Chapter 4

Spectrally Constrained Problems

- Overview
- General framework
- Special cases
- Reformulation
- Geometry of $\mathcal{O}(n)$
- Projected gradient
- Isospectral descent flow
- Second order condition
- Least squares matrix approximation
- Inverse eigenvalue problem
- Symmetric eigenvalue problem
- Least squares approximations for various types of real and symmetric matrices subject to spectral constraints share a common structure.
- The projected gradient can be formulated explicitly.
- A descent flow can be followed numerically.
- The procedure can be extended to general matrices subject to singular value constraints.

General Framework

Minimize
$$
F(X) := \frac{1}{2} ||X - P(X)||^2
$$

Subject to $X \in M(\Lambda)$

 $S(n) := \{$ All real symmetric matrices $\}$ $O(n) := \{$ All real orthogonal matrices $\}$ $||X|| :=$ Frobenius matrix norm of X Λ := A given matrix in $S(n)$ $M(\Lambda) := \{Q^T \Lambda Q | Q \in O(n)\}\$ $V := A$ single matrix or a subspace in $S(n)$ $P(X) :=$ The projection of X into V

Special Cases

- Problem A:
	- \Diamond Find the least squares approximation of a given symmetric matrix subject to a prescribed set of eigenvalues.
- Problem B:
	- Construct a symmetric Toeplitz matrix that has a prescribed set of eigenvalues.
- Problem C:
	- \Diamond Calculate the eigenvalue of a given symmetric matrix.

 \bullet Rewrite the problem in terms of the coordinate variable Q:

Minimize
$$
F(Q) := \frac{1}{2} \langle Q^T \Lambda Q - P(Q^T \Lambda Q),
$$

\n $Q^T \Lambda Q - P(Q^T \Lambda Q) \rangle$
\nSubject to $Q^T Q = I$

 $\Diamond \langle A, B \rangle = \text{trace}(AB^T)$ is the Frobenius inner product.

Geometry of $\mathcal{O}(n)$

- The set $O(n)$ is a regular surface.
- The tangent space of $O(n)$ at any orthogonal matrix Q is given by

$$
T_QO(n) = QK(n)
$$

♦

 $K(n) = \{$ All skew-symmetric matrices $\}.$

• The normal space of $O(n)$ at any orthogonal matrix Q is given by

$$
N_QO(n) = QS(n).
$$

Projected Gradient

 \bullet The Fréchet Derivative of F at a general matrix A acting on B :

$$
F'(A)B = 2\langle \Lambda A(A^T \Lambda A - P(A^T \Lambda A)), B \rangle.
$$

• The gradient of F at a general matrix A :

$$
\nabla F(A) = 2\Lambda A(A^T \Lambda A - P(A^T \Lambda A)).
$$

The Projected Gradient

• A splitting of $R^{n \times n}$:

$$
R^{n \times n} = T_Q O(n) + N_Q O(n)
$$

= $QK(n) + QS(n)$.

• Any $X \in R^{n \times n}$ has a unique orthogonal splitting:

$$
X = Q\left\{\frac{1}{2}(Q^TX - X^TQ) + \frac{1}{2}(Q^TX + X^TQ)\right\}.
$$

• The gradient $\nabla F(Q)$ can be projected into the tangent space easily:

$$
g(Q) = Q\left\{\frac{1}{2}(Q^T \nabla F(Q) - \nabla F(Q)^T Q)\right\}
$$

= $Q[P(Q^T \Lambda Q), Q^T \Lambda Q].$

Isospectral Descent Flow

 \bullet A descent flow on the manifold $O(n)$:

$$
\frac{dQ}{dt} = Q[Q^T \Lambda Q, P(Q^T \Lambda Q)].
$$

 \bullet A descent flow on the manifold $M(\Lambda)$:

$$
\frac{dX}{dt} = \frac{dQ^T}{dt} \Lambda Q + Q^T \Lambda \frac{dQ}{dt}
$$

$$
= [X, [X, P(X)]].
$$

• Extend the projected gradient g to the function

$$
G(Z) := Z[P(Z^T \Lambda Z), Z^T \Lambda Z]
$$

for general matrix Z.

• The Fréchet derivative of G :

$$
G'(Z)H = H[P(Z^T \Lambda Z), Z^T \Lambda Z]
$$

+ Z[P(Z^T \Lambda Z), Z^T \Lambda H + H^T \Lambda Z]
+ Z[P'(Z^T \Lambda Z)(Z^T \Lambda H + H^T \Lambda Z), Z^T \Lambda Z].

• The projected Hessian at a critical point $X = Q^T \Lambda Q$ for the tangent vector QK with $K \in K(n)$ is described explicitly by the quadratic form:

> $\langle G'(Q)QK, QK \rangle =$ $\langle [P(X), K] - P'(X)[X, K], [X, K] \rangle.$

Least Squares Matrix Approximation

- \bullet Given a symmetric matrix $N,$ find its least squares approximation whose eigenvalues are $\{\lambda_1, \ldots, \lambda_n\}$.
- Setup:

 $\diamond \Lambda := \text{diag}\{\lambda_1,\ldots,\lambda_n\}.$ \Diamond The projection is $P(X) = N$.

• The projected gradient:

$$
g(Q) = Q[N, Q^T \Lambda Q].
$$

• The descent flow:

$$
\frac{dX}{dt} = [X, [X, N]]
$$

$$
X(0) = \Lambda.
$$

Second Order Condition

• Assume

- \Diamond The given eigenvalues are $\lambda_1 > \ldots > \lambda_n$.
- \Diamond The eigenvalues of N are $\mu_1 > \ldots > \mu_n$.
- $\Diamond Q$ is a critical point on $O(n)$ and define

$$
X := Q^T \Lambda Q
$$

$$
E := QNQ^T.
$$

• The first order condition:

$$
[N,X]=0
$$

 \diamond E must be a diagonal matrix.

 $\Diamond E$ must be a permutation of μ_1,\ldots,μ_n .

• The projected Hessian:

$$
\langle G'(Q)QK, QK \rangle = \langle [N, K], [X, K] \rangle
$$

= $\langle E\hat{K} - \hat{K}E, \Lambda \hat{K} - \hat{K} \Lambda \rangle$
= $2 \sum_{i < j} (\lambda_i - \lambda_j)(e_i - e_j)\hat{k}_{ij}^2$.

- If a matrix Q is optimal, then:
	- ∞ Columns of $Q^T = [q_1, \ldots, q_n]$ must be the normalized eigenvectors of N corresponding in the order to μ_1,\ldots,μ_n .
	- \diamond The solution is unique.
	- \diamond The solution is given by

$$
X = \lambda_1 q_1 q_1^T + \ldots + \lambda_n q_n q_n^T.
$$

- We have reproved the Wielandt-Hoffman theorem.
- The dynamics in the problem enjoys a special sorting property.
	- Can be applied to data matching and a variety of combinatorial optimization problems, including the LP problem.

Inverse Toeplitz Eigenvalue Problem

- Construct a symmetric Toeplitz matrix whose eigenvalues are $\{\lambda_1, \ldots, \lambda_n\}$
- Setup:
	- \Diamond The set $\mathcal T$ of all symmetric Toeplitz matrices forms a linear subspace with a natural basis E_1, \ldots, E_n .

$$
\diamond \Lambda := \mathrm{diag}\{\lambda_1,\ldots,\lambda_n\}.
$$

 \Diamond The projection of any matrix X is easy:

$$
P(X) = \sum_{i=1}^{n} \langle X, E_i \rangle E_i.
$$

• The projected gradient:

$$
g(Q) = Q[P(Q^T \Lambda Q), Q^T \Lambda Q].
$$

• The descent flow:

$$
\frac{dX}{dt} = [X, [X, P(X)]]
$$

$$
X(0) = \text{Anything but diagonals in } M(\Lambda).
$$

Significance

- The descent flow approach offers a globally convergent method for solving the inverse Toeplitz eigenvalue problem.
- A stable critical point may not be Toeplitz.
- The second order condition has not be analyzed yet. Further work is needed.

Symmetric Eigenvalue Problem

- Setup:
	- $\Diamond \Lambda = X_0$, the matrix whose eigenvalues are to be found.
	- $\Diamond V =$ the subspace of all diagonal matrices.

 $\Diamond P(X) = \text{diag}(X).$

- The objective is the same as that of the Jacobi method, i.e., to minimize the off-diagonal elements.
- The descent flow:

$$
\frac{dX}{dt} = [X, [X, \text{diag}(X)]]
$$

$$
X(0) = X_0.
$$

- Let X be a critical point. Then
	- \Diamond If X is a diagonal matrix, then X is a global minimizer.
	- \Diamond If X is not a diagonal matrix but diag(X) is a scalar matrix, then X is a global maximizer.
	- \Diamond If X is not a diagonal matrix and diag(X) is not a scalar matrix, then X is a saddle point.