Chapter 3

Homotopy Method for λ -Matrix Problem

- Overview
- Basic ideas
- Preliminary facts
- Homotopy method
- Numerical experiment

Overview

• The problem:

 $\diamond \text{ Given } A_0, A_1, \dots, A_k \in C^{n \times n}, \text{ define}$ $P(\lambda) := A_k \lambda^k + A_{k-1} \lambda^{k-1} + \dots + A_1 \lambda + A_0.$ $\diamond \text{ Find } \lambda \in C \text{ and } x \in C^n \text{ such that}$

$$P(\lambda)x = 0.$$

• Special cases:

♦ Regular eigenvalue problem:

$$\lambda x = Ax.$$

 \diamond Generalized eigenvalue problem:

 $\lambda Bx = Ax.$

- Solving the linearized problem:
 - \diamond Can make use of existing software.
 - \diamond Increase the size considerably.
- Direct iteration:
 - \diamond Subspace iteration global but slow
 - \diamond Newton-type iteration fast but local
- Reducing to the canonical form:
 - \diamond Need polynomial root solver.
 - \diamond Ill-conditioned.
- Homotopy method:
 - \diamond Maybe costly in tracing curves.
 - \diamond Can follow curves simultaneously.
 - \diamond Guarantee to reach all isolated eigenpairs.
 - \diamond Matrix structure is respected.

Basic Ideas

• Homotopy equation:

$$H(x,t) = (1-t)g(x) + tf(x) = 0.$$

• Zero set:

$$H^{-1}(0) = \{(x,t) | H(x,t) = 0\}.$$

- Practical concerns:
 - ♦ Need to ensure $H^{-1}(0)$ is a 1-dimensional manifold.
 - \diamond Need to ensure the curve extens from t = 0 to t = 1.
- Curve tracing:

$$\begin{bmatrix} D_x H & D_t H \end{bmatrix} \begin{bmatrix} \frac{dx}{ds} \\ \frac{dt}{ds} \end{bmatrix} = 0$$

$$x(0) = \text{zero}(s) \text{ of } g(x)$$

$$t(0) = 0.$$

A Simple Example

• The problem:

$$\lambda x = Ax$$

$$x^{T}x = 1$$

$$A := \text{real, symmetric and tridiagonal}$$

♦ A nonlinear (polynomial) system in n + 1 unknowns x and λ .

 $\diamond \#$ of solutions \leq Bezout number $= 2^{n+1}$.

• The homotopy:

$$H : R^{n} \times R \times R \longrightarrow R^{n} \times R$$
$$H(x, \lambda, t) := \left([D + t(A - D)]x - \lambda x, \frac{1 - x^{T}x}{2} \right)$$
$$D := \text{diagonal with distinct elements.}$$

- Existence of the curve:
 - \diamond Rank of

$$D_{(x,\lambda)} = \begin{bmatrix} D + t(A - D) - \lambda, & -x \\ -x^T, & 0 \end{bmatrix}$$

is of rank n + 1.

- ♦ Implicit function theorem $\Rightarrow (x, \lambda)$ is a function of t.
- Extension of the curve:
 - \diamond Gershgorin's theorem \Rightarrow Boundedness of the curves.
 - \diamond Curves must extend to t = 1.

Preliminary Facts

- Regularity and canonical form
- Resultant theorem
- Perturbation theorem
- Rank property

Regularity and Canonical Form

- A_k is nonsingular $\Rightarrow P(\lambda)$ is regular, i.e., has nk eigenvalues.
- $P(\lambda)$ is regular \Rightarrow There exist $E(\lambda)$ and $F(\lambda)$ such that

$$E(\lambda)P(\lambda)F(\lambda) = \operatorname{diag}(a_1(\lambda),\ldots,a_n(\lambda)).$$

- $\diamond \det(E(\lambda)), \det(F(\lambda)) =$ nonzero constants.
- $\diamond a_i(\lambda)$ is a monic polynomial.
- $\diamond a_i(\lambda)$ is unique.
- $\diamond a_i(\lambda)|a_{i+1}(\lambda).$

• Resultant of two polynomials:

$$R = R(a_0, \dots, a_n, b_0, \dots, b_m)$$

$$= \det \begin{bmatrix} a_0 & a_1 & \dots & a_n & 0 & \dots & 0 \\ 0 & a_0 & a_1 & & a_n & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots & & \ddots & \ddots & \vdots \\ 0 & \dots & a_0 & a_1 & \dots & a_n \\ b_0 & b_1 & \dots & 0 & \dots & \\ 0 & b_0 & b_1 & \dots & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots & & \\ 0 & \dots & b_0 & b_1 & \dots & b_m \end{bmatrix}$$

$$\diamond f(x) = a_0 + a_1 x + \dots + a_n x^n.$$

$$\diamond g(x) = b_0 + b_1 x + \dots + b_m x^m.$$

• f and g have common non-constant factor $\Leftrightarrow R = 0$.

Perturbation Theorem

• There exist real numbers d_1, \ldots, d_n such that $p(\lambda) := \det(P(\lambda) - D)$ has no multiple roots.

 $\diamond D := \operatorname{diag}(d_1, \ldots, d_n).$

• The set

 $\{(d_1,\ldots,d_n)|P(\lambda)-D \text{ has multiple eigenvalues}\}$

is of complex codimension 1.

• With probability one the matrix $P(\lambda) - D$ has distinct eigenvalues.

Rank Property

• $P(\lambda)$ has nk distinct eigenvalues and $P(\lambda_j)x_j = 0$ \Rightarrow

$$Q(x_j, \lambda_j) := [P(\lambda_j), P'(\lambda_j)x_j]$$

is of complex rank n.

- Identify a linear transformation $C^{n+1} \longrightarrow C^n$ as a transformation $R^{2n+2} \longrightarrow R^{2n}$:
 - \diamond Replace each component, say $x_j = a_j + ib_j$, of the vector by $[a_1, b_1]^T$.

 \diamond Replace each component, say z = a + ib, of the transformation matrix by $\begin{bmatrix} a, -b \\ b, a \end{bmatrix}$.

$$Q \in C^{n \times (n+1)} \hookrightarrow \hat{Q} \in R^{2n \times (2n+2)}.$$

• If $P(\lambda)x = 0$, then

$$M(x,\lambda) := \begin{bmatrix} \hat{Q}(x_j,\lambda_j) \\ a_1, b_1, a_2, \dots, a_n, b_n, 0, 0 \end{bmatrix}$$

is of real rank 2n + 1 in $\mathbb{R}^{(2n+1)\times(2n+2)}$.

Homotopy Method

• Notation:

$$P(\lambda) = A_k \lambda^k + A_{k-1} \lambda^{k-1} + \ldots + A_0$$

$$Q(\lambda) = cI\lambda^k - D$$

$$R(\lambda, t, c, D) = (1 - t)Q(\lambda) + tP(\lambda)$$

$$D = \text{diag}(d_1, \ldots, d_n)$$

$$c, d_1, \ldots, d_n = \text{ complex numbers}$$

• Control of regularity:

$$R(\lambda, t, c, D) = [(1 - t)cI + tA_k]\lambda^k + \dots$$

♦ Choose d from an open dense set such that $[(1-t)cI + tA_k]$ is nonsingular for $0 \le t < 1$.

Homotopy Method

• The homotopy:

$$\begin{array}{rcl} H & : & C^n \times C \times [0,1) \longrightarrow C^n \times C \\ H(x,\lambda,t) & := \\ \begin{bmatrix} R(\lambda,t,c,D)x \\ & \frac{x^*x-1}{2} \end{bmatrix}. \end{array}$$

• Initial values:

$$e_i$$
 = The standard *i*-th unit vector,
 λ_{ij} = The *j*-th complex root of $(\frac{d_i}{d})^{1/k}$.
 $\diamond i = 1, \dots, n \text{ and } j = 1, \dots, k.$
 $\diamond H(e_i, \lambda_{ij}, 0) = 0.$

There exists an open, dense, full measure subset $U \subset C^n$ such that, for $(d_1, \ldots, d_n) \in U$ and each initial point $y_{ij} := (e_i, \lambda_{ij}, 0)$, the connected component $C(y_{ij})$ of y_{ij} in $H^{-1}(0)$, when identified as a subset in $R^{2n} \times R^2 \times R$, has the following properties:

- $C(y_{ij})$ is a real analytic submanifold with real dimension 2.
- The intersection of $C(y_{ij})$ with each hyperplane $t \equiv$ constant $\in [0, 1)$ is a unit circle centered $(0, \lambda) \in$ $R^{2n} \times R$ for some λ .
- Manifolds $C(y_{ij})$ corresponding to different initial points do not intersect for $t \in [0, 1)$.
- Each manifold $C(y_{ij})$ is bounded for $t \in [0, 1)$.

Computation

• It is a tube:

$$H: R^{2n} \times R^2 \times R \longrightarrow R^{2n} \times R.$$

♦ $C(y_{ij})$ is a 2-dimensional tube with unit radius at each cross-section $t \equiv \text{constant}$.

- Need a vector field on the tube:
 - ♦ The path can be parametrized by the variable t.
 ♦ Define vector field (x, λ, 1) on H⁻¹(0) by

$$\begin{split} M(x,\lambda,t) \begin{bmatrix} \dot{x} \\ \dot{\lambda} \end{bmatrix} &= \begin{bmatrix} (Q(\lambda) - P(\lambda))x \\ 0 \end{bmatrix}, \\ & [ix^T,0] \begin{bmatrix} \dot{x} \\ \dot{\lambda} \end{bmatrix} = 0. \end{split}$$

- \triangleright First equation is necessary for being tangent.
- Second equation means the vector field is perpendicular to the circle of intersection.

• Observe:

$$\begin{bmatrix} M(x,\lambda,t) \\ ix^{T},0 \end{bmatrix} = \begin{bmatrix} \hat{Q}(x,\lambda,t) \\ a_{1}, b_{1},\dots,a_{n}, b_{n}, 0, 0 \\ -b_{1}, a_{1},\dots,-b_{n}, a_{n}, 0, 0 \end{bmatrix}$$
$$\hookrightarrow \begin{bmatrix} R(\lambda,t,c,D), \ R'(\lambda,t,c,D)x \\ x^{*}, 0 \end{bmatrix}$$

• The initial value problem in $C^n \times C$:

$$\begin{bmatrix} R(\lambda,t,c,D), R'(\lambda,t,c,D)x \\ x^*, & 0 \end{bmatrix} \begin{bmatrix} \frac{dx}{dt} \\ \frac{d\lambda}{dt} \end{bmatrix} = \begin{bmatrix} (Q(\lambda) - P(\lambda))x \\ 0 \end{bmatrix}, \\ x(0) = e_i \\ \lambda(0) = \lambda_{ij}$$

- $\diamond i = 1, ..., n \text{ and } j = 1, ..., k.$
- Parallel computation:
 - \diamond Homotopy curves are independent of each other.
 - \diamond Can integrate simultaneously.
- Sparsity preservation: $R(\lambda, t, c, D)$ does not destroy the matrix structure of the coefficients in $P(\lambda)$.