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Simultaneous Reduction Problems

• Overview

• Reduction by orthogonal similarity

• Gradient flow for orthogonal similarity

• Nearest commuting pair problem

• Reduction by orthogonal equivalence

• Descent flow for orthogonal equivalence

• Nearest normal matrix problem

75



76 Lecture 5

Overview

What is the simplest form to which a family of
matrices depending smoothly on the parameters
can be reduced by a change of coordinates depend-
ing smoothly on the parameters?

- Arnold ’88

• Two types of transformations:

� Similarity transformation QTAQ.

� Equivalence transformation QTAZ.
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• Applications:

� Computation of eigenvalues, generalized eigen-
values and singular values.

� Simultaneous reduction of more than one matri-
ces:

. System identification in control.

. Multibody oscillations in mechanics.

� Matrix canonical forms.

• Significance:

� Very few theories or numerical methods are avail-
able.

� Projected gradient method offers an easy but
versatile reduction procedure.
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Reduction by Orthogonal Similarity

• The problem:

� MatricesAi and subspaces Vi inR
n×n, i = 1, . . . , p,

are given.

� Find the best reduction of Ai to an element in Vi
through orthogonal similarity transformation.

• The idea:

� Pi(X) = projection of X onto Vi.

� Simultaneously reduce the norm of all residuals:

αi(Q) := QTAiQ− Pi(QTAiQ).

• Formulation:

Minimize F (Q) :=
1

2

k∑
i=1
‖αi(Q)‖2

Subject to Q ∈ O(n).
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Gradient Flow under Similarity

• The gradient:

∇F (X) =
k∑
i=1

(AT
i Xαi(X) + AiXα

T
i (X)).

• The projected gradient on O(n):

g(Q) =
Q

2

{
QT∇F (X)−∇F (X)TQ

}

=
Q

2

k∑
i=1

(
[QTAT

i Q, αi(Q)]+[QTAiQ, α
T
i (Q)]

)
.

• The descent flow:

dXi

dt
=

Xi,
p∑
j=1

[Xj, P
T
j (Xj)]−[Xj, P

T
j (Xj)]

T

2


Xi(0) = Ai

� Xi := QTAQ.
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Examples

• A continuous Jacobi algorithm for symmetric eigen-
value problem:

dX

dt
= [X, [X, diag(X)]]

X(0) = A1 (symmetric)

� V1 = subspace of all diagonal matrices.

� Diagonal matrices are the only stable equilib-
rium points for the system.

� Any of these isospectral diagonal matrices is a
global minimizer.
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• A similar idea for general eigenvalue problem?

dX

dt
=

X, [X,P
T
1 (X)]− [X,PT

1 (X)]T

2


X(0) = A1 (general).

� V1 = subspace of upper triangular matrices.


1.0000 3.0000 5.0000 7.0000
−3.0000 1.0000 2.0000 4.0000

0.0000 0.0000 3.0000 5.0000
0.0000 0.0000 0.0000 4.0000



↓

2.2500 3.3497 3.1713 2.8209
−0.3506 2.2500 8.0562 6.1551

0.6247 −0.8432 2.2500 3.2105
−0.0846 0.2727 −0.3360 2.2500


. Upper quasi-triangular matrices are not nec-

essarily stable.

� V1 = subspace of structure B matrices, i.e., block
upper triangular matrices with all diagonal blocks
2×2 except possibly the last one, which is 1×1.

. ω-limit set contains only a singleton.
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The Nearest Commuting-Pair Problem

• The problem:

� Given a pair of symmetric matrices (A1, A2).

� Determine how far (A1, A2) is away from a sym-
metric pair (E1, E2) satisfying E1E2 = E2E1.

• Symmetric and commuting pairs can be simultane-
ously diagonalized by orthogonal similarity trans-
formation.

• Reformulation:
2∑
i=1
‖Ei −Ai‖2 =

2∑
i=1
‖Di −QTAiQ‖2

� Di = QTEiQ is diagonal.

• The descent flow:

dXi

dt
=

Xi,
2∑
j=1

[Xj, diag(Xj)]


Xi(0) = Ai, i = 1, 2
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Reduction by Orthogonal Equivalence

• The problem:

� Matrices Ai and subspaces Vi in Rm×n, i =
1, . . . , p, are given.

� Find the best reduction of Ai to an element in Vi
through orthogonal equivalence transformation .

• Formulation:

Minimize F (Q,Z) :=
1

2

k∑
i=1
‖βi(Q,Z)‖2

Subject to Q ∈ O(m)

Z ∈ O(n).

� Residuals:

βi(Q,Z) := QTAiZ − P (QtAiZ).
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Gradient Flow under Equivalence

• Frobenius inner product in product topologyRm×m×
Rn×n:

〈(X1, Y1), (X2, Y2)〉P := 〈X1,X2〉 + 〈Y1, Y2〉.

• The gradient:

∇F (X, Y ) = k∑
i=1
AiY α

T
i (X, Y ),

k∑
i=1
AT
i Xαi(X,Y )

 .

• The projected gradient on O(m)×O(n):

g(Q,Z) =Q
2

k∑
i=1

(QTAiZα
T
i (Q,Z)−αi(Q,Z)ZTAT

i Q),

Z

2

k∑
i=1

(ZTAT
i Qαi(Q,Z)−αTi (Q,Z)QTAiZ)

 .
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• The decent flow:

dXi

dt
=

p∑
j=1

Xi
XT
j Pj(Xj)− PT

j (Xj)Xj

2

+
Pj(Xj)X

T
j −XjP

T
j (Xj)

2
Xi


Xi(0) = Ai

� Xi := QTAiZ.
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Example

• A continuous Jacobi algorithm for the singular value
problem:

dX

dt
=

1

2

{
X

(
XT (diagX)− (diagX)TX

)

+
(
(diagX)XT −X(diagX)T

)
X.

}

� V1 = subspace of diagonal matrices in Rm×n.

� Diagonal matrices (of the singular values) are
the only stable equilibrium points.
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Nearest Normal Matrix Problem

• The problem:

� Determine the closest normal matrix to a given
square complex matrix A.

� Normal matrices can be diagonalized by unitary
similarity transformation. Thus

Minimize F (U,D) :=
1

2
‖A− UDU ∗‖2

Subject to U ∈ U(n)

D ∈ D(n).

• Reformulation:

� Consider U and D as independent variables:

‖A− Z‖2 = ‖U ∗AU −D‖2.

� At global minimum,

Minimize F (U) =
1

2
‖U ∗AU−diag(U ∗AU)‖2

Subject to U ∗U = I.
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• Identify Cn×n ≡ Rn×n × Rn×n to take advantage
of earlier techniques:

� Z = (<Z,=Z).

� Inner product:

〈X, Y 〉C := 〈<X,<Y 〉 + 〈=X,=Y 〉.

� The project gradient of F onto the manifold
U(n) is given by:

g(U) =
U

2
{[diag(U ∗AU), U ∗A∗U ]

− [diag(U ∗AU), U ∗A∗U ]∗} .

• New characterization: Let W := U ∗AU . Then
necessary (sufficient) conditions for U ∈ U(n) to
be a local minimizer are that:

� The matrix [diag(W ),W ∗] is Hermitian.

� The quadratic form

〈[diag(W ),K]− diag([W,K]), [W,K]〉C
is nonnegative (positive) for every skew Hermi-
tian matrix K.
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• The descent flow:

dU

dt
= Uk(W )

dW

dt
= [W, k(W )]

� k(W ) := 1
2
[W, diag(W ∗)]− [W, diag(W ∗)]∗.

� W (t) := U(t)∗AU(t).

� Z := Ũdiag(W̃ )Ũ ∗ (where ˜ denotes a limit
point of the flow) is a putative nearest normal
matrix.

• Advantages:

� The necessary conditions are derived without
reference to Lagrange multipliers.

� Computation is easier. No shift, phase, or ro-
tation angles are needed as in the Jacobi algo-
rithm. (Goldstine et al. ’59, Ruhe ’87).


