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Basic Components

• Two abstract problems:

� One is a make-up and is easy.

� The other is the real problem and is difficult.

• A bridge:

� A continuous path connecting the two problems.

� A path that is easy to follow.

• A numerical method:

� A method for moving along the bridge.

� A method that is readily available.
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Building the Bridge

• Specified guidance is available.

� The bridge is constructed by monitoring the val-
ues of certain specified functions.

� The path is guaranteed to work.

� e.g. Projected gradient methods.

• Only some general guidance is available.

� A bridge is built in a straightforward way.

� No guarantee the path will be complete.

� e.g. Homotopy methods.

• No guidance at all.

� A bridge is built seemingly by accident.

� Usually deeper mathematical theory is involved.

� e.g. The isospectral flows.
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Characteristics of a Bridge

• A bridge, if exists, usually is characterized by an
ordinary differential equation.

• The discretization of a bridge, or a numerical method
in traveling along a bridge, usually produces an it-
erative scheme.
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Examples

• The eigenvalue problem

• The nonlinear algebraic equation

• The least squares matrix approximation

• List of other applications
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The Eigenvalue Problem

• The mathematical problem:

� A symmetric matrix A0 is given.

� Solve the equation

A0x = λx

for a nonzero vector x and a scalar λ.
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• An iterative method :

� The QR decomposition:

A = QR

whereQ is orthogonal andR is upper triangular.

� The QR algorithm (Francis ’61):

Ak = QkRk

Ak+1 = RkQk.

� The sequence {Ak} converges to a diagonal ma-
trix.

� Every matrixAk has the same eigenvalues ofA0.
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• A continuous method:

� Lie algebra decomposition:

X = Xo +X+ +X−

where Xo is the diagonal, X+ the strictly upper
triangular, and X− the strictly lower triangular
part of X .

� Toda lattice (Symes ’82, Deift el al ’83):

dX

dt
= [X,X− −X−T ]

X(0) = X0.

� Sampled at integer times, {X(k)} gives the same
sequence as does the QR algorithm applied to
the matrix A0 = exp(X0).

• The bridge between X0 and the limit point of Toda
flow is built on the basis of maintaining isospec-
trum.

�What motivates the construction of Toda lat-
tice?

�Why is convergence guaranteed?
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Nonlinear algebraic equations

• The mathematical problem:

� A sufficiently smooth function f : Rn → Rn is
given.

� Solve the equation

f(x) = 0.

• An iterative method:

� The Newton method:

xk+1 = xk − αk(f ′(xk))−1f(xk).

� The sequence {xk} converges quadratically to a
solution, if x0 is sufficiently close to that solu-
tion.
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• A continuous method (Smale ’76, Keller ’78, etc.):

� The Newton homotopy:

H(x, t) = f(x)− tf(x0).

� The zero set {(x, t) ∈ Rn+1|H(x, t) = 0} is a
smooth curve.

� The homotopy curve:

f ′(x)
dx

ds
− 1

t
f(x)

dt

ds
= 0

x(0) = x0

t(0) = 1

where s is the arc length.

� Suppose f ′(x) is nonsingular. Then written as

dx

ds
=
dt

ds

1

t
(f ′(x))−1f(x).

�With appropriate step size chosen, an Euler step
is equivalent to a regular Newton method.
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• The bridge is built upon the hope that the obvious
solution will be deformed mathematically into the
solution that we are seeking for.

�Will this idea always work?

� How to mathematically design an appropriate
homotopy?
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Least Squares Matrix Approximation

• The mathematical problem:

� A symmetric matrix N and a set of real values
{λ1, . . . , λn} are given.

� Find a least squares approximation of N that
has the prescribed eigenvalues.

• A standard formulation:

Minimize F (Q) :=
1

2
||QTΛQ−N ||2

Subject to QTQ = I

� Equality Constrained Optimization:

. Augmented Lagrangian methods.

. Sequential quadratic programming methods.

� None of these techniques is easy.



Introduction 19

• A continuous approach (Brockett ’88, Chu & Dries-
sel ’90):

� The projection of the gradient of F can easily
be calculated.

� Projected gradient flow:

dX

dt
= [X, [X,N ]]

X(0) = Λ

. X := QTΛQ.

. Flow X(t) moves in a descent direction to
reduce ||X −N ||2.

� The optimal solution X can be fully character-
ized by the spectral decomposition of N and is
unique.

• The bridge between a starting point and the opti-
mal point is built on the basis of systematically re-
ducing the difference between the current position
and the target position.
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Isospectral Flows

• QR flow for normal matrices (Chu ’84).

• Generalized Toda flow (Chu ’84, Watkins ’84).

• QZ flow (Chu ’86).

• Continuous Rayleigh quotient flow (Chu ’86).

• SV D flow (Chu ’86).

• Abstract QR-type flow (Chu ’88).

• Scaled Toda-like flow (Chu ’95).



Introduction 21

Projected Gradient Flows

• Brockett’s double bracket flow (Brockett ’88).

• Least squares approximation with spectral constraints
(Chu & Driessel ’90).

• Simultaneous reduction problem (Chu ’91).

• Nearest normal matrix problem (Chu ’91).

• Inverse eigenvalue problem for nonnegative matri-
ces (Chu & Driessel ’91).

• Inverse singular value problem (Chu ’92).
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Generalized Flows

• Matrix differential equations (Chu ’92).

• Schur-Horn theorem (Chu ’95).

• Least squares inverse eigenvalue problem (Chu &
Chen ’96).

• Inverse generalized eigenvalue problem (Chu & Guo
’98).

• Inverse stochastic eigenvalue problem (Chu & Guo
’98).


