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Overview

• Construct a flow in the space of all n× n real ma-
trices.

• Every element in the flow has the same eigenvalues.

• The flow converges to a limit point which has a
specified structure.
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Notations

Gl(n) := {n× n real nonsingular matrices}
gl(n) := {n× n real matrices}
X0 := A given matrix ingl(n)

M(X0) := {g−1X0g|g ∈ Gl(n)}
[A,B] := AB −BA (Lie bracket)

T := Subspace of gl(n)

PT := Projection mapping from gl(n) to T
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Basic Form

• Generic flow:

dX

dt
= [X, k(X)].

• Basic relationship:

�
dg(t)

dt
= g(t)k(t)

g(0) = I

�
dX(t)

dt
= [X(t), k(t)]

X(0) = X0

�
X(t) = g(t)−1X0g(t).
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General Framework

• Subspace splitting of gl(n):

gl(n) = T1 + T2.

� T1 and T2 are subspaces of gl(n).

� This is a subspace decomposition only, not nec-
essarily a subalgebra decomposition of gl(n).

� Given T1, one may choose T2 = gl(n)−T1. This
is not necessarily a direct sum decomposition.
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Examples

• Toda flow:

� T1 = Subspace of skew symmetric matrices.
�

k(X) := (X−)− (X−)T .

• General flow:

� T1 = Arbitrary linear subspace.
�

k(X) := Projection of X onto subspace T1.

� Time-1 mapping of the solution still enjoys a
QR-type algorithm.

• Application to structured eigenvalue problems:

� A QR-type algorithm preserving the Hamilto-
nian structure exists for the Hamiltonian eigen-
value problem.
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Governing Flows

• The governing flow:

dX(t)

dt
:= [X(t), P1(X(t))]

X(0) := X0

� P1 := Projection onto T1.

• The associated flows:

dg1(t)

dt
:= g1(t)P1(X(t))

g1(0) := I

and

dg2(t)

dt
:= P2(X(t))g2(t)

g2(0) := I

� P2 := Projection onto T2.
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Basic Theorems

All flows enjoys three basic properties:

• Similarity Property

• Decomposition Property

• Reverse Property



QR-type Flows 31

Similarity Property

X(t) = g1(t)
−1X0g1(t) = g2(t)X0g2(t)

−1.

• Define Z(t) = g1(t)X(t)g1(t)
−1.

• Check

dZ

dt
=
dg1

dt
Xg−1

1 + g1
dX

dt
g−1

1 + g1X
dg−1

1

dt
= (g1P1(X))Xg−1

1

+g1(XP1(X)− P1(X)X)g−1
1

+g1X(−P1(X)g−1
1 )

= 0.

• Thus Z(t) = Z(0) = X(0) = X0.
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Decomposition Property

exp(tX0) = g1(t)g2(t).

• Trivially exp(X0t) satisfies the IVP

dY

dt
= X0Y, Y (0) = I.

• Define Z(t) = g1(t)g2(t).

• Then Z(0) = I and

dZ

dt
=
dg1

dt
g2 + g1

dg2

dt
= (g1P1(X))g2 + g1(P2(X)g2)

= g1Xg2

= X0Z (by Similarity Property).

• By the uniqueness theorem in the theory of ordinary
differential equations, Z(t) = exp(X0t).
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Reverse Property

exp(tX(t)) = g2(t)g1(t).

• By Decomposition Property,

g2(t)g1(t) = g1(t)
−1exp(X0t)g1(t)

= exp(g1(t)
−1X0g1(t)t)

= exp(X(t)t).
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Abstract QR-type Decomposition

• In Lie theory, corresponding to a Lie algebra decom-
position of gl(n), there is a Lie group decomposition
of Gl(n) in the neighborhood of I .

•We have shown, corresponding to a subspace de-
composition gl(n) = T1 + T2, every matrix in the
neighborhood of I can still be written as the prod-
uct of two nonsingular matrices, i.e.,

exp(X0t) = g1(t)g2(t).

• The product g1(t)g2(t) will be called the abstract
g1g2 decomposition of exp(X0t).
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Abstract QR-type Algorithm

• By setting t = 1 in Theorems 2 and 3, we have

exp(X(0)) = g1(1)g2(1)

exp(X(1)) = g2(1)g1(1).

• Since the differential equation forX(t) is autonomous,
the above phenomenon will occur at every feasible
integer time.

• Corresponding to the abstract g1g2 decomposition,
the above iterative process for all feasible integers
will be called the abstract g1g2 algorithm.
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Relation to Classical Algorithms

Case 1 Case 2 Case 3

T1 o(n) l(n) l(n) + d(n)/2

T2 r(n)+d(n) r(n)+d(n) r(n)+d(n)/2

k(t)=P1(X(t)) X−−X−T X− X−+X0/2

P2(X(t)) X++X0+X−T X++X0 X++X0/2

g1(t) Q(t)∈O(n) L(t)∈L(n) G(t)∈L(n)

g2(t) R(t)∈R(n) U(t)∈R(n) H(t)∈R(n)

Algorithm QR LU Cholesky

o(n) := {Skew-symmetric matrices in gl(n)}
O(n) := {Orthogonal matrices inGl(n)}
r(n) := {Strictly upper triangular matrices in gl(n)}
R(n) := {Upper triangular matrices inGl(n)}
l(n) := {Strictly lower triangular matrices in gl(n)}
L(n) := {Lower triangular matrices inGl(n)}
d(n) := {Diagonal matrices inGl(n)}

X+ := The strictly upper triangular matrix ofX

Xo := The diagonal matrix ofX

X− := The strictly lower triangular matrix ofX
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Nonclassical Examples

• Assume:

X0 := symmetric

∆ := Active index subset

X̂(t) := Portion of X(t) conforming to ∆

P1(X(t)) := X̂(t)− (X̂(t))T

P2(X(t)) := X(t)− P1(X(t))

Then:

For all (i, j) ∈ ∆, xij(t) −→ 0 as t −→∞.
� The above result suggests a way to produce (or

knock out) any prescribed pattern that is sym-
metric to the diagonal of a symmetric matrix.

� The above result may be interpreted as a gen-
eralization of the Schur decomposition theorem
(which knocks out the entire off-diagonal ele-
ments) for symmetric matrices.

�When ∆ = {(i, j)|1 ≤ j < i − 1 ≤ n − 1},
the dynamical system represents a continuous
tridiagonalization process.
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• Assume

X0 := general (distinct eigenvalues)

∆ ⊂ {(i, j)|1 ≤ j < i ≤ n}
:= a rectangular index subset

X̂(t) := Portion of X(t) conforming to ∆

P1(X(t)) := X̂(t)− (X̂(t))T

P2(X(t)) := X(t)− P1(X(t))

Then

For all (i, j) ∈ ∆, xij(t) −→ 0 as t −→∞.
� The above result remains true if ∆ is such that

its complement represents a block upper trian-
gular matrix. In this case, we have a continuous
realization of the so called treppeniteration.
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• Assume

X0 := Hamiltonian ∈ gl(2n)

:=

 A0, N0

K0, −AT
0


K,N := symmetric ∈ gl(n)

P1(X(t)) :=

 0, −K(t)
K(t), 0


Then

a) [X,P1(X)] is Hamiltonian

b) g1 is both orthogonal and sympletic

c) X(t) remains Hamiltonian

d) K(t) −→ 0 as t −→∞.
� The Hamiltonian eigenvalue problem forX0 prac-

tically becomes the eigenvalue problem for

lim
t→∞

A(t).

� No explicit iterative scheme is known for the
Hamiltonian eigenvalue problem due to the lack
of knowledge of the structure of g2(t) in the ab-
stract decomposition of exp(X0t).


