Chapter 12

Conclusions

- Area of applications.
- Relation to discrete methods.
- Challenge to ODE techniques.
- More to do.

Area of Applications

- Numerical analysis:
 - \diamond Eigenvalue computation.
 - ♦ Singular value computation.
 - ♦ Construction of balanced realizations.
 - \diamond Inverse spectrum problems.
- Matrix theory:
 - \diamond Existence question.
 - \diamond Nearness problems.
- Mechanics:
 - \diamond Mechanical system simulation.
 - \diamond Structure analysis.
 - \diamond Multibody oscillation.
- Control theory:
 - State or output feedback pole assignment problem.
 - \diamond Multivariable system identification.

- Signal processing.
 - \diamond Molecular spectroscopy.
 - \diamond Antenna array processing.
 - \diamond Seismic tomography.
- Multivariate statistical analysis:
 - \diamond Principal component analysis.
- Mathematical programming.
 - \diamond Interior point method for linear programming.
 - \diamond Quadratic assignment problem.

Relation to Discrete Methods

- Offer critical insights into the understanding of the dynamics of discrete methods.
 - $\diamond \, QR$ algorithm.
 - \diamond SVD algorithm.
 - ♦ Jacobi algorithm.
- Unify a variety of discrete methods as special cases of different discretization.
 - $\diamond QR$ -type flow.
 - \diamond Spectrally constrained flow.
- Give rise to the design of new numerical algorithms
 - ♦ Difference methods resulted from discretization of differential systems.
 - \diamond Geometric methods resulted from the underlying topology.

Challenge to ODE Techniques

• May be used as benchmark problems for testing new ODE techniques.

 \diamond Large scale computation — Size grows as n^2 .

• New ODE techniques may further benefit the numerical computation.

♦ Parallel ODE methods (Burrage, '95).

• Enable to tackle existence problems that are seemingly impossible to be solved by conventional discrete methods.

 \diamond Inverse eigenvalue problems.

- Usually offers a global method for solving the underlying problem.
- Analog realization:
 - \diamond Cheap and fast.
 - ♦ Discrete counterparts may not be easy to find.
 - \diamond Suffers from limited accuracy.