072152601e—02

4.851119506099622¢—13 |

1.000000000000000e+03
9.999999999999998¢-+02
9.804864072162672e—02

| 1.054603342667098e—14 |




e Using the above A and «,

© A nonsymmetric matrix is produced:

[ 1.0200e+03
0

o O O o oo

0 0 0 0 0
—1.0200e+03 0 0 0 0

0 1.0200e+03 0 0 0

0 0 1.0199e+03 0 0

0 0 0 1.0000e+03 0

0 0 0 0 1.0000e+03

0 0 —1.5257e-05 0 0

0 0 0 0 0

21

0 0]
0 0
0 0
1.4668¢—09 0
0 0
0 0
9.8049¢—02 0
1.4045¢—070 |

¢ The re-computed eigenvalues and singular values of

A are

>
I

[ —1.020049018429997¢+03 |

1.020049018429997¢+03
1.020000000000000e+03
1.019901951359278e+03
1.000000000000001e+03
9.999999999999998e-+02

9.80486407215721e—02

0_

o)

[ 1.020049018429997e+03 ]

1.020049018429997¢+03
1.020000000000000e+03
1.019901951359279¢e+03
1.000000000000001e+03
9.999999999999998e-+02
9.804864072162672e—02

0_

¢ The re-computed eigenvalues and singular values agree
with those of R up to the machine accuracy.
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Wilkinson Test

e Wilkinson’s matrices:

¢ All are symmetric and tridiagonal.

¢ Have nearly, but not exactly, equal eigenvalue pairs.

e Using these data:

¢ Discrepancy in eigenvalues and singular values be-
tween our constructed matrices and Wilkinson’s ma-

trices.

Discrepancy in Eigenvalues and Singular Values
T T T T

* = discrepancy in eigenvalues

-13 " .
10 F o = discrepancy in singular values

Figure 2: Ly norm of discrepancy in eigenvalues and singular values.
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© Matrices constructed are nearly but not symmetric.

Wilkinson Matrix of Size 21

Figure 3: 3-D mesh representation of 21 x 21 matrices
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Conclusion

e Weyl-Horn Theorem completely characterizes the rela-
tionship between eigenvalues and singular values of a
general matrix.

e The original proof has been modified.

e With the aid of programming languages that allow a
subprogram to invoke itself recursively, an induction
proof can be implemented as a recursive algorithm.

e The resulting algorithm is fast. The cost of construction
is approximately O(n?).

e The matrix being constructed usually is not symmet-
ric and is complex-valued, if complex eigenvalues are
present.

e Numerical experiment on some very challenging prob-
lems suggests that our method is quite robust.



