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Overview

e Least squares approximations for various types of
real and symmetric matrices subject to spectral
constraints share a common structure.

e The projected gradient can be formulated explicitly.
e A descent flow can be followed numerically.

e The procedure can be extended to general matrices
subject to singular value constraints.
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General Framework

1
Minimize F(X) := §||X — P(X)|?
Subject to X € M(A)

S(n) := {All real symmetric matrices}
O(n) :

| X|| := Frobenius matrix norm of X

{All real orthogonal matrices}

A = A given matrix in S(n)
M(A) = {Q"AQ|Q € O(n)}

V' = A single matrix or a subspace in S(n)
P(X) := The projection of X into V
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Special Cases

e Problem A:

¢ Find the least squares approximation of a given
symmetric matrix subject to a prescribed set of
eigenvalues.

e Problem B:

¢ Construct a symmetric Toeplitz matrix that has
a prescribed set of eigenvalues.

e Problem C:

¢ Calculate the eigenvalue of a given symmetric
matrix.
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Reformulation

e Rewrite the problem in terms of the coordinate vari-

able Q:

Minimize F(Q) = ;(QT/\Q — P(Q'AQ),

Q'AQ — P(Q'AQ))
Subject to QTQ = I

o (A, B) = trace(AB') is the Frobenius inner
product.
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Geometry of O(n)

e The set O(n) is a regular surface.

e The tangent space of O(n) at any orthogonal ma-
trix () is given by

To0(n) = QK(n)

K(n) = {All skew-symmetric matrices}.

e The normal space of O(n) at any orthogonal matrix
() is given by

NoO(n) = QS(n).
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Projected Gradient

e The Fréchet Derivative of F' at a general matrix A
acting on B:

F'(A)B = 2(AA(ATAA — P(ATAA)), B).
e The gradient of F' at a general matrix A:
VF(A) = 2AA(ATAA — P(ATAA)).
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The Projected Gradient

e A splitting of R™*™:
R"™" = TpO(n)+ NgO(n)
= QK(n) +QS(n).

e Any X € R™" has a unique orthogonal splitting:

X = @[Q"X-X"Q)+ Q"X +XTQ)}.

e The gradient V F(Q)) can be projected into the tan-
gent space easily:

1

9@ = Q|,Q'VFQ) - VFQIQ)

= Q[P(Q"AQ),Q"AQ).
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Isospectral Descent Flow

e A descent flow on the manifold O(n):

™ - QIQ"AQ. PQ"AQ)]

e A descent flow on the manifold M (A):

X2 i
= TAQ+ QA

= [X X P<X>H



66 Lecture 4

Second Order Derivative

e Eixtend the projected gradient g to the function
G(Z):= Z|P(Z'\Z), Z' AZ]
for general matrix Z.

e The Fréchet derivative of G':

G'(Z)H = HIP(Z'\Z), Z" A7
+ Z|P(Z'AZ), Z"ANH + H'AZ]
+ Z[P(Z'AZ)(Z'AH + H'AZ), Z' \Z).

e The projected Hessian at a critical point X = QTAQ
for the tangent vector QK with K € K(n) is de-
scribed explicitly by the quadratic form:

(G'(Q)QK,QK) =
([P(X), K] - P(X)[X, K], [X, K]).
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Least Squares Matrix Approximation

e Given a symmetric matrix IV, find its least squares
approximation whose eigenvalues are { A1, ..., A, }.

e Setup:

o N :=diag{A1,..., \u}.

o The projection is P(X) = N.
e The projected gradient:

9(Q) = Q[N,Q"AQ].

e The descent flow:

dX
E — [Xa [Xv NH

X(0) = A.
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Second Order Condition

e Assume

¢ The given eigenvalues are A\; > ... > \,.
¢ The eigenvalues of NV are pq > ... > .
o @ is a critical point on O(n) and define

X = Q'AQ
E = QNQ'.

e The first order condition:
N, X]|=0
¢ E must be a diagonal matrix.
¢ E must be a permutation of 1, ..., .

e The projected Hessian:
(('(QQK,QK) = (IN,K|.[X.K))
= (FK — KE,AK — KA)
= 232 (A = A)(es — ¢))k7).
i<j
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Significance

e If a matrix () is optimal, then:

o Columns of Q1 = [qi, ..., g,] must be the nor-
malized eigenvectors of NV corresponding in the
order to 41, ..., fiy.

¢ The solution is unique.

¢ The solution is given by
X =Maa’ + ..+ Mg’ -

e We have reproved the Wielandt-Hoffman theorem.

e The dynamics in the problem enjoys a special sort-
Ing property:.

¢ Can be applied to data matching and a variety of
combinatorial optimization problems, including

the LP problem.
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Inverse Toeplitz Eigenvalue Problem

e Construct a symmetric Toeplitz matrix whose eigen-
values are {Aq,..., A}

e Setup:

¢ The set 7 of all symmetric Toeplitz matrices
forms a linear subspace with a natural basis Ey, ..., F,.

o A :=diag{A1,..., A}

¢ The projection of any matrix X is easy:

P(X) = §1<X, E)E,.

e The projected gradient:
9(Q) = Q[P(QTAQ), QT AQ)].

e The descent flow:

dX
= XX PY)]

X (0) = Anything but diagonals in M (A).
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Significance

e The descent flow approach offers a globally conver-
gent method for solving the inverse Toeplitz eigen-
value problem.

e A stable critical point may not be Toeplitz.

e The second order condition has not be analyzed yet.
Further work is needed.
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Symmetric Eigenvalue Problem

e Setup:
o A = X, the matrix whose eigenvalues are to be
found.
o V' = the subspace of all diagonal matrices.
o P(X) = diag(X).
e The objective is the same as that of the Jacobi

method, i.e., to minimize the off-diagonal elements.

e The descent flow:

dX -
— = X [X, diag(X))]

X(0) = X,.
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e Let X be a critical point. Then
o If X is a diagonal matrix, then X is a global
minimizer.
o If X is not a diagonal matrix but diag(X) is a

scalar matrix, then X is a global maximizer.

o If X is not a diagonal matrix and diag(X) is not
a scalar matrix, then X is a saddle point.



