Chapter 5

Simultaneous Reduction Problems

e Overview

e Reduction by orthogonal similarity

e Gradient flow for orthogonal similarity
e Nearest commuting pair problem

e Reduction by orthogonal equivalence

e Descent flow for orthogonal equivalence

e Nearest normal matrix problem

)
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Overview

What s the stmplest form to which a family of
matrices depending smoothly on the parameters
can be reduced by a change of coordinates depend-

ing smoothly on the parameters?
- Arnold 88

e T'wo types of transformations:

o Similarity transformation Q1 AQ.

o Equivalence transformation Q7 AZ.
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e Applications:
o Computation of eigenvalues, generalized eigen-
values and singular values.

¢ Simultaneous reduction of more than one matri-
ces:

> System identification in control.
> Multibody oscillations in mechanics.

o Matrix canonical forms.
e Significance:

¢ Very few theories or numerical methods are avail-
able.

¢ Projected gradient method offers an easy but
versatile reduction procedure.
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Reduction by Orthogonal Similarity

e The problem:

¢ Matrices A; and subspaces V; in R™", 1 =1,...,p,
are given.

¢ Find the best reduction of A; to an element in V;
through orthogonal similarity transformation.

e The idea:

o P;(X) = projection of X onto V.

¢ Simultaneously reduce the norm of all residuals:

a;(Q) = Q" AQ — P(QTAQ).
e Formulation:
1 k
Minimize F(Q) = =5 Zl i (Q)]|?

Subject to @ € O(n).
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Gradient Flow under Similarity

e The gradient:

VF(X) = 3 (AT Xay(X) + AXal (X))

e The projected gradient on O(n):
Q

0@ = L Q"VF(X) - VF(X)Q)
=2 5 (1Q747Q.0(Q)+ Q7 AQ.07 (@)

e The descent How:

dXZ _ |y f: [Xja P]T(Xj>]_[Xja P]T<X])]T
dt | 2
X;(0) = A;

<& Xz = QTAQ
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Examples

e A continuous Jacobi algorithm for symmetric eigen-
value problem:

dX -
— = X, [X, diag(X)]

X(0) = A; (symmetric)

¢ Vi = subspace of all diagonal matrices.

¢ Diagonal matrices are the only stable equilib-
rium points for the system.

o Any of these isospectral diagonal matrices is a
global minimizer.
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e A similar idea for general eigenvalue problem?
- = |X,
dt 2
X(0) = A; (general).

o V1 = subspace of upper triangular matrices.

1.0000 3.0000 5.0000 7.0000 |
—3.0000 1.0000 2.0000 4.0000
0.0000 0.0000 3.0000 5.0000
0.0000 0.0000 0.0000 4.0000 |

l
2.2500  3.3497  3.1713 2.8209 |
—0.3506  2.2500  &.0562 6.1551
0.6247 —0.8432  2.2500 3.2105
| —0.0846  0.2727 —0.3360 2.2500

> Upper quasi-triangular matrices are not nec-
essarily stable.

¢ V1 = subspace of structure B matrices, i.e., block
upper triangular matrices with all diagonal blocks
2 X 2 except possibly the last one, which is 1 x 1.

> w-limit set contains only a singleton.
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The Nearest Commuting-Pair Problem

e The problem:

o Given a pair of symmetric matrices (A, As).

o Determine how far (A, As) is away from a sym-
metric pair (Ey, By) satisfying £1Ey = EsEj.

e Symmetric and commuting pairs can be simultane-
ously diagonalized by orthogonal similarity trans-
formation.

e Reformulation:
9 9
S5 - AP = D - Q" AQ)?
o D; = QT E;Q is diagonal.

e The descent flow:

dXZ 2 )
= | X, X [X), diag(X;)]
dt j=

Xi(0) = Aj, i=1,2
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Reduction by Orthogonal Equivalence

e The problem:

o Matrices A; and subspaces V; in R™*", 1 =
1,...,p, are given.

¢ Find the best reduction of A; to an element in V;
through orthogonal equivalence transformation .

e Formulation:
Minimize F(Q,Z) :=

Subject to @ € O(m)
Z € O(n).

3 16(@, 2

DO | —

¢ Residuals:

6i(Q,7) = Q A Z — P(Q'A; Z).
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Gradient Flow under Equivalence

e Frobenius inner product in product topology R™*" X

.
(X1, Y1), (X2, Y2)) p = (X1, Xp) + (Y1, 1),
e The gradient:
VF(X,Y) =
(z AvaT(X, >’i§1 AT X (X, Y)).

’[/_

e The projected gradient on O(m) x O(n):

9Q.7) =
(% (@' 4200(Q, 2)-0:(Q. 2)7" ATQ),
J 5 (27 41Q0(Q, 2)-al (@, 2)Q7 A7)
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e The decent flow:

dt =) 2
+PJ(XJ)Xf—XjPJT<Xj)X,
2 1
X;(0) = A;
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Example

e A continuous Jacobi algorithm for the singular value

problem:
dX 1 . :
=5 (X (X" (diagX) — (diagX)" X)

+ ((diagX)XT — X(diagX)T> X

¢ Vi = subspace of diagonal matrices in R™*".

o Diagonal matrices (of the singular values) are
the only stable equilibrium points.
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Nearest Normal Matrix Problem

e The problem:

¢ Determine the closest normal matrix to a given
square complex matrix A.

¢ Normal matrices can be diagonalized by unitary
similarity transformation. Thus

Minimize F(U, D) := ;HA — UDU*|)?
Subject to U € U(n)
D € D(n).
e Reformulation:
¢ Consider U and D as independent variables:

|A—Z|* = |U"AU — DIJ*.

¢ At global minimum,

1
Minimize F(U) = 5HU*AU—dz'ag(U*AzJ)H2
Subject to U*U = 1.
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e [dentify C"*" = R™" x R" "™ to take advantage
of earlier techniques:

o Z =(RZ,37).

¢ Inner product:
(X, Y)o = (RX,RY) + (X, QY).
¢ The project gradient of F' onto the manifold
U(n) is given by:
o(U) — g{[diag(U*AU), U AT
— [diag(U*AU), U*A*U|"} .
e New characterization: Let W = U*AU. Then

necessary (sufficient) conditions for U € U(n) to
be a local minimizer are that:

o The matrix |diag(W'), W*| is Hermitian.
¢ The quadratic form

([diag(W), K] — diag([W, K]), [W, K])¢

is nonnegative (positive) for every skew Hermi-
tian matrix K.
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e The descent flow:

dU
a — Uk(W)
= Wk(w)

o k(W) := 3[W, diag(W*)] — [W, diag(W*)]*.

oW(t) =Ut)*AU(t).

o 7 = Udiag(W)U* (where ~ denotes a limit
point of the flow) is a putative nearest normal
matrix.

e Advantages:

¢ The necessary conditions are derived without

reference to Lagrange multipliers.

o Computation is easier. No shift, phase, or ro-
tation angles are needed as in the Jacobi algo-

rithm. (Goldstine et al. ’59, Ruhe "87).



