Chapter 1

Introduction

- \bullet Basic component
- Building the bridge
- \bullet Characteristic of a bridge
- \bullet Examples

Basic Components

- Two abstract problems:
	- \Diamond One is a make-up and is easy.
	- \Diamond The other is the real problem and is difficult.
- A bridge:
	- \Diamond A continuous path connecting the two problems.
	- \diamond A path that is easy to follow.
- A numerical method:
	- \diamond A method for moving along the bridge.
	- \diamond A method that is readily available.

Introduction 9

Building the Bridge

- Specified guidance is available.
	- \Diamond The bridge is constructed by monitoring the values of certain specified functions.
	- \Diamond The path is guaranteed to work.
	- \Diamond e.g. Projected gradient methods.
- Only some general guidance is available.
	- \Diamond A bridge is built in a straightforward way.
	- \Diamond No guarantee the path will be complete.
	- \diamond e.g. Homotopy methods.

• No guidance at all.

- \Diamond A bridge is built seemingly by accident.
- Usually deeper mathematical theory is involved.
- \Diamond e.g. The isospectral flows.

Characteristics of a Bridge

- A bridge, if exists, usually is characterized by an ordinary differential equation.
- The discretization of a bridge, or a numerical method in traveling along a bridge, usually produces an iterative scheme.
- The eigenvalue problem
- The nonlinear algebraic equation
- \bullet The least squares matrix approximation
- \bullet List of other applications

The Eigenvalue Problem

- The mathematical problem:
	- \diamond A symmetric matrix A_0 is given.
	- \diamond Solve the equation

$$
A_0x = \lambda x
$$

for a nonzero vector x and a scalar λ .

- \bullet An iterative method :
	- \diamond The QR decomposition:

$$
A=QR
$$

where Q is orthogonal and R is upper triangular. \diamond The *QR* algorithm (Francis '61):

$$
A_k = Q_k R_k
$$

$$
A_{k+1} = R_k Q_k.
$$

- \diamond The sequence $\{A_k\}$ converges to a diagonal matrix.
- \Diamond Every matrix A_k has the same eigenvalues of A_0 .
- A continuous method:
	- Lie algebra decomposition:

$$
X = X^o + X^+ + X^-
$$

where X^o is the diagonal, X^+ the strictly upper triangular, and X^- the strictly lower triangular part of X.

Toda lattice (Symes '82, Deift el al '83):

$$
\frac{dX}{dt} = [X, X^- - X^{-T}]
$$

$$
X(0) = X_0.
$$

- \Diamond Sampled at integer times, $\{X(k)\}\$ gives the same sequence as does the QR algorithm applied to the matrix $A_0 = exp(X_0)$.
- The bridge between X_0 and the limit point of Toda flow is built on the basis of maintaining isospectrum.
	- What motivates the construction of Toda lattice?
	- Why is convergence guaranteed?

Nonlinear algebraic equations

- The mathematical problem:
	- $\Diamond A$ sufficiently smooth function $f: R^n \to R^n$ is given.
	- \diamond Solve the equation

$$
f(x) = 0.
$$

• An iterative method:

 \diamond The Newton method:

$$
x_{k+1} = x_k - \alpha_k (f'(x_k))^{-1} f(x_k).
$$

 \Diamond The sequence $\{x_k\}$ converges quadratically to a solution, if x_0 is sufficiently close to that solution.

• A continuous method (Smale '76, Keller '78, etc.): \diamond The Newton homotopy:

$$
H(x,t) = f(x) - tf(x_0).
$$

- \Diamond The zero set $\{(x,t)\in R^{n+1}|H(x,t)=0\}$ is a smooth curve.
- \diamond The homotopy curve:

$$
f'(x)\frac{dx}{ds} - \frac{1}{t}f(x)\frac{dt}{ds} = 0
$$

$$
x(0) = x_0
$$

$$
t(0) = 1
$$

where s is the arc length.

 \Diamond Suppose $f'(x)$ is nonsingular. Then written as

$$
\frac{dx}{ds} = \frac{dt}{ds} \frac{1}{t} (f'(x))^{-1} f(x).
$$

 With appropriate step size chosen, an Euler step is equivalent to a regular Newton method.

- The bridge is built upon the hope that the obvious solution will be deformed mathematically into the solution that we are seeking for.
	- \diamond Will this idea always work?
	- \diamond How to mathematically design an appropriate homotopy?

Least Squares Matrix Approximation

- The mathematical problem:
	- \Diamond A symmetric matrix N and a set of real values $\{\lambda_1,\ldots,\lambda_n\}$ are given.
	- \Diamond Find a least squares approximation of N that has the prescribed eigenvalues.
- A standard formulation:
	- Minimize $F(Q) := \frac{1}{2}$ 2 $||Q^T\Lambda Q - N||^2$ Subject to $Q^T Q = I$
	- Equality Constrained Optimization:
		- \triangleright Augmented Lagrangian methods.
		- \triangleright Sequential quadratic programming methods.
	- \diamond None of these techniques is easy.
- A continuous approach (Brockett '88, Chu & Driessel '90):
	- \Diamond The projection of the gradient of F can easily be calculated.
	- \diamond Projected gradient flow:

$$
\frac{dX}{dt} = [X, [X, N]]
$$

$$
X(0) = \Lambda
$$

- $\triangleright X := Q^T \Lambda Q.$
- \triangleright Flow $X(t)$ moves in a descent direction to reduce $||X - N||^2$.
- \Diamond The optimal solution X can be fully characterized by the spectral decomposition of N and is unique.
- The bridge between a starting point and the optimal point is built on the basis of systematically reducing the difference between the current position and the target position.
- QR flow for normal matrices (Chu '84).
- Generalized Toda flow (Chu '84, Watkins '84).
- QZ flow (Chu '86).
- Continuous Rayleigh quotient flow (Chu '86).
- SVD flow (Chu '86).
- Abstract QR -type flow (Chu '88).
- Scaled Toda-like flow (Chu '95).

Projected Gradient Flows

- Brockett's double bracket flow (Brockett '88).
- Least squares approximation with spectral constraints (Chu & Driessel '90).
- Simultaneous reduction problem (Chu '91).
- Nearest normal matrix problem (Chu '91).
- Inverse eigenvalue problem for nonnegative matrices (Chu & Driessel '91).
- Inverse singular value problem (Chu '92).
- Matrix differential equations (Chu '92).
- Schur-Horn theorem (Chu '95).
- Least squares inverse eigenvalue problem (Chu & Chen '96).
- Inverse generalized eigenvalue problem (Chu & Guo '98).
- Inverse stochastic eigenvalue problem (Chu & Guo '98).