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Overview

• Least squares approximations for various types of
real and symmetric matrices subject to spectral
constraints share a common structure.

• The projected gradient can be formulated explicitly.

• A descent flow can be followed numerically.

• The procedure can be extended to general matrices
subject to singular value constraints.
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General Framework

Minimize F (X) :=
1

2
||X − P (X)||2

Subject to X ∈ M(Λ)

S(n) := {All real symmetric matrices}
O(n) := {All real orthogonal matrices}
||X|| := Frobenius matrix norm of X

Λ := A given matrix in S(n)

M(Λ) := {QTΛQ|Q ∈ O(n)}
V := A single matrix or a subspace in S(n)

P (X) := The projection of X into V
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Special Cases

• Problem A:

� Find the least squares approximation of a given
symmetric matrix subject to a prescribed set of
eigenvalues.

• Problem B:

� Construct a symmetric Toeplitz matrix that has
a prescribed set of eigenvalues.

• Problem C:

� Calculate the eigenvalue of a given symmetric
matrix.
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Reformulation

• Rewrite the problem in terms of the coordinate vari-
able Q:

Minimize F (Q) :=
1

2
〈QTΛQ− P (QTΛQ),

QTΛQ− P (QTΛQ)〉
Subject to QTQ = I

� 〈A,B〉 = trace(ABT ) is the Frobenius inner
product.
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Geometry of O(n)

• The set O(n) is a regular surface.

• The tangent space of O(n) at any orthogonal ma-
trix Q is given by

TQO(n) = QK(n)

�
K(n) = {All skew-symmetric matrices}.

• The normal space ofO(n) at any orthogonal matrix
Q is given by

NQO(n) = QS(n).
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Projected Gradient

• The Fréchet Derivative of F at a general matrix A
acting on B:

F ′(A)B = 2〈ΛA(ATΛA− P (ATΛA)), B〉.

• The gradient of F at a general matrix A:

∇F (A) = 2ΛA(ATΛA− P (ATΛA)).
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The Projected Gradient

• A splitting of Rn×n:

Rn×n = TQO(n) +NQO(n)

= QK(n) +QS(n).

• Any X ∈ Rn×n has a unique orthogonal splitting:

X = Q


1

2
(QTX−XTQ)+

1

2
(QTX+XTQ)

 .

• The gradient∇F (Q) can be projected into the tan-
gent space easily:

g(Q) = Q


1

2
(QT∇F (Q)−∇F (Q)TQ)


= Q[P (QTΛQ), QTΛQ].
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Isospectral Descent Flow

• A descent flow on the manifold O(n):

dQ

dt
= Q[QTΛQ,P (QTΛQ)].

• A descent flow on the manifold M(Λ):

dX

dt
=
dQT

dt
ΛQ +QTΛ

dQ

dt
= [X, [X,P (X)]].
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Second Order Derivative

• Extend the projected gradient g to the function

G(Z) := Z[P (ZTΛZ), ZTΛZ]

for general matrix Z.

• The Fréchet derivative of G:

G′(Z)H = H[P (ZTΛZ), ZTΛZ]

+ Z[P (ZTΛZ), ZTΛH +HTΛZ]

+ Z[P ′(ZTΛZ)(ZTΛH +HTΛZ), ZTΛZ].

• The projected Hessian at a critical pointX = QTΛQ
for the tangent vector QK with K ∈ K(n) is de-
scribed explicitly by the quadratic form:

〈G′(Q)QK,QK〉 =

〈[P (X),K]− P ′(X)[X,K], [X,K]〉.
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Least Squares Matrix Approximation

• Given a symmetric matrix N , find its least squares
approximation whose eigenvalues are {λ1, . . . , λn}.
• Setup:

� Λ := diag{λ1, . . . , λn}.
� The projection is P (X) = N .

• The projected gradient:

g(Q) = Q[N,QTΛQ].

• The descent flow:

dX

dt
= [X, [X,N ]]

X(0) = Λ.



68 Lecture 4

Second Order Condition

• Assume

� The given eigenvalues are λ1 > . . . > λn.

� The eigenvalues of N are µ1 > . . . > µn.

� Q is a critical point on O(n) and define

X := QTΛQ

E := QNQT.

• The first order condition:

[N,X ] = 0

� E must be a diagonal matrix.

� E must be a permutation of µ1, . . . , µn.

• The projected Hessian:

〈G′(Q)QK,QK〉 = 〈[N,K], [X,K]〉
= 〈EK̂ − K̂E,ΛK̂ − K̂Λ〉
= 2

∑
i<j

(λi − λj)(ei − ej)k̂2
ij.
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Significance

• If a matrix Q is optimal, then:

� Columns of QT = [q1, . . . , qn] must be the nor-
malized eigenvectors of N corresponding in the
order to µ1, . . . , µn.

� The solution is unique.

� The solution is given by

X = λ1q1q1
T + . . . + λnqnqn

T .

•We have reproved the Wielandt-Hoffman theorem.

• The dynamics in the problem enjoys a special sort-
ing property.

� Can be applied to data matching and a variety of
combinatorial optimization problems, including
the LP problem.
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Inverse Toeplitz Eigenvalue Problem

• Construct a symmetric Toeplitz matrix whose eigen-
values are {λ1, . . . , λn}
• Setup:

� The set T of all symmetric Toeplitz matrices
forms a linear subspace with a natural basisE1, . . . , En.

� Λ := diag{λ1, . . . , λn}.
� The projection of any matrix X is easy:

P (X) =
n∑
i=1
〈X,Ei〉Ei.

• The projected gradient:

g(Q) = Q[P (QTΛQ), QTΛQ].

• The descent flow:

dX

dt
= [X, [X,P (X)]]

X(0) = Anything but diagonals in M(Λ).
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Significance

• The descent flow approach offers a globally conver-
gent method for solving the inverse Toeplitz eigen-
value problem.

• A stable critical point may not be Toeplitz.

• The second order condition has not be analyzed yet.
Further work is needed.



72 Lecture 4

Symmetric Eigenvalue Problem

• Setup:

� Λ = X0, the matrix whose eigenvalues are to be
found.

� V = the subspace of all diagonal matrices.

� P (X) = diag(X).

• The objective is the same as that of the Jacobi
method, i.e., to minimize the off-diagonal elements.

• The descent flow:

dX

dt
= [X, [X, diag(X)]]

X(0) = X0.
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• Let X be a critical point. Then

� If X is a diagonal matrix, then X is a global
minimizer.

� If X is not a diagonal matrix but diag(X) is a
scalar matrix, then X is a global maximizer.

� If X is not a diagonal matrix and diag(X) is not
a scalar matrix, then X is a saddle point.


