
Chapter 10

Miscellaneous Flows

• Flows on Sn−1

• Toeplitz annihilator flow

• Linear stationary flow

• SVD flow

• QZ flow

• Scaled Toda flow
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Flows on Sn−1

• Power method

• Rayleigh quotient method



Miscellaneous Flows 211

Power Method

• Iterative method:

yk+1 = Axk

xk+1 =
yk+1

‖yk+1‖
.

� Fundamental to the QR algorithm.

� {xk} converges to the maximal eigenvector.

• Continuous method:

du

dt
= Bu− 〈Bu, u〉u.

� Project gradient flow on Sn−1 for maximizing
the Rayleigh quotient

ρ(y) :=
yTBy

yTy
.

� Closed form solution:

u(t) =
etBu0

‖etBu0‖
.



212 Lecture 10

• Dynamics of u(t):

� Maximal eigenvalue is real⇒ u(t) converges to
maximal eigenvector.

� Maximal eigenvalue is complex ⇒ u(t) is at-
tracted to and oscillating around the 2-dim cir-
cle (= Sn−1 ⋂ subspace spanned by the real and
the imaginary parts of maximal eigenvector).

• Choose B = lnA if A is nonsingular⇒

u(t) =
Atu0

‖Atu0‖
.

� Poincaré map ≡ Classical power method.
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Rayleigh Quotient Method

• Iterative method:

ρk = xTkAxk
yk+1 = (A− ρkI)−1xk

xk+1 =
yk+1

‖yk+1‖
.

� Main objective: Speed up convergence by mak-
ing A− ρkI nearly singular so that (A− ρkI)−1

has a most dominant eigenvalue.

• Suppose A is normal. Then

� {ρk} converges.

� Either {(ρk, xk)} converges to an eigenpair cu-
bically,

� Or {ρk} converges linearly to a point equi-distant
from s ≥ 2 eigenvalues of A, but {xk}, may or
may not have a limit cycle, does not converge.



214 Lecture 10

• Can model RQI by continuous power method in the
interval [k, k + 1]:

� Choose xk = u(k) and B = ln (A− ρkI)−1.

u(k + 1) =
(A− ρkI)−1u(k)

‖(A− ρk)−1u(k)‖.

� Only piecewise differentiable.

� Difficult to analyze asymptotic behavior.
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Simulation of RQI

• Behavior of ln |z−c|−1 and |z−c|2 are qualitatively
similar near c⇒

B = ln(A− ρ(xk))
−1

↑
B = (A− ρ(xk)I)−2

↑
B = B(u) :=

(
A− ρ(u)I)T (A− ρ(u)I

)−1
.

• New differential equation:

du

dt
= B(u)u− 〈B(u)u, u〉u.

� System becomes singular when reaching the set
Γ := {u ∈ Sn−1|ρ(u) ∈ σ(A)}.

• Residue function:

r(t) := ‖ (A− ρ(u(t))I)u(t)‖.
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Global Dynamics

• Residue is monotone decreasing:

2r
dr

dt
=

d

dt
〈u,B−1u〉

= 〈du
dt
, B−1u〉 + 〈u,B−1du

dt
〉

+〈u,−dρ
dt

[
(A− ρ) + (A− ρ)T

]
u〉

= 2〈du
dt
, B−1u〉

= 2〈Bu−〉Bu, u〉u,B−1u〉
= 2

(
1− 〈u,Bu〉〈u,B−1u〉

)
≤ 0.( Kantorovich Inequality)

• u(t) can behave as only one of the following three:

� u(t) hits the singular set Γ in finite time.

� u(t) → an eigenvector of A as t→∞.

� u(t) has its ω-limit set contained in the set E =
{u∗|u∗ is an eigenvector of B(u∗)}.

• Dynamics of the DE are parallel to those of the
classical RQI (Chu, ’86).
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Toeplitz Annihilator Flow

• Isospectral flow on S(n):

dX

dt
= [X, k(X)]

k : S(n) → S(n)⊥

m
X(t) = Q(t)TX(0)Q(t)

m
dQ

dt
= Qk(X), Q(0) = I.

• Can take k to so that k(T ) = 0 iff T is symmetric
Toeplitz matrices.

• Ideas:

� X(t) stays bounded ⇒ Invariant ω-limit set is
non-empty.

� Simple spectrum of X(0)

⇒ [X, k(X)]=0 iff k(X)= Polynomial of X

⇒ k(X) = 0

⇒ X is Toeplitz.
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Toeplitz Annihilators

• The simplest annihilator:

kij :=



xi+1,j − xi,j−1, if 1 ≤ i < j ≤ n
0, if 1 ≤ i = j ≤ n
xi−1,j − xi,j+1, if 1 ≤ j < i ≤ n

� Vector field⇒ Homogeneous polynomials of de-
gree 2 and norm preserving.

• A more complicated way:

k(X) := [L(X), C]

� A constant matrix:

C :=



0 1 0 . . . 0
1 0 1 ...
0 1 . . .

... 0 1
0 . . . 1 0



.

� L(X) := Projection of X onto T C along T .

� T C := Any complementary subspace of T in
S(n).
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A Danger

• All annihilators work numerically ⇒ Confirming
Landau’s result (Landau, ’94).

• A similar system (Bender et al., ’78):

dy1

dt
= y2y3 + y5y4 − 2 y2y5,

dy2

dt
= y3y4 + y1y5 − 2y3y1,

dy3

dt
= y5y4 + y2y1 − 2y2y4,

dy4

dt
= y1y5 + y2y3 − 2y5y3,

dy5

dt
= y2y1 + y3y4 − 2y1y4,

� Norm preserving.

� Random behavior.

• Need to scrutinize the system more!
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The System when n = 3

• Trace = 0 ⇒ Can describe system in terms of
(x11, x12, x13, x23, x33):

dx11

dt
= 4x12x11 + 2x12x33 − 2x13x23 + 2x13x12,

dx12

dt
= −4x2

11 − 4x11x33 − 2x13x33 − x13x11

−x2
33 − x2

23 + x23x12,
dx13

dt
= 3x11x23 + 3x12x33,

dx23

dt
= x23x12 − x2

12 − 4x11x33 − x2
11 − 4x2

33

−2x13x11 − x13x33,
dx33

dt
= 2x13x23 − 2x13x12 + 4x23x33 + 2x11x23.
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Invariant Set

• Isospectral surface is invariant.

• Equilibrium points are invariant:

� No isolated equilibrium.

� (c1, 0,−3c1, 0, c1)

. Eigenvalues = 0,±3
√

6c1,±6
√

2|c1|i.
. Never stable.

. Possible periodic solution.

� (0, c2, c3, c2, 0)

. Eigenvalues = 0, 0, 6c2, 2(c2+c3), 2(c2−c3).

. Stable when c2 < 0 and |c2| ≥ c3.

• W = {(x11, x12, x13, x12, x11)|x11, x12, x13 ∈ R} is
invariant.

� T ⊂ W with x11 = 0.

� System inW ⇒ Elliptic orbits withinW .
dx11

dt
= 6x11x12,

dx12

dt
= −9x2

11 − 3x11x13,

dx13

dt
= 6x11x12.
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Orbital Stability

• Numerical integration always solves ITEP.

• Ellipses are orbitally unstable:
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Figure 1: Plot of x11(t) versus x12(t).

• Orbital unstability can be confirmed by the char-
acteristic exponents at a periodic solution (Cod-
dington et al., ’55).
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• Orbits stay in isospectral surface⇒ Eigenvalues are
not lost.
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Figure 2: Error of eigenvalues between X(0) and X(t).
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Linear Stationary Flow

• Stationary iteration for solving Ax∗ = b:

xk+1 = Gxk + c.

� G = I −Q−1A, c = Q−1b.

� Fixed point of iteration = x∗.

� Iteration converges⇔ ρ(G) < 1.

• A differential system:

dx

dt
= (G− I)x + c = −Q−1Ax + c.

� Euler step with unit stepsize⇒ Stationary iter-
ation.

� <λ(Q−1A) > 0 ⇒ x∗ = Global attractor.

� The choice of Q exists (Pole assignment).



Miscellaneous Flows 225

• Discrete methods for DE⇒ Plenty of new iterative
schemes.

• Three-term polynomial acceleration methods≡Two-
step, explicit, variable coefficient ODE methods.

x1 =β1(Gx0+c)+(1−β1)x0

xk+1 =αk+1{βk+1(Gxk+c)+(1−βk+1)xk}+(1−αk+1)xk−1

iff

x1 = x0+β1f0

xk+1 = αk+1xk+(1− αk+1)xk−1+αk+1βk+1fk.

� Function evaluation fk := (G− I)xk + c.
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SVD Flow

• Golub and Kahan algorithm:

� Use Householder transformations to reduce A ∈
Rm×n to upper bidiagonal form.

� Apply implicit-shift QR steps to the tridiagonal
matrix BTB to compute the SVD of B.

• A one-parameter family of matrices:

Y (t) = U(t)BV (t),

m
dY

dt
= Y N −MY

M,N = skew-symmetric,

m
dU

dt
= −MU,

dV

dt
= V N.
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• One special choice:

M(t) := Π0

(
Y (t)Y (t)T

)
N(t) := Π0

(
Y (t)TY (t)

)
.

� Y (t) maintains the bidiagonal form.

dyi,i
dt

= yi,i
(
y2
i,i+1 − y2

i−1,i

)

dyi,i+1

dt
= yi,i+1

(
y2
i+1,i+1 − y2

i,i

)
.

� Poincaré map ≡ SVD algorithm.
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QZ Flow

• Moler and Stewart algorithm:

� Simultaneously educe A to upper Hessenberg
form and B to upper triangular form.

� Apply QR steps to reduce A to upper quasi-
triangular form while preserving triangularity of
B.

• A one-parameter family of matrices:

X(t) = Q(t)AZ(t),

Y (t) = Q(t)BZ(t),

m
dX

dt
= XM −NX

dY

dt
= YM −NY

M,N = skew-symmetric,

m
dQ

dt
= −MM,

dZ

dt
= ZN.
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• One special choice:

M(t) := Π0

(
X(t)Y (t)−1

)
N(t) := Π0

(
Y (t)−1X(t)

)
.

� X(t) maintains upper Hessenberg form.

� Y (t) maintains upper triangular form.

� Poincaré map ≡ QZ algorithm.
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Scaled Toda Flow

• Componentwise scaling:

dX

dt
= [X,A ◦X ].

� ◦ = Hadamard product.

• Isospectral flow:

X(t) = L(t)−1X0L(t) = R(t)X0R(t)−1,

m
dL

dt
= L(A ◦X),

dR

dt
= ((1− A) ◦X)R.

• QR-like iteration:

eX0t = L(t)R(t),

eX(t)t = R(t)L(t).
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Choices of A

• Continuous power method:

aij :=



1, if j = 1 and i > j;
−1, if i = 1 and j > i;

0, otherwise.

• Toda lattice:

aij :=



1, if i > j;
−1, if j > i;

0, otherwise.

• Arbitrary patten:

aij :=



1, if (i, j) ∈ ∆;
−1, if (j, i) ∈ ∆;

0, otherwise.
.

� ∆ = Arbitrary index subset.

• Brockett’s double bracket flow:

aij := di − dj
� di ≥ dj if i ≤ j.
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Convergence

• X(0)symmetric,A skew-symmetric and tril(A) non-
negative⇒

lim
t→∞

A ◦X(t) = 0.

� xij(t)→ 0 whenever aij 6= 0.


