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Overview

e Construct a flow in the space of all n x n real ma-
trices.

e Every element in the flow has the same eigenvalues.

e The flow converges to a limit point which has a
specified structure.
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Notations
Gl(n) := {n x n real nonsingular matrices}
gl(n) = {n x n real matrices}

Xo = A given matrix ingl(n)
M(Xo) == {9~ Xoglg € Gi(n)}
A, B] .= AB — BA (Lie bracket)
T := Subspace of gl(n)
Pr := Projection mapping from gl(n) to T
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Basic Form

Lecture 2

e Generic flow:

dX

= k()]
e Basic relationship:
U gleph(t
9(0) =1
O xw), k)
X(0) = X,
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General Framework

e Subspace splitting of gl(n):
gl(n) =11 + Ts.
o 11 and T are subspaces of gl(n).

¢ This is a subspace decomposition only, not nec-
essarily a subalgebra decomposition of gl(n).

o Given Ti, one may choose Ty = gl(n)—T;. This
is not necessarily a direct sum decomposition.
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Examples

e Toda flow:

¢ 17 = Subspace of skew symmetric matrices.
o

e General flow:

¢ 11 = Arbitrary linear subspace.
o

k(X) := Projection of X onto subspace Tj.

¢ Time-1 mapping of the solution still enjoys a
Q) R-type algorithm.

e Application to structured eigenvalue problems:

o A @QR-type algorithm preserving the Hamilto-
nian structure exists for the Hamiltonian eigen-
value problem.
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Governing Flows

e The governing flow:

C”;'t(f) = [X(t), P(X (1))
X(0) = Xy

& P, := Projection onto T7.

e The associated flows:

O aPx ()
gl(O) =

and
0 p(X(0)lt
92(0) = ]

& Py := Projection onto 1.
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Basic Theorems

Lecture 2

All flows enjoys three basic properties:

e Similarity Property
e Decomposition Property

e Reverse Property
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Similarity Property

X(t) = g1(t) " Xogu(t) = ga(t) Xoga(t) ™"

e Define Z(t) = g1(t) X (t)g1(t) .

e Check
dz dgr . 4 ax dgl_1
— = —X — X
dt dt 91 th p 91 T It

= (¢ P(X)) X gy
+91(XPi(X) — P(X)X) gy
+1 X (—Pi(X)gi )
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Decomposition Property

exp(tXo) = g1(t)ga(t).

o Trivially exp(Xyt) satisfies the IVP

dY
— = XY, Y(0) = 1.
dt 0oL, ()

e Define Z(t) = g1(t)ga(?).
e Then Z(0) = I and

dz d91 dgg
PTERTRC + Ny
= (1P1(X))g2 + 91(P2(X)g2)
= 1X 92
= XoZ (by Similarity Property).

e By the uniqueness theorem in the theory of ordinary
differential equations, Z(t) = exp(Xot).
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Reverse Property

exp(tX(t)) = ga(t)g1(?).

33

e By Decomposition Property;,

ga(t)gr(t) = gu(t) ™ eaxp(Xot)gu(t)
= exp(g1(t)” Xogu(t)t)
= exp(X(1)t).
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Abstract ()R-type Decomposition

e In Lie theory, corresponding to a Lie algebra decom-
position of gl(n), there is a Lie group decomposition
of Gl(n) in the neighborhood of 1.

e We have shown, corresponding to a subspace de-
composition gl(n) = Ty + Ts, every matrix in the
neighborhood of I can still be written as the prod-
uct of two nonsingular matrices, i.e.,

exp(Xot) = g1(t)ga(t).

e The product g1(t)g2(t) will be called the abstract
9192 decomposition of exp(Xot).
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Abstract ()R-type Algorithm

e By setting ¢t = 1 in Theorems 2 and 3, we have

exp(X(0)) = g1(1)ga(1)
exp(X (1)) = go(1)g1(1).

e Since the differential equation for X () is autonomous,
the above phenomenon will occur at every feasible
integer time.

e Corresponding to the abstract g;go decomposition,
the above iterative process for all feasible integers
will be called the abstract g,g- algorithm.
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Relation to Classical Algorithms

Case 1 Case 2 Case 3

Ty o(n) I(n) l(n)+d(n)/2

Ty r(n)+d(n)  r(n)+d(n) r(n)+d(n)/2
Et)=P(X(t)| X —-X" X~ X~ +X0/2
P(X(t) | XT+X'4Xx" Xt4Xx0  Xt4x0/2
g1(t) Q(t)eO(n) L(t)eL(n) G(t)eL(n)
go(t) R(t)eR(n) U(t)eR(n) H(t)eR(n)

Algorithm QR LU Cholesky

.= {Skew-symmetric matrices in gl(n)}
;= {Orthogonal matrices in Gl(n)}
;= {Strictly upper triangular matrices in gl(n)}

;= {Strictly lower triangular matrices in gl(n)}
= {Lower triangular matrices in Gl(n)}

(n)
(n)
(n)
R(n) := {Upper triangular matrices in GI(n)}
(n)
(n)
(n)

;= {Diagonal matrices in Gl(n)}

X" := The strictly upper triangular matrix of X
X°? := The diagonal matrix of X

X~ := The strictly lower triangular matrix of X
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Nonclassical Examples

e Assume:

X = symmetric
A = Active index subset

X(t) := Portion of X (t) conforming to A
P(X(t) = X(t) — (X(1)"
Py(X (1) = X(t) — P(X(2))
Then:

For all (i,7) € A, z;i(t) — 0 as t — oo.

o The above result suggests a way to produce (or
knock out) any prescribed pattern that is sym-
metric to the diagonal of a symmetric matrix.

¢ The above result may be interpreted as a gen-
eralization of the Schur decomposition theorem
(which knocks out the entire off-diagonal ele-
ments) for symmetric matrices.

o When A = {(i,j)1 < j<i—1<n-—1}
the dynamical system represents a continuous
tridiagonalization process.
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e Assume

Xp := general (distinct eigenvalues)
A c {1 <j<i<n}

= a rectangular index subset
X(t) := Portion of X (t) conforming to A
t) = X(t) - (X(t)"
) = X(t) = A(X (1))

For all (i,75) € A, x;;(t) — 0 as t — oo.

¢ The above result remains true if A is such that
its complement represents a block upper trian-
gular matrix. In this case, we have a continuous
realization of the so called treppeniteration.
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e Assume
Xy := Hamiltonian € gl(2n)
. _A()a NO
| Ko, —A]
K, N := symmetric € gl(n)
0, —KI(t
Pi(X () = K(t) O( >]
Then

a) | X, P;(X)] is Hamiltonian
b) ¢ is both orthogonal and sympletic
)

c) X (t) remains Hamiltonian
d) K(t) — 0ast — oo.

¢ The Hamiltonian eigenvalue problem for X prac-
tically becomes the eigenvalue problem for

tlggo A(t>'

o No explicit iterative scheme is known for the
Hamiltonian eigenvalue problem due to the lack
of knowledge of the structure of go(%) in the ab-
stract decomposition of exp(Xot).



