Chapter 2

QR-Type Flows

- Overview
- Basic form
- General framework
- \bullet Governing flows
- Basic theorems
- \bullet Abstract QR decompositions
- Abstract QR -type algorithms
- Relation to classical algorithms
- Nonclassical examples
- \bullet Construct a flow in the space of all $n \times n$ real matrices.
- Every element in the flow has the same eigenvalues.
- The flow converges to a limit point which has a specified structure.

$$
Gl(n) := \{n \times n \text{ real nonsingular matrices}\}\
$$

\n
$$
gl(n) := \{n \times n \text{ real matrices}\}\
$$

\n
$$
X_0 := A \text{ given matrix } \text{ind}(n)
$$

\n
$$
M(X_0) := \{g^{-1}X_0g | g \in Gl(n)\}\
$$

\n
$$
[A, B] := AB - BA \text{ (Lie bracket)}
$$

\n
$$
T := \text{Subspace of } gl(n)
$$

\n
$$
P_T := \text{Projection mapping from } gl(n) \text{ to } T
$$

Basic Form

 \bullet Generic flow:

$$
\frac{dX}{dt} = [X, k(X)].
$$

 \bullet Basic relationship:

 \Diamond

$$
\frac{dg(t)}{dt} = g(t)k(t)
$$

$$
g(0) = I
$$

 \Diamond

$$
\frac{dX(t)}{dt} = [X(t), k(t)]
$$

$$
X(0) = X_0
$$

 \Diamond

$$
X(t) = g(t)^{-1} X_0 g(t).
$$

General Framework

• Subspace splitting of $gl(n)$:

$$
gl(n) = T_1 + T_2.
$$

- $\Diamond T_1$ and T_2 are subspaces of $gl(n)$.
- \Diamond This is a subspace decomposition only, not necessarily a subalgebra decomposition of $gl(n)$.
- \Diamond Given T_1 , one may choose $T_2 = gl(n) T_1$. This is not necessarily a direct sum decomposition.

Examples

• Toda flow:

 $\circ T_1$ = Subspace of skew symmetric matrices. ♦

$$
k(X) := (X^-) - (X^-)^T.
$$

- General flow:
	- $\Diamond T_1$ = Arbitrary linear subspace. ♦

 $k(X) := \text{Projection of } X \text{ onto subspace } T_1.$

 \circ Time-1 mapping of the solution still enjoys a QR-type algorithm.

• Application to structured eigenvalue problems:

 \Diamond A QR-type algorithm preserving the Hamiltonian structure exists for the Hamiltonian eigenvalue problem.

Governing Flows

• The governing flow:

$$
\frac{dX(t)}{dt} := [X(t), P_1(X(t))]
$$

$$
X(0) := X_0
$$

 $\Diamond P_1 := \text{Projection onto } T_1.$

 \bullet The associated flows:

$$
\frac{dg_1(t)}{dt} \, := \, g_1(t) P_1(X(t)) \\ g_1(0) \, := \, I
$$

and

$$
\frac{dg_2(t)}{dt} \, := \, P_2(X(t)) g_2(t) \\ g_2(0) \, := \, I
$$

 $\diamond P_2 := \text{Projection onto } T_2.$

Basic Theorems

All flows enjoys three basic properties:

- Similarity Property
- Decomposition Property
- \bullet Reverse Property

Similarity Property

$$
X(t) = g_1(t)^{-1} X_0 g_1(t) = g_2(t) X_0 g_2(t)^{-1}.
$$

- Define $Z(t) = g_1(t)X(t)g_1(t)^{-1}$.
- \bullet Check

$$
\frac{dZ}{dt} = \frac{dg_1}{dt} X g_1^{-1} + g_1 \frac{dX}{dt} g_1^{-1} + g_1 X \frac{dg_1^{-1}}{dt}
$$

= $(g_1 P_1(X)) X g_1^{-1}$
+ $g_1(X P_1(X) - P_1(X)X) g_1^{-1}$
+ $g_1 X(-P_1(X)g_1^{-1})$
= 0.

• Thus
$$
Z(t) = Z(0) = X(0) = X_0
$$
.

Decomposition Property

 $exp(tX_0) = g_1(t)g_2(t).$

• Trivially $exp(X_0 t)$ satisfies the IVP

$$
\frac{dY}{dt} = X_0 Y, Y(0) = I.
$$

• Define $Z(t) = g_1(t)g_2(t)$.

• Then $Z(0) = I$ and

$$
\frac{dZ}{dt} = \frac{dg_1}{dt}g_2 + g_1 \frac{dg_2}{dt}
$$

= $(g_1 P_1(X))g_2 + g_1(P_2(X)g_2)$
= $g_1 X g_2$
= $X_0 Z$ (by Similarity Property).

• By the uniqueness theorem in the theory of ordinary differential equations, $Z(t) = exp(X_0 t)$.

Reverse Property

$$
exp(tX(t)) = g_2(t)g_1(t).
$$

• By Decomposition Property,

$$
g_2(t)g_1(t) = g_1(t)^{-1} exp(X_0 t)g_1(t)
$$

= $exp(g_1(t)^{-1} X_0 g_1(t) t)$
= $exp(X(t) t)$.

Abstract QR-type Decomposition

- In Lie theory, corresponding to a Lie algebra decomposition of $gl(n)$, there is a Lie group decomposition of $Gl(n)$ in the neighborhood of I.
- We have shown, corresponding to a subspace decomposition $q_l(n) = T_1 + T_2$, every matrix in the neighborhood of I can still be written as the product of two nonsingular matrices, i.e.,

$$
exp(X_0t) = g_1(t)g_2(t).
$$

• The product $g_1(t)g_2(t)$ will be called the abstract g_1g_2 decomposition of $exp(X_0t)$.

Abstract QR-type Algorithm

• By setting $t = 1$ in Theorems 2 and 3, we have

$$
exp(X(0)) = g_1(1)g_2(1)
$$

$$
exp(X(1)) = g_2(1)g_1(1).
$$

- Since the differential equation for $X(t)$ is autonomous, the above phenomenon will occur at every feasible integer time.
- Corresponding to the abstract g_1g_2 decomposition, the above iterative process for all feasible integers will be called the abstract g_1g_2 algorithm.

Relation to Classical Algorithms

- $o(n) := \{$ Skew-symmetric matrices in $gl(n)$ }
- $O(n) := {\text{Orthogonal matrices in } Gl(n)}$
- $r(n) := \{ \text{Strictly upper triangular matrices in } gl(n) \}$
- $R(n) := \{ \text{Upper triangular matrices in } Gl(n) \}$
- $l(n) := \{ \text{Strictly lower triangular matrices in } gl(n) \}$
- $L(n) := \{$ Lower triangular matrices in $Gl(n)$ }
- $d(n) := \{ \text{Diagonal matrices in } Gl(n) \}$
- X^+ := The strictly upper triangular matrix of X
- X° := The diagonal matrix of X
- X^- := The strictly lower triangular matrix of X

Nonclassical Examples

• Assume:

$$
X_0 :=
$$
 symmetric
\n
$$
\Delta :=
$$
 Active index subset
\n
$$
\hat{X}(t) :=
$$
 Portion of $X(t)$ conforming to Δ
\n
$$
P_1(X(t)) := \hat{X}(t) - (\hat{X}(t))^T
$$

\n
$$
P_2(X(t)) := X(t) - P_1(X(t))
$$

Then:

For all $(i, j) \in \Delta$, $x_{ij}(t) \longrightarrow 0$ as $t \longrightarrow \infty$.

- The above result suggests a way to produce (or knock out) any prescribed pattern that is symmetric to the diagonal of a symmetric matrix.
- \Diamond The above result may be interpreted as a generalization of the Schur decomposition theorem (which knocks out the entire off-diagonal elements) for symmetric matrices.
- \diamond When $\Delta = \{(i, j)|1 \leq j \leq i 1 \leq n 1\},\$ the dynamical system represents a continuous tridiagonalization process.

• Assume

$$
X_0 := \text{general (distinct eigenvalues)}
$$

\n
$$
\Delta \subset \{(i, j) | 1 \le j < i \le n\}
$$

\n
$$
:= \text{a rectangular index subset}
$$

\n
$$
\hat{X}(t) := \text{Portion of } X(t) \text{ conforming to } \Delta
$$

\n
$$
P_1(X(t)) := \hat{X}(t) - (\hat{X}(t))^T
$$

\n
$$
P_2(X(t)) := X(t) - P_1(X(t))
$$

Then

For all
$$
(i, j) \in \Delta
$$
, $x_{ij}(t) \longrightarrow 0$ as $t \longrightarrow \infty$.

 \Diamond The above result remains true if Δ is such that its complement represents a block upper triangular matrix. In this case, we have a continuous realization of the so called treppeniteration.

• Assume

$$
X_0 := \text{Hamiltonian } \in gl(2n)
$$

$$
:= \begin{bmatrix} A_0, & N_0 \\ K_0, & -A_0^T \end{bmatrix}
$$

$$
K, N := \text{symmetric } \in gl(n)
$$

$$
P_1(X(t)) := \begin{bmatrix} 0, & -K(t) \\ K(t), & 0 \end{bmatrix}
$$

Then

- a) $[X, P_1(X)]$ is Hamiltonian
- b) g_1 is both orthogonal and sympletic
- c) $X(t)$ remains Hamiltonian

d)
$$
K(t) \longrightarrow 0
$$
 as $t \longrightarrow \infty$.

 \Diamond The Hamiltonian eigenvalue problem for X_0 practically becomes the eigenvalue problem for

$$
\lim_{t\to\infty}A(t).
$$

 \Diamond No explicit iterative scheme is known for the Hamiltonian eigenvalue problem due to the lack of knowledge of the structure of $g_2(t)$ in the abstract decomposition of $exp(X_0t)$.