Chapter 2

QR-Type Flows

- Overview
- Basic form
- General framework
- Governing flows
- Basic theorems
- Abstract QR decompositions
- Abstract QR-type algorithms
- Relation to classical algorithms
- Nonclassical examples

- Construct a flow in the space of all $n \times n$ real matrices.
- Every element in the flow has the same eigenvalues.
- The flow converges to a limit point which has a specified structure.

$$Gl(n) := \{n \times n \text{ real nonsingular matrices}\}$$

$$gl(n) := \{n \times n \text{ real matrices}\}$$

$$X_0 := A \text{ given matrix } ingl(n)$$

$$M(X_0) := \{g^{-1}X_0g | g \in Gl(n)\}$$

$$[A, B] := AB - BA \text{ (Lie bracket)}$$

$$T := \text{Subspace of } gl(n)$$

$$P_T := \text{Projection mapping from } gl(n) \text{ to } T$$

Basic Form

• Generic flow:

$$\frac{dX}{dt} = [X, k(X)].$$

• Basic relationship:

 \diamond

$$\frac{dg(t)}{dt} = g(t)k(t)$$
$$g(0) = I$$

 \diamond

$$\frac{dX(t)}{dt} = [X(t), k(t)]$$
$$X(0) = X_0$$

 \diamond

$$X(t) = g(t)^{-1} X_0 g(t).$$

• Subspace splitting of gl(n):

$$gl(n) = T_1 + T_2.$$

- $\diamond T_1$ and T_2 are subspaces of gl(n).
- \diamond This is a subspace decomposition only, not necessarily a subalgebra decomposition of gl(n).
- \diamond Given T_1 , one may choose $T_2 = gl(n) T_1$. This is not necessarily a direct sum decomposition.

Examples

• Toda flow:

 $\diamond T_1 =$ Subspace of skew symmetric matrices. \diamond

$$k(X) := (X^{-}) - (X^{-})^{T}.$$

• General flow:

 $\diamond T_1 =$ Arbitrary linear subspace. \diamond

k(X) := Projection of X onto subspace T_1 .

 \diamond Time-1 mapping of the solution still enjoys a $QR\mbox{-type}$ algorithm.

• Application to structured eigenvalue problems:

 \diamond A QR -type algorithm preserving the Hamiltonian structure exists for the Hamiltonian eigenvalue problem.

Governing Flows

• The governing flow:

$$\frac{dX(t)}{dt} := [X(t), P_1(X(t))] \\ X(0) := X_0$$

 $\diamond P_1 :=$ Projection onto T_1 .

• The associated flows:

$$\frac{dg_1(t)}{dt} := g_1(t)P_1(X(t)) g_1(0) := I$$

and

$$\frac{dg_2(t)}{dt} := P_2(X(t))g_2(t) g_2(0) := I$$

 $\diamond P_2 :=$ Projection onto T_2 .

Basic Theorems

All flows enjoys three basic properties:

- Similarity Property
- Decomposition Property
- Reverse Property

Similarity Property

$$X(t) = g_1(t)^{-1} X_0 g_1(t) = g_2(t) X_0 g_2(t)^{-1}.$$

- Define $Z(t) = g_1(t)X(t)g_1(t)^{-1}$.
- Check

$$\frac{dZ}{dt} = \frac{dg_1}{dt} X g_1^{-1} + g_1 \frac{dX}{dt} g_1^{-1} + g_1 X \frac{dg_1^{-1}}{dt}
= (g_1 P_1(X)) X g_1^{-1}
+ g_1 (X P_1(X) - P_1(X) X) g_1^{-1}
+ g_1 X (-P_1(X) g_1^{-1})
= 0.$$

• Thus
$$Z(t) = Z(0) = X(0) = X_0$$
.

Decomposition Property

 $exp(tX_0) = g_1(t)g_2(t).$

• Trivially $exp(X_0t)$ satisfies the IVP

$$\frac{dY}{dt} = X_0 Y, Y(0) = I.$$

• Define $Z(t) = g_1(t)g_2(t)$.

• Then Z(0) = I and

$$\frac{dZ}{dt} = \frac{dg_1}{dt}g_2 + g_1\frac{dg_2}{dt}$$

= $(g_1P_1(X))g_2 + g_1(P_2(X)g_2)$
= g_1Xg_2
= X_0Z (by Similarity Property)

• By the uniqueness theorem in the theory of ordinary differential equations, $Z(t) = exp(X_0t)$.

Reverse Property

$$exp(tX(t)) = g_2(t)g_1(t).$$

• By Decomposition Property,

$$g_{2}(t)g_{1}(t) = g_{1}(t)^{-1}exp(X_{0}t)g_{1}(t)$$

= $exp(g_{1}(t)^{-1}X_{0}g_{1}(t)t)$
= $exp(X(t)t).$

Abstract QR-type Decomposition

- In Lie theory, corresponding to a Lie algebra decomposition of gl(n), there is a Lie group decomposition of Gl(n) in the neighborhood of I.
- We have shown, corresponding to a subspace decomposition $gl(n) = T_1 + T_2$, every matrix in the neighborhood of I can still be written as the product of two nonsingular matrices, i.e.,

$$exp(X_0t) = g_1(t)g_2(t).$$

• The product $g_1(t)g_2(t)$ will be called the abstract g_1g_2 decomposition of $exp(X_0t)$.

Abstract QR-type Algorithm

• By setting t = 1 in Theorems 2 and 3, we have

$$exp(X(0)) = g_1(1)g_2(1)$$

 $exp(X(1)) = g_2(1)g_1(1).$

- Since the differential equation for X(t) is autonomous, the above phenomenon will occur at every feasible integer time.
- Corresponding to the abstract g_1g_2 decomposition, the above iterative process for all feasible integers will be called the abstract g_1g_2 algorithm.

Relation to Classical Algorithms

	Case 1	Case 2	Case 3
T_1	o(n)	l(n)	l(n) + d(n)/2
T_2	$r(n)\!+\!d(n)$	r(n) + d(n)	r(n) + d(n)/2
$k(t) = P_1(X(t))$	$X^{-} - X^{-T}$	X^{-}	$X^{-} + X^{0}/2$
$P_2(X(t))$	$X^{+} + X^{0} + X^{-T}$	$X^{+} + X^{0}$	$X^{+} + X^{0}/2$
$g_1(t)$	$\mathbf{Q}(t)\!\in\!O(n)$	$\mathcal{L}(t)\!\in\!L(n)$	$\mathbf{G}(t)\!\in\!L(n)$
$g_2(t)$	$\mathbf{R}(t)\!\in\!R(n)$	$\mathbf{U}(t)\!\in\!R(n)$	$\mathbf{H}(t)\!\in\!R(n)$
Algorithm	QR	LU	Cholesky
0 ()			

- $o(n) := \{$ Skew-symmetric matrices in $gl(n) \}$
- $O(n) := \{ \text{Orthogonal matrices in } Gl(n) \}$
- $r(n) := \{ \text{Strictly upper triangular matrices in } gl(n) \}$
- $R(n) := \{ \text{Upper triangular matrices in } Gl(n) \}$
- $l(n) := \{ \text{Strictly lower triangular matrices in } gl(n) \}$
- $L(n) := \{ Lower triangular matrices in Gl(n) \}$
- $d(n) := \{ \text{Diagonal matrices in } Gl(n) \}$
- X^+ := The strictly upper triangular matrix of X
- $X^o :=$ The diagonal matrix of X
- X^- := The strictly lower triangular matrix of X

Nonclassical Examples

• Assume:

$$X_0 := \text{symmetric}$$

$$\Delta := \text{Active index subset}$$

$$\hat{X}(t) := \text{Portion of } X(t) \text{ conforming to } \Delta$$

$$P_1(X(t)) := \hat{X}(t) - (\hat{X}(t))^T$$

$$P_2(X(t)) := X(t) - P_1(X(t))$$

Then:

For all $(i, j) \in \Delta$, $x_{ij}(t) \longrightarrow 0$ as $t \longrightarrow \infty$.

- The above result suggests a way to produce (or knock out) any prescribed pattern that is symmetric to the diagonal of a symmetric matrix.
- The above result may be interpreted as a generalization of the Schur decomposition theorem (which knocks out the entire off-diagonal elements) for symmetric matrices.
- \diamond When $\Delta = \{(i, j) | 1 \leq j < i 1 \leq n 1\}$, the dynamical system represents a continuous tridiagonalization process.

• Assume

$$X_0 := \text{general (distinct eigenvalues)}$$

$$\Delta \subset \{(i, j) | 1 \le j < i \le n\}$$

$$:= \text{a rectangular index subset}$$

$$\hat{X}(t) := \text{Portion of } X(t) \text{ conforming to } \Delta$$

$$P_1(X(t)) := \hat{X}(t) - (\hat{X}(t))^T$$

$$P_2(X(t)) := X(t) - P_1(X(t))$$

Then

For all
$$(i, j) \in \Delta$$
, $x_{ij}(t) \longrightarrow 0$ as $t \longrightarrow \infty$.

 \diamond The above result remains true if Δ is such that its complement represents a block upper triangular matrix. In this case, we have a continuous realization of the so called treppeniteration. • Assume

$$X_0 := \text{Hamiltonian} \in gl(2n)$$
$$:= \begin{bmatrix} A_0, & N_0 \\ K_0, & -A_0^T \end{bmatrix}$$
$$K, N := \text{symmetric} \in gl(n)$$
$$P_1(X(t)) := \begin{bmatrix} 0, & -K(t) \\ K(t), & 0 \end{bmatrix}$$

Then

- a) $[X, P_1(X)]$ is Hamiltonian
- b) g_1 is both orthogonal and sympletic
- c) X(t) remains Hamiltonian

d)
$$K(t) \longrightarrow 0 \text{ as } t \longrightarrow \infty.$$

 \diamond The Hamiltonian eigenvalue problem for X_0 practically becomes the eigenvalue problem for

$$\lim_{t \to \infty} A(t).$$

 \diamond No explicit iterative scheme is known for the Hamiltonian eigenvalue problem due to the lack of knowledge of the structure of $g_2(t)$ in the abstract decomposition of $exp(X_0t)$.