Chapter 1

Introduction

- Basic component
- Building the bridge
- Characteristic of a bridge
- Examples

Basic Components

- Two abstract problems:
 - \diamond One is a make-up and is easy.
 - \diamond The other is the real problem and is difficult.
- A bridge:
 - \diamond A continuous path connecting the two problems.
 - \diamond A path that is easy to follow.
- A numerical method:
 - \diamond A method for moving along the bridge.
 - \diamond A method that is readily available.

Introduction

Building the Bridge

- Specified guidance is available.
 - \diamond The bridge is constructed by monitoring the values of certain specified functions.
 - \diamond The path is guaranteed to work.
 - \diamond e.g. Projected gradient methods.
- Only some general guidance is available.
 - \diamond A bridge is built in a straightforward way.
 - \diamond No guarantee the path will be complete.
 - \diamond e.g. Homotopy methods.
- No guidance at all.
 - \diamond A bridge is built seemingly by accident.
 - \diamond U sually deeper mathematical theory is involved.
 - \diamond e.g. The isospectral flows.

Characteristics of a Bridge

- A bridge, if exists, usually is characterized by an ordinary differential equation.
- The discretization of a bridge, or a numerical method in traveling along a bridge, usually produces an iterative scheme.

- The eigenvalue problem
- The nonlinear algebraic equation
- The least squares matrix approximation
- List of other applications

The Eigenvalue Problem

- The mathematical problem:
 - \diamond A symmetric matrix A_0 is given.
 - \diamond Solve the equation

$$A_0 x = \lambda x$$

for a nonzero vector x and a scalar λ .

- An iterative method :
 - \diamond The QR decomposition:

$$A = QR$$

where Q is orthogonal and R is upper triangular. \diamond The QR algorithm (Francis '61):

$$A_k = Q_k R_k$$
$$A_{k+1} = R_k Q_k.$$

- \diamond The sequence $\{A_k\}$ converges to a diagonal matrix.
- \diamond Every matrix A_k has the same eigenvalues of A_0 .

- A continuous method:
 - ♦ Lie algebra decomposition:

$$X = X^o + X^+ + X^-$$

where X^o is the diagonal, X^+ the strictly upper triangular, and X^- the strictly lower triangular part of X.

 \diamond Toda lattice (Symes '82, Deift el al '83):

$$\frac{dX}{dt} = [X, X^{-} - X^{-T}]$$

X(0) = X₀.

- \diamond Sampled at integer times, $\{X(k)\}$ gives the same sequence as does the QR algorithm applied to the matrix $A_0 = exp(X_0)$.
- The bridge between X_0 and the limit point of Toda flow is built on the basis of maintaining isospectrum.
 - \diamond What motivates the construction of Toda lattice?
 - \diamond Why is convergence guaranteed?

Nonlinear algebraic equations

- The mathematical problem:
 - \diamond A sufficiently smooth function $f: R^n \to R^n$ is given.
 - \diamond Solve the equation

$$f(x) = 0.$$

• An iterative method:

 \diamond The Newton method:

$$x_{k+1} = x_k - \alpha_k (f'(x_k))^{-1} f(x_k).$$

 \diamond The sequence $\{x_k\}$ converges quadratically to a solution, if x_0 is sufficiently close to that solution.

A continuous method (Smale '76, Keller '78, etc.):
The Newton homotopy:

$$H(x,t) = f(x) - tf(x_0).$$

- \diamond The zero set $\{(x,t)\in R^{n+1}|H(x,t)=0\}$ is a smooth curve.
- \diamond The homotopy curve:

$$f'(x)\frac{dx}{ds} - \frac{1}{t}f(x)\frac{dt}{ds} = 0$$
$$x(0) = x_0$$
$$t(0) = 1$$

where s is the arc length.

 \diamond Suppose f'(x) is nonsingular. Then written as

$$\frac{dx}{ds} = \frac{dt}{ds}\frac{1}{t}(f'(x))^{-1}f(x).$$

 \diamond With appropriate step size chosen, an Euler step is equivalent to a regular Newton method.

- The bridge is built upon the hope that the obvious solution will be deformed mathematically into the solution that we are seeking for.
 - \diamond Will this idea always work?
 - \diamond How to mathematically design an appropriate homotopy?

Least Squares Matrix Approximation

- The mathematical problem:
 - \diamond A symmetric matrix N and a set of real values $\{\lambda_1, \ldots, \lambda_n\}$ are given.
 - \diamond Find a least squares approximation of N that has the prescribed eigenvalues.
- A standard formulation:

Minimize $F(Q) := \frac{1}{2} ||Q^T \Lambda Q - N||^2$ Subject to $Q^T Q = I$

- \diamond Equality Constrained Optimization:
 - \triangleright Augmented Lagrangian methods.
 - \triangleright Sequential quadratic programming methods.
- \diamond None of these techniques is easy.

- A continuous approach (Brockett '88, Chu & Driessel '90):
 - \diamond The projection of the gradient of F can easily be calculated.
 - \diamond Projected gradient flow:

$$\frac{dX}{dt} = [X, [X, N]]$$

$$X(0) = \Lambda$$

- $\triangleright X := Q^T \Lambda Q.$
- $\triangleright \text{Flow } X(t) \text{ moves in a descent direction to} \\ \text{reduce } ||X N||^2.$
- \diamond The optimal solution X can be fully characterized by the spectral decomposition of N and is unique.
- The bridge between a starting point and the optimal point is built on the basis of systematically reducing the difference between the current position and the target position.

- QR flow for normal matrices (Chu '84).
- Generalized Toda flow (Chu '84, Watkins '84).
- QZ flow (Chu '86).
- Continuous Rayleigh quotient flow (Chu '86).
- SVD flow (Chu '86).
- Abstract QR-type flow (Chu '88).
- Scaled Toda-like flow (Chu '95).

Projected Gradient Flows

- Brockett's double bracket flow (Brockett '88).
- Least squares approximation with spectral constraints (Chu & Driessel '90).
- Simultaneous reduction problem (Chu '91).
- Nearest normal matrix problem (Chu '91).
- Inverse eigenvalue problem for nonnegative matrices (Chu & Driessel '91).
- Inverse singular value problem (Chu '92).

- Matrix differential equations (Chu '92).
- Schur-Horn theorem (Chu '95).
- Least squares inverse eigenvalue problem (Chu & Chen '96).
- Inverse generalized eigenvalue problem (Chu & Guo '98).
- Inverse stochastic eigenvalue problem (Chu & Guo '98).