
Research Profile of Moody T. Chu

I was formally trained as a numerical analyst under the traditional atmosphere of
pure mathematics at Michigan State University. My 1982 dissertation was on the sub-
ject of solving stiff ordinary differential equations by nonlinear multi-step methods.
Very quickly, however, I became interested in the application of differential equation
techniques to problems arising from numerical analysis. Generally speaking, my re-
search can be categorized as the study of inverse problems by realization processes.
The realm of my research ranges from theorization of dynamics for classical iterative
schemes to development of algorithms for challenging inverse problems, and from al-
gebraic abstraction of existence questions to practical implementation for engineering
applications. The techniques I use in research involve computer experiments as well
as mathematical analysis. In the computer experiments, I need to do extensive nu-
merical and symbolic computations. The computer experiments often will provide
insights for later verification by more conventional mathematical means. In mathe-
matical analysis, I need as a synthesis of tools knowledge from differential geometry,
matrix theory, numerical analysis, optimization theory and dynamical systems. The
mathematical analysis is likely to affect the design, implementation and our under-
standing of the solvability issue in general and computability issue in particular. In
this profile, I will briefly outline some of my research highlights.

1. General Background. Realization process, in a sense, is a daily tool used
to guide our thinking for solving problems. In mathematics, especially for existence
questions, a realization process often is described in the form of an iterative procedure
or a differential equation. My research has been centering around the investigation
of one special realization process, i.e., matrix differential equation with its broad
spectrum of applications.

The basic idea in my approach is to “evolve” into the solution of a difficult
problem through the trajectory of a differential equation whose initial value is easier
to be identified. The differential system may be derived in several different ways:
Sometimes an existing discrete numerical method may be extended directly into a
continuous model; sometimes the equation arises naturally with a certain physics
background; and more often a vector field is constructed with a specific task in mind.

Matrix differential equations have important applications to various fields of dis-
ciplines. My own motivation for studying matrix differential equations is attributed
mainly to:

1. Areas of applications of continuous realization process is very broad while
many well developed classical results are immediately available for studying
the dynamics of continuous systems. The study of continuous system could
shed critical insights into the understanding of the dynamics of an existing
discrete methods.

2. Continuous realization sometimes unifies different discrete methods as special
cases of its discretization and often gives rise to the design of new numerical
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algorithms.
3. Differential systems results from continuous realization present immediate

challenge to the current numerical ODE techniques. Partially this is due to the
fact that usually a certain invariant manifold needs to be preserved during the
integration. Partially this is due to the fact that matrix differential equations
are especially suitable for integration on a massively data-parallel computing
system. Thus matrix differential equations may be used as benchmark prob-
lems for testing new ODE techniques. Conversely, new ODE techniques may
further benefit the numerical computation of matrix differential equations.

4. Many existence problems, seemingly impossible to be tackled by any con-
ventional discrete methods, may be solved by formulating special differential
equations that ensure a specific task is taking place continuously. In my re-
search, several times I have used these tactics to establish feasible numerical
algorithms. Continuous methods, in a sense, give a smoother control in realiza-
tion a problem. This, therefore, opens a new field of applications of numerical
ODE techniques.

5. In contrast to the local properties of some discrete methods, the continuous
approach usually offers a global method for solving the underlying problem.

In the past few years I have already made some contributions to undertaking the
aforementioned tasks. Yet I think there are still many open areas that deserve further
investigation. I plan to continue working on the following specific topics:

1. Understand the dynamics of each of the proposed matrix differential equations
and its discrete counterpart;

2. Develop new numerical algorithms for inverse problems of data reconstruction
arising from physical and engineering applications;

3. Answer the existence question concerning the inverse eigenvalue problems for
various specially structured matrices. Consider similar question for the inverse
singular value problems;

4. Experiment with new numerical ODE algorithms that preserve invariant man-
ifolds.

2. Past Contributions. One of my early contributions to the continuous re-
alization process has been the homotopy method for algebraic eigenvalue problems
and λ-matrix problems [5,15,18]. (Numbers in brackets are referred to articles in my
publications.) The idea in [5] recently has been implemented successfully on par-
allel computers by other researchers and the experimental results are proved to be
very significant. Nonetheless, homotopy is just one possible way to establish a re-
alization process. Indeed, many other important mathematical problems may also
be formulated in terms of matrix differential equations. Among these, I mention
particularly the applications to nonlinear algebraic systems [16], eigenvalue problems
[3,4,6,8,10,17], singular value problems [11], least squares approximation problems
subject to eigenvalue or singular value constraints [24,29,40,46], inverse eigenvalue
problems for Toeplitz matrices [21,42], non-negative matrices [27], or stochastic ma-
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trices [46], quadratic programming problems [28], orthogonal Procrustes problems
[50,51,56], simultaneous reduction problems [25], and inverse testing problems [55,57].
Along with problems arising out of other fields (See comments on paper [45] in the
next section), I believe matrix differential equations should have important impact on
many areas of disciplines, including numerical analysis, control theory, signal process-
ing, matrix theory, multivariate statistical analysis, and mathematical programming.

3. Representative Papers. It might help to better perceive the scope of my
research if I boldly self-comment on five of my papers. These comments also indicate
the chronological changes and developments of my research interest.
[4] The generalized Toda flow, the QR algorithm and the center manifold theorem,

1984.
In this paper, I show how the Toda flow can be formulated even for complex-
valued, full and non-symmetric matrices.
• I establish the fact that the generalized Toda flow, when sampled at integer

times, gives the same sequence of matrices as the QR algorithm applied
to the matrix exp(G(X0)) where G(z) is an arbitrary analytic function
defined on a domain contain the spectrum of X0. This paper generalized
what was known at that time the connection between Toda-Flaschka flow
for symmetric, tridiagonal matrices and the QR algorithm.
• I also establish the fact that the upper triangular matrices with ”decreas-

ing main diagonal entries” is the stable center manifold of the Toda flow.
Hence, the convergence property of QR algorithm can be understood from
the center manifold theory.
• This paper evolves into further discussion in [3] (convergence of QR al-

gorithm for normal matrices), [8] (QZ flow), [10] (Continuous analogue of
RQI method) [11] (SVD flow) and [17] (Abstract QR type algorithms).

[24] The projected gradient method for least squares matrix approximations with spec-
tral constraints, 1990.
This paper describes a general procedure in using projected gradient method
to solve various types of least squares approximation problem subject to spec-
tral constraints. The first and the second order optimality conditions can be
explicitly formulated. Important applications include:
• The Wielandt-Hoffman theorem can now be understood geometrically.
• The inverse eigenvalue problem, including the inverse Toeplitz eigenvalue

problem, can now be solved numerically despite of the fact that algebraists
are still struggling to prove the existence of a solution. My approach is
different from that of Overton et al. in that they has to assume the
existence of a solution whereas mine is just a generic flow that will find
the solution if there is one, and will find the least squares solution if the
exact solution does not exist.
• The paper evolves into further discussion in [25] (Simultaneous reduction

of real matrices by orthogonal similarity or orthogonal equivalence), [26]
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(Nearest normal matrix problem), [27] (Inverse eigenvalue problem for
non-negative matrices) and [29] (Inverse singular value problem). So far
as I know, problems involved in [25] and [27] have never been touched
by numerical analysts before. My approach, on the other hand, is very
versatile in the specification of the reduced forms.

[28] Matrix differential equations: A continuous realization process for linear algebra
problems, 1992.
From mechanics point of view, it would be quite unthinkable that a Hamilto-
nian system such as the Toda flow would be a gradient flow. The two papers
mentioned above should appear to move in two totally different directions.
Nevertheless, in this paper I accumulate all the flows that I have considered
and recast them in a unified general framework. A portion of this paper was
presented at the several meetings, including two 12-lecture series presentations
at the Australia National University and the Academia Sinica. Complete lec-
ture notes consist of 256 pages with 169 references. The entire note is available
on line at http://www4.ncsu.edu/~mtchu. I intend to expend it into a book in
the near future. Of particular interesting points in this paper are that
• All the flows are of the type dX

dt
= [X, k(X)] where k is an appropriate

matrix operator.
• Toda flow is indeed a gradient flow and, hence, the convergence of the QR

algorithm and its variations is even easier understandable than before.
Further result is given in #35.
• The approach to inverse eigenvalue problems by using differential equa-

tions proves to be quite fruitful. Applications include [38] (Schur-Horn
theorem), [40] (Least squares problem), [42] (Inverse Toeplitz eigenvalue
problem) and [44] (Inverse generalized eigenvalue problem).

[39] A rank-one reduction formula and its relations to other matrix factorizations,
1995.
In this paper my co-authors and I prove a powerful result that not only all
known matrix factorizations can be derived from a simple rank-one reduction
formula but also that new algorithms can be derived from this unified frame-
work. This unification is significant in that it sheds many interesting insights
into how a matrix could be simplified. This paper is fairly abstract, so future
development and responses from the community are yet to be seen. For the
moment, however, I am pleased to mention that the editor of the SIAM Review
described this paper as ”one of the best papers to come to SIREV in recent
years”.

[45] Inverse eigenvalue problems, 1998
An inverse eigenvalue problem concerns the reconstruction of a structured
matrix from prescribed spectral data. The spectral data may involve complete
or partial information of eigenvalues or eigenvectors. The structure imposed
often is due to a certain physical feasibility requirement. Inverse eigenvalue
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problems arise in a remarkable variety of applications, including system and
control theory, seismic tomography, principal component analysis, antenna
array processing, geophysics, molecular spectroscopy, particle physics, data
mining, structure analysis, circuit theory, mechanical system simulation and
so on. Depending on the application, inverse eigenvalue problems appear in
many different forms. Associated with any inverse eigenvalue problem are two
fundamental questions — the theoretic issue on solvability and the practical
issue on computability. Both questions are difficult and challenging, and the
results are scattered around.
• This exposition paper is an accumulation of many years’ efforts and ex-

periences from research in [24,27,29,34,38,40,44,46].
• In this paper, I gather 204 references and review a collection of 37 different

types of inverse eigenvalue problems and their applications. I classify
the general characteristics of each problems. I also discuss up-to-then
developments in both the theoretic and the algorithmic aspects of inverse
eigenvalue problems.
• More importantly, I identified many open problems in this field that will

continue to be my research interest for many years to come. The inverse
testing problem [57] is one recent result.

4. Research with Students. Despite the facts that I have been elected twice
by students themselves to be an outstanding teacher at North Carolina State Uni-
versity and that I have co-chaired many doctoral committees, I have not produced
my own Ph.D. students thus far. I had the chance. Co-authors in [40,44,46] and my
M.S. students were all outstanding candidates at N.C. State, but they all decided
that the job market was too good to turn away and left for industry. On the other
hand, I insist that my M.S. students’ work must be publishable in refereed journals.
I am pleased to mention four particular joint papers [12], [32], [34] and [37] with
my M.S. students. In [12] I believe we were the first to propose and to implement
the multi-block method on the Denelcor HEP machine for the parallel computing of
ODEs. In [34] we proved a surprising new result that the dimensionality of sym-
metric Toeplitz matrices satisfying two prescribed eigenpairs was independent of the
size of the problem. In [32] we answered two open questions concerning the multi-
variate eigenvalue problems arising from multivariate statistics. In [37] we solved a
long standing non-smooth optimization problem by a much simpler Dikin’s method
and discovered errors in previously published results. All these papers involve some
innovative ideas from which I believe further research can be developed.

5. Current Research. Finally, I want to mention that deviated from my re-
search focus on the continuous realization process, I have broad interest in general
mathematics. Most recently, I have been working on two other projects that are more
industry oriented. I shall briefly outline them here.

The first one concerns imaging through atmosphere. The wavefront field aberra-
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tions induced by atmospheric turbulence can severely degrade the performance of an
optical imaging system. The basic idea in adaptive optics is to position the surface
of a deformable mirror in such a way as to approximately cancel the atmospheric
turbulence. The control of a deformable mirror is based on its linear relationship,
called the reconstructor, to the wave front sensor measurement. My work has been
on the estimation of this reconstructor in the adaptive optics system. Since the en-
tire process, from the acquisition of wave front measurements to the positioning of
the surface of the deformable mirror, must be performed at speeds commensurate
with the atmospheric changes, the adaptive optics control imposes several challeng-
ing computational problems. The notion of atmosphere turbulence can replaced by
turbulence arising in many other circumstances, such as the liquid in the eyeballs, or
the noises caused by the motion of engines. The techniques developed for adaptive
optics, therefore, can equally be applied to many other important applications in
defense, engineering, medicine, and science. A mathematical framework that unifies
the description of several different estimators already used in practice is proposed in
[58]. Just completed is a recent study on the convergence behavior and its effect of a
particular adaptive control algorithm [59].

The second one concerns structured low rank approximation. In a noiseless time-
domain signals comprising k components of exponentially decaying sinusoids can be
identified by a Hankel matrix H of rank k. The measurement A obtained from, for
example, in vivo NMR (Nuclear Magnetic Resonance on living objects) often is of
full rank because random noises have been added inevitably . The challenge then
is to retrieve as much information as possible about H from the observed A. It is
known that the truncated singular value decomposition (TSVD) will produce the
best low rank approximation. Nevertheless, this TSVD of A generally is no longer
Hankel. Thus far, a popular method used by engineers to retrieve a Hankel low rank
approximation is to alternate projections between the manifold of rank−k matrices
and the space of Hankel matrices. This so called Cadzow’s algorithm has been claimed
to be “a cleansing process whereby any corrupting noise, measurement distortion, or
theoretical mismatch present in the given data set (namely, A) is removed.” Recently,
my colleagues and I have discovered numerical evidence using new formulations that
Cadzow’s algorithm usually does not give rise to the optimal approximation [54]. The
impact of this finding is significant because the structured low rank approximation is
also needed in other areas of signal processing application, including model reduction,
speech encoding, filter design, and so on. Preliminary results are reported in [54] and
we are continuing the study of this subject.
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