
Chapter 6

Inverse Problem in the Schur-Horn
Theorem

• Overview

• Schur-Horn theorem

• Lift and projection

• A projected gradient method

• Convergence

• Numerical experiment
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Overview

• Given vectors a = [ai], λ = [λi] ∈ Rn, a majorizes
λ if and only if

� Arranged in increasing order:

aj1 ≤ . . . ≤ ajn,

λm1 ≤ . . . ≤ λmn;

� For all k = 1, 2, . . . , n

k∑
i=1
aji ≥

k∑
i=1
λmi;

� Equality holds for k = n.

• Majororization theory has important applications
(Marshall el al., 79, Arnold ’87).

•Would like to construct a Hermitian matrix with
specified diagonal entries and eigenvalues.

� Can this be done?

� How to do it?
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• Two methods are proposed:

� Lift and projection method

. Iterative approach

. Linear convergence

. Connects to the Wielandt-Hoffman theorem.

� Projected gradient method

. Continuous approach

. Easy to implement

. Offers a new proof of existence.
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Schur-Horn Theorem

• The Theorem: Hermitian matrix H with eigenval-
ues λ and diagonal entries a if and only if a ma-
jorizes λ.

� The known proof is not constructive.

• An inverse eigenvalue problem (SHIEP): Construct
a Hermitian matrix with given eigenvalues and di-
agonal entries.

� Known as the harder part of the Schur-Horn
Theorem.

� Far more variable in the SHIEP than constraints
⇒ Solution is far from unique.
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Notion

• Notation:

diag(M) = Diagonal matrix from matrix M

diag(v) = Diagonal matrix from vector v

T (a) := {T ∈ Rn×n|diag(T ) = diag(a)}
M(Λ) := {QTΛQ|Q ∈ O(n)}

Λ := diag(λ)

O(n) = Orthogonal matrices in Rn×n.

• Idea:
min

T∈T (a),Z∈M(Λ)
‖T − Z‖

� Find the shortest distance between T (a) and
M(Λ).

� Schur-Horn Theorem⇒ T (a) ⋂M(Λ) 6= ∅.
� SHIEP ≡ Find the intersection.
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SHIEP versus PIEP

• PIEP:

� Given symmetric matricesA0, A1, . . . , An ∈ Rn×n

and λ ∈ Rn,

� Find values of c := (c1, . . . , cn)
T ∈ Rn such that

eigenvalues of

A(c) := A0 + c1A1 + . . . + cnAn

are precisely λ.

• SHIEP in terms of PIEP?

� Needs to specify Ai a priori so that a SHIEP
solution may be written in the form of a PIEP.

� Not easy because off-diagonal elements are free
and too many.

� Numerical techniques proposed for PIEP are not
directly applicable for SHIEP unlessAi are prop-
erly selected.
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Structure SHIEP

• Totally 2n− 1 given data elements — a and λ.

• Sensible to restrict the structure of the matrix, say
a Jacobi matrix?

� Interesting, but

� An example: No real numbers b1, b2 such that


1 b1 0
b1 2 b2

0 b2 3



has eigenvalues {−5,−4, 15}.
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Lift and Projection

• Alternate between T and M(Λ) in the following
way:

� A lift: From T (k) ∈ T , find Z(k) ∈ M(Λ) such
that

‖T (k) − Z(k)‖ = dist(T (k),M(Λ)).

� A projection: Find T (k+1) ∈ T such that

‖T (k+1) − Z(k)‖ = dist(T , Z(k)).

T

ΛM(  )

T

T
(k)

(k+1)

Z
(k)

lift

project

Figure 1: Geometric sketch of lifting and projection.
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Calculation

• Projection is easy.

� If T = [tij] = P (Z = [zij]) onto T , then

tij :=


zij, if i 6= j
ai, if i = j.

• Lifting is by Wielandt-Hoffman theorem.

� Assume Λ and T ∈ T have simple spectrum.

. Multiple eigenvalues needs only a slight mod-
ification.

� Spectral decomposition T = QTDQ.

� π = permutation so that λπ1, . . . , λπn andD are
in the same algebraic ordering.

� Then the lift of T ontoM(Λ) is

Z := QTdiag(λπ1, . . . , λπn)Q
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• Both lifting or projection minimize the distance be-
tween a point and a set:

‖T (k+1)−Z(k+1)‖2≤‖T (k+1)−Z(k)‖2≤‖T (k)−Z(k)‖2.

• The lift and projection is a descent method.

• The method is essentially the same as Von Neu-
mann’s alternating projection method for convex
sets (Cheney ’59, Deutsch ’83, Boyle et al. ’89).

� M(Λ) is not convex.

� A stationary point is not necessarily in the in-
tersection T ⋂M(Λ).

� The proximity map is defined by applying the
Wielandt-Hoffman theorem.

� Linear convergence.
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Gradient Flow

• Solve the problem:

min
Q∈O(n)

F (Q) :=
1

2
‖diag(QTΛQ)− diag(a)‖2.

• Schur-Horn theorem ⇒ Existence of a Q at which
F vanishes.

• Fréchet derivative of F :

F ′(Q)U =2〈diag(QTΛQ)−diag(a), diag(QTΛU)〉
=2〈diag(QTΛQ)−diag(a), QTΛU〉
=2〈ΛQ(diag(QTΛQ)−diag(a)), U〉.

� Diagonal matrix in the first entry of the inner
product ⇒ The second equality.

� Adjoint property ⇒ The third equality.

• Gradient ∇F can be interpreted as:

∇F (Q) = 2ΛQβ(Q)

� β(Q) := diag(QTΛQ)− diag(a).
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• The projected gradient of ∇F (Q) onto O(n):

g(Q) = Q[QTΛQ, β(Q)]

• The projected Hessian:

〈g′(Q)QK,QK〉= 〈diag[QTΛQ,K]−[β(Q),K],

[QTΛQ,K]〉.

• The steepest descent flow on O(n):

Q̇ = −g(Q).

• An isospectral flow onM(Λ):

Ẋ = [X, [α(X),X ]]

� X := QTΛQ.

� α(X) := β(Q) = diag(X)− diag(a).

� Reducing the distance between diag(X) and diag(a).

• The SHIEP can be solved by integrating the differ-
ential equation.
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Convergence

• First order necessary condition:

[α(X),X ] = 0.

• Second order necessary condition if β(Q) = 0:

〈g′(Q)QK,QK〉 = ‖diag[QTΛQ,K]‖q2 ≥ 0

for all skew-symmetric matrices K.

• The strict inequality is not true in general.

� Denote Ω := diag[X,K] = diag{ω1, . . . , ωn}.
� Then

ωi =
i−1∑
s=1

xsiksi −
n∑

t=i+1
xitkit.

� The system ωi = 0 for i = 1, . . . , n contains
only n − 1 independent equations in the n(n−1)

2
unknowns kij.

� Can find a non-trivial skew symmetric matrixK
that makes Ω = 0.
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Asymptotically Stable Equilibrium

• If β(Q) 6= 0 at a stationary point Q, then there ex-
ists a skew-symmetric matrixK such that 〈g′(Q)QK,QK〉 <
0.

• If β(Q) 6= 0 at a stationary point Q, there exists
an unstable direction along which F is increasing.

• Converge to an unstable equilibrium point is nu-
merically impossible.

• Only X ’s such that β(Q) = 0 are the possible
asymptotically stable equilibrium points.
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Proof of Unstable Manifold

• Assume β(Q) = diag{β1In1, . . . , βkInk}.
• [QTΛQ, β(Q)] = 0 ⇒

X = QTΛQ = diag{X11, . . . ,Xkk}.
� Xii = ni × ni real symmetric matrix.

• Define E := Qβ(Q)QT .

• [Λ, E] = 0 ⇒
� E = diag(e1, . . . , en).

� {e1, . . . , en = a permutation of elements of β(Q).

• QT = Matrix of eigenvectors of X ⇒ Q has the
same block structure as X .
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• Consider a skew-symmetric matrix K = [Kij] such
that,

� Partitioned in the same way as X

� Kii = 0 for all i = 1, . . . , k.

• Observe

� diag[QTΛQ,K] = 0.

� The projected Hessian:

〈g′(Q)QK,QK〉
= −〈[β(Q),K], [QTΛQ,K]〉
= −〈EK̃ − K̃E,ΛK̃ − K̃Λ〉
= −2

∑
i<j

(λi − λj)(ei − ej)k̃2
ij

� Easy to pick up values of k̃ij so that

〈g′(Q)QK,QK〉 < 0.
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Numerical Experiment

• Initial value:

� Cannot use Λ as the initial value.

� X0 := QTΛQ with Q a random orthogonal ma-
trix.

• Integrator:

� Subroutine ODE

� RELERR = ABSERR = 10−12.

� Check output values at interval of 1.
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Example 1

• Test data:

a=[4.3792×10−1, 1.0388×10+0, 1.5396×10−2, 1.8609×10+0, 1.4024×10+0]

λ=[−1.4169×10+0,−5.6698×10−1, 4.3890×10−1, 1.4162×10+0, 4.8842×10+0]

• Random orthogonal matrix:

−6.4009×10−1−5.3594×10−1−1.8454×10−1−3.3375×10−2−5.1757×10−1

2.1804×10−1−1.2359×10−1−5.0336×10−1−8.2193×10−1 9.0802×10−2

−7.2099×10−1 5.6072×10−1 1.4302×10−2−2.4876×10−1 3.2199×10−1

2.8417×10−3−1.9828×10−1 8.4401×10−1−4.9375×10−1−6.7297×10−2

−1.5134×10−1−5.8632×10−1 3.0406×10−3 1.3284×10−1 7.8464×10−1



• Limit point: At t ≈ 11, the gradient flow converges
to:

4.3792×10−1 2.6691×10−1−1.9178×10−1−6.1356×10−1−1.5920×10+0

2.6691×10−1 1.0388×10+0−7.2845×10−1−8.6726×10−1−1.9618×10+0

−1.9178×10−1−7.2845×10−1 1.5396×10−2−6.3601×10−1 1.6256×10−1

−6.1356×10−1−8.6726×10−1−6.3601×10−1 1.8609×10+0 1.5032×10+0

−1.5920×10+0−1.9618×10+0 1.6256×10−1 1.5032×10+0 1.4024×10+0



• Different random orthogonal matrix ⇒ Different
limit point.
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Example 2

• Repeat the experiment with 2, 000 test data.

� Entries in a and λ are from random symmetric
matrices with distribution N (0, 1).

� Orthogonal matrices Q are from the QR de-
composition of non-symmetric random matrices
(Stewart ,80).

• Collect the length of integration required for reach-
ing convergence in each case.

� Inherent only to the individual problem data
(and the stopping criterion).

� Independent of the machine used.

• Histogram:

� ≈ 77% of the cases converge with the length of
integration less than 7.

� ≈ 93% converge with length less than 17.

� Maximal length of integration = 296.

� All 2, 000 cases converge.
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Figure 2: Histogram on the length of integration required for convergence.
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Conclusion

• The lift-and-project method makes a connection
with the Wielandt-Hoffman theorem.

• The gradient flow method can be integrated by any
available ordinary differential equation solver.

• Numerical methods for general PIEP will not work.

• The gradient flow method always converges.

• A constructive proof of the Schur-Horn theorem.


