Chapter 10

Miscellaneous Flows

e Flows on S 1
e Toeplitz annihilator flow

e Linear stationary flow

o SVD flow
o Q7 flow
e Scaled Toda flow

209
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Flows on S" 1

e Power method

e Rayleigh quotient method
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Power Method

e [terative method:

Yk+1 = Axy,
Yk+1

Lh+1 = :
[y

¢ Fundamental to the QQ R algorithm.

o {x)} converges to the maximal eigenvector.

e Continuous method:

d
d—?z = Bu — (Bu, u)u.

o Project gradient flow on S™~! for maximizing
the Rayleigh quotient

ply) = ny 7,
y'y
¢ Closed form solution:
e!Bu
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e Dynamics of u(t):
o Maximal eigenvalue is real = u(t) converges to

maximal eigenvector.

o Maximal eigenvalue is complex = wu(t) is at-
tracted to and oscillating around the 2-dim cir-
cle (= S™ ! n subspace spanned by the real and
the imaginary parts of maximal eigenvector).

e Choose B =1In A if A is nonsingular =-
Atuo
| A ||

¢ Poincaré map = Classical power method.

u(t) =
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Rayleigh Quotient Method

e [terative method:
Pr = x%Amk
1 = (A—pel) "z
Yk+1

yrsll

© Main objective: Speed up convergence by mak-
ing A — p;1 nearly singular so that (A — ppI)™?
has a most dominant eigenvalue.

Lk+1

e Suppose A is normal. Then

o {pr} converges.

o Either {(pg, )} converges to an eigenpair cu-
bically,

o Or {py} converges linearly to a point equi-distant
from s > 2 eigenvalues of A, but {x;}, may or
may not have a limit cycle, does not converge.
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e Can model RQI by continuous power method in the
interval |k, k + 1]:

o Choose 7, = u(k) and B =In (A — pp1)~ .
(A = pel) " u(k)
I(A = pr)~tulk)|

¢ Only piecewise differentiable.

u(k+1) =

¢ Difficult to analyze asymptotic behavior.
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Simulation of RQI

e Behavior of In |z —¢| ™! and |z —c|* are qualitatively
similar near ¢ =
B =In(A - play))""

;
B = (A - p(xx)])~

B = B(u) = (A— p(w))T(A— p(u)])”

e New differential equation:

du
i B(u)u — (B(u)u, u)u.

& System becomes singular when reaching the set

I':={ue S" Hpu) € o(A)}.

e Residue function:

r(t) = || (A= plu(t) ) u(t)]-
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Global Dynamics

e Residue is monotone decreasing:

dr d

2r— = —(u, B
rdt dg(u, u) d
e g 1
0
+{u, = [(A = p) + (A= p)"]u)
du
— 2<EaB 1u>

2(Bu—) Bu, u)u, B~ u)
2(1 — (u, Bu){u, B~'u))
0.( Kantorovich Inequality)

IA

e u(t) can behave as only one of the following three:

o u(t) hits the singular set I' in finite time.

o u(t) — an eigenvector of A as t — oo.

o u(t) has its w-limit set contained in the set F =
{u*|u* is an eigenvector of B(u*)}.

e Dynamics of the DE are parallel to those of the
classical RQI (Chu, '86).
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Toeplitz Annihilator Flow

e [sospectral flow on S(n):

dX
= X))

k:S(n) — S(n)*

X(t) = )’ X(0)Q(t)

<~ |

1
S = QK(X), Q) = 1.

e Can take k to so that k(T') = 0 iff T is symmetric
Toeplitz matrices.

o [deas:
o X (t) stays bounded = Invariant w-limit set is
non-empty.
o Simple spectrum of X (0)
= | X, k(X)|=0 iff £(X)=Polynomial of X
= k(X)=0
= X is Toeplitz.
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Toeplitz Annihilators

e The simplest annihilator:

Tit1; — Tij-1, 11 <i<j<n
]CijZ: O, 1f1§z:j§n
Ti—1,7 — Li j+1, if 1 < 1<1<n

¢ Vector field = Homogeneous polynomials of de-
gree 2 and norm preserving.

e A more complicated way:
E(X) = [L(X),C]

o A constant matrix:

01 0 0
10 1

C = 01~
: 01
0 ... 10

o L(X) := Projection of X onto 7¢ along 7T .

o TY := Any complementary subspace of 7 in
S(n).
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A Danger

e All annihilators work numerically = Confirming
Landau’s result (Landau, '94).

e A similar system (Bender et al., "78):

dy

g s + Ysys — 2Y2Ys,
dys

g Vs + Y1Ys — 2Y3Y1,
dys

g Vs + Yay1 — 2Y2ya,
dys

g s + Y2y3 — 2Y5Y3,
dys

g e + Y3Ys — 2Y1Ya,

& Norm preserving.

¢ Random behavior.

e Need to scrutinize the system more!
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The System when n = 3

e Trace = 0 = Can describe system in terms of
(11711, X12, 13, 23, 5533)1
d$11
el Ax19111 + 2212T33 — 2013%23 + 2713712,
e —4x7] — 4x11733 — 2013733 — T13%11
9 9
—5633 — 5623 —+ Xo3x12,
d$13
—— = 3x11%923 + 3T12T33,
dt
dxo3 _ 2 9 A2
g TasTiz T Ty — 4x117033 — 7] — 4733
—2T13%11 — 13T 33,
dﬂl’gg

e 2T13T93 — 2x13%12 + 4T93733 + 211 T93.
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Invariant Set

e [sospectral surface is invariant.
e Fquilibrium points are invariant:

¢ No isolated equilibrium.

o (c1,0,—=3c1,0,¢1)
> Eigenvalues = 0, £3v/6¢1, £6v/2|c1]i.
> Never stable.
> Possible periodic solution.

o (0, o, €3, 2, 0)
> Eigenvalues = 0,0, 6¢s, 2(co+¢3), 2(ca—c3).
> Stable when ¢y < 0 and |ca| > c3.

o W = {(z11, T12, T13, T12, T11) |11, T12, T13 € R} is
invariant.
o717 C W with 11 = 0.
¢ System in VW = Elliptic orbits within W.

dZCH 6

—— = 06x11T12,

ddt 11212

X12 9

—— = —9x7, — 3111713,
7t 11 11213
dxi3

= 6513115612.

dt
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Orbital Stability

e Numerical integration always solves ITEP.

e Ellipses are orbitally unstable:

2

15+

1k

0.5

[O]=

-0.5F

-1k

Figure 1: Plot of 11 () versus x15(t).

e Orbital unstability can be confirmed by the char-
acteristic exponents at a periodic solution (Cod-
dington et al.; ’55).
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e Orbits stay in isospectral surface = Eigenvalues are
not lost.

x10-13
1.4

1.2

norm of eigenvalue error

Figure 2: Error of eigenvalues between X (0) and X (¢).
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Linear Stationary Flow

e Stationary iteration for solving Ax* = b:
xr1 = Gxp + c.

oG =1-Q'A c=Q'b.
¢ Fixed point of iteration = x*.

o Iteration converges < p(G) < 1.

e A differential system:

dx
i (G—DNzx+c=—-Q 'Ar +c
¢ Euler step with unit stepsize = Stationary iter-
ation.

o RAQ'A) > 0 = z* = Global attractor.

¢ The choice of @ exists (Pole assignment).
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e Discrete methods for DE = Plenty of new iterative
schemes.

e Three-term polynomial acceleration methods = Two-
step, explicit, variable coefficient ODE methods.

T — ﬁ1<GCI30+C) + (1 —61)330
L1 =& k+1{ Bt (GZU k:+0) + (1—5k+1)$k}+<1 —Q k+1)33'k—1
iff
r1 = zo+01fo
Trn = opaTr+ (1 — o) Th—1+ 0 Bt fie-

o Function evaluation fi := (G — Iz + c.
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SVD Flow

e Golub and Kahan algorithm:

¢ Use Householder transformations to reduce A €
R™ ™ to upper bidiagonal form.

¢ Apply implicit-shift QR steps to the tridiagonal
matrix B! B to compute the SVD of B.

e A one-parameter family of matrices:

Y(t) = U@t)BV(1),
)
C?t/ =YN-MY
M, N = skew-symmetric,
dU !
= — MU,
Y _vN

dt
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e One special choice:
M(t) = I (Y)Y (1))
N(t) = T (Y(t)'Y(1)).
¢ Y (t) maintains the bidiagonal form.

dyi,i

2 2
i Yii (%‘,Hl - yi—l,i)
dy','+1 2 2
czi;f = Yii+1 <y¢+1,z‘+1 - yzz) :

¢ Poincaré map = SVD algorithm.

227
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QZ Flow

e Moler and Stewart algorithm:
¢ Simultaneously educe A to upper Hessenberg
form and B to upper triangular form.

o Apply QR steps to reduce A to upper quasi-
triangular form while preserving triangularity of

B.

e A one-parameter family of matrices:

X(t) = Q)AZ(1),

Y(t) = Q)BZ(t),
)
d;t( = XM - NX
C?t/ = YM — NY
M, N = skew-symmetric,
)
C;Cf = —MM,
dz = ZN.

dt
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e One special choice:
M(t) == I (X@O)Y ()™
N(t) = T (Y()7'X(2)).
¢ X (t) maintains upper Hessenberg form.
o Y (t) maintains upper triangular form.

¢ Poincaré map = QZ algorithm.



230 Lecture 10

Scaled Toda Flow

e Componentwise scaling:

dX
% _ix Ao X].
g~ XAeX]

¢ o = Hadamard product.

e [sospectral flow:

X(t) = L)' XoL(t) = ROXoR(t) ™,
i
dL
C#g = L(Ao X),
= (1-A)oX)R

e (OR-like iteration:
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Choices of A

e Continuous power method:

1, if j=1and > j;
Ajj = —1,ife=1 and 5 > i;
0, otherwise.

e Toda lattice:
1, if ¢ > g;
Qjj = —1, it 7 >4
0, otherwise.

e Arbitrary patten:

1, if (i,7) € A;
Qjj ‘= —1, if (],Z) eA; .
0, otherwise.

o A = Arbitrary index subset.
e Brockett’s double bracket flow:
a;j = d; — d;
od;>d;ifi <j.
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Convergence

e X (0)symmetric, A skew-symmetric and tril(A) non-
negative =

tlipg(-)AOX(t>:O.

o x;i(t) — 0 whenever a;; # 0.



