Chapter 6

Inverse Problem in the Schur-Horn
Theorem

e Overview

e Schur-Horn theorem

e Lift and projection

e A projected gradient method
e Convergence

e Numerical experiment
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Overview

e Given vectors a = [a;], A = [\;] € R", a majorizes
A if and only if

¢ Arranged in increasing order:

ajl S Sajn,

Amp Sooo < Ay

oForallk=1,2,...,n
k k
X aj 2 3 Am;;
i=1 i=1
¢ Equality holds for k = n.

e Majororization theory has important applications
(Marshall el al., 79, Arnold '87).

e Would like to construct a Hermitian matrix with
specified diagonal entries and eigenvalues.

¢ Can this be done?
o How to do it?
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e T'wo methods are proposed:

¢ Lift and projection method

> Iterative approach

> Linear convergence

> Connects to the Wielandt-Hoffman theorem.
¢ Projected gradient method

> Continuous approach

> Easy to implement

> Offers a new proof of existence.



94 Lecture 6

Schur-Horn Theorem

e The Theorem: Hermitian matrix H with eigenval-
ues A and diagonal entries a if and only if @ ma-
jorizes .

¢ The known proof is not constructive.

e An inverse eigenvalue problem (SHIEP): Construct
a Hermitian matrix with given eigenvalues and di-
agonal entries.

¢ Known as the harder part of the Schur-Horn
Theorem.

¢ Far more variable in the SHIEP than constraints
= Solution is far from unique.
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Notion

e Notation:
diag(M) = Diagonal matrix from matrix M
diag(v) = Diagonal matrix from vector v

T(a) = {T € R""|diag(T) = diag(a)}
M(A) = {Q"AQ|Q € O(n)}
A = diag(\)

O(n) = Orthogonal matrices in R"*".

e [dea:

TeT(a )ZEM( ) IT = 2]

o Find the shortest distance between 7 (a) and
M(A).

o Schur-Horn Theorem = 7 (a)n M(A) # 0.

¢ SHIEP = Find the intersection.
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SHIEP versus PIEP

e PIEP:
¢ Given symmetric matrices Ag, A1, ..., A, € R™"
and A € R",
o Find values of ¢ := (c1, ..., ¢,)! € R"such that

eigenvalues of
A(C) = A+ 1AL+ ...+ A,
are precisely .

e SHIEP in terms of PIEP?

¢ Needs to specify A; a priori so that a SHIEP
solution may be written in the form of a PIEP.

¢ Not easy because off-diagonal elements are free
and too many.

¢ Numerical techniques proposed for PIEP are not
directly applicable for SHIEP unless A; are prop-
erly selected.
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Structure SHIEP

e Totally 2n — 1 given data elements — a and A.

e Sensible to restrict the structure of the matrix, say
a Jacobi matrix?
¢ Interesting, but
¢ An example: No real numbers by, by such that
1 by O

by 2 by
0 by 3

has eigenvalues {—5, —4, 15}.
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Lift and Projection

e Alternate between 7 and M(A) in the following
way:

o A lift: From TW € T, find Z®) € M(A) such
that

7% — Z®) = dist(T®, M(A)).
o A projection: Find T®+1) € T such that
|TEHD — ZW) = dist(T, Z™).

Figure 1: Geometric sketch of lifting and projection.
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Calculation

e Projection is easy.

olf T = |t;;] = P(Z = |2;;]) onto 7T, then

U ag, i =g
e Lifting is by Wielandt-Hoffman theorem.

o Assume A and T' € T have simple spectrum.

> Multiple eigenvalues needs only a slight mod-

ification.
o Spectral decomposition T = Q' DQ.
¢ 7 = permutation so that A, ..., A;, and D are

in the same algebraic ordering.

¢ Then the lift of T" onto M(A) is
7 = Q'diag(\r,, ..., M\r,)Q
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e Both lifting or projection minimize the distance be-
tween a point and a set:

(k+1)_ 7 (k1) 12 (| (k+1)_ 7 (k) |2 (| (k) _ 7 (k) |12
[T =2 < T =2 T =2 ||

e The lift and projection is a descent method.

e The method is essentially the same as Von Neu-
mann’s alternating projection method for convex

sets (Cheney '59, Deutsch ’83, Boyle et al. '89).
o M(A) is not convex.

¢ A stationary point is not necessarily in the in-

tersection 7 n M(A).
¢ The proximity map is defined by applying the
Wielandt-Hoffman theorem.

¢ Linear convergence.
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Gradient Flow

e Solve the problem:

|
Juin F(Q) = |ldiag(Q"AQ) — diag(a)||*

e Schur-Horn theorem = Existence of a () at which
F" vanishes.

e [réchet derivative of F':
F'(Q)U =2{diag(Q"AQ) —diag(a), diag(Q"AU))

=2(diag(Q'AQ) —diag(a), Q"AU)
= 2(AQ(diag(Q" AQ) —diag(a)), U).

¢ Diagonal matrix in the first entry of the inner
product = The second equality.

¢ Adjoint property = The third equality.
e Gradient VF' can be interpreted as:
VE(Q) = 20Q8(Q)
o B(Q) = diag(Q"AQ) — diag(a).
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e The projected gradient of VF(Q) onto O(n):

9(Q) = QIRTAQ, B(Q))
e The projected Hessian:

(9(QQK, QK) = (diag[Q"AQ, K]~ [6(Q), K],
Q"AQ, KJ).

e The steepest descent flow on O(n):
Q= —9(Q).
e An isospectral flow on M(A):
X = [X, [a(X), X]
o X = QTAQ.

o a(X) = 4(Q) = diag(X) — diag(a).
¢ Reducing the distance between diag(.X ) and diag(a).

e The SHIEP can be solved by integrating the differ-
ential equation.



Schur-Horn Theorem 103

Convergence

e First order necessary condition:
a(X), X] =0.
e Second order necessary condition if 3(Q) = 0:

(¢'(Q)QK, QK) = ||diag[Q"AQ, K][[¢* > 0
for all skew-symmetric matrices K.

e The strict inequality is not true in general.

o Denote €2 := diag| X, K] = diag{w, ..., w,}.

¢ Then
1—1 n
Wi = X Tgiks — X Tk

s=1 t=1+1

¢ The system w; = 0 for ¢+ = 1,...,n contains
only n — 1 independent equations in the @

unknowns £;;.

¢ Can find a non-trivial skew symmetric matrix /
that makes {2 = 0.



104 Lecture 6

Asymptotically Stable Equilibrium

o If 3(Q) # 0 at a stationary point @), then there ex-
ists a skew-symmetric matrix K such that (¢'(Q)Q K, QK) <
0.

o If 3(Q) # 0 at a stationary point @), there exists
an unstable direction along which F' is increasing.

e Converge to an unstable equilibrium point is nu-
merically impossible.

e Only X's such that 3(Q)) = 0 are the possible
asymptotically stable equilibrium points.
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Proof of Unstable Manifold

o Assume (@) = diag{Biln,, - - -, Brln, }-
¢ [Q'AQ,B(Q) =0=
X = Q'AQ = diag{ X1, ..., X}

o X;; = n; X n; real symmetric matrix.
e Define E = QB(Q)Q7.
o [\,EF|=0=

o B = diag(ey,...,e,).

o {e1, ..., e, =apermutation of elements of 3(Q).

o Q1 = Matrix of eigenvectors of X = @ has the
same block structure as X .
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e Consider a skew-symmetric matrix K = |Kj;;] such
that,

¢ Partitioned in the same way as X
o K;=0foralle=1,..., k.
e Observe
o diag[QTAQ, K] = 0.
¢ The projected Hessian:

(d(Q)QK, QK)
= —(18(@), £, [Q"AQ. K])
= —(EK — KE,AK — KA)
= —2 2 (A = Aj)lei - e;)k

¢ Fasy to pick up values of /;ij so that
(d(QRQK,QK) <0.
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Numerical Experiment

e Initial value:

¢ Cannot use A as the initial value.

o X = QTAQ with @ a random orthogonal ma-
trix.

e Integrator:

o Subroutine ODE
o RELERR = ABSERR = 10712,

¢ Check output values at interval of 1.
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Example 1

e Test data:

a=1[4.3792x107" 1.0388x10%% 1.5396 x 1072 1.8609x 107, 1.4024 x 10™")]
A=[—1.4169x10"" —5.6698x10" 4.3890x10" 1.4162x107° 4.8842x10™"]
e Random orthogonal matrix:

—6.4009x10~ —5.3594x10~! —1.8454x10~! —3.3375x1072 —5.1757x10 ]
2.1804x1071 —1.2359x1071 —5.0336x1071 —8.2193x10~1  9.0802x10~2
—7.2099x10~!  5.6072x10~! 1.4302x1072 —2.4876x10~1 3.2199x10!
2.8417x1072 —1.9828x10~!  8.4401x107! —4.9375x10~ —6.7297x10~2
—1.5134x10"! —5.8632x10~!  3.0406x10~% 1.3284x10~! 7.8464x10°!

e Limit point: At t ~ 11, the gradient flow converges
to:

[ 4.3792x1071 2.6691x1071 —1.9178x10" 1 —6.1356x10~ —1.5920%x10 7]

2.6691x10~1 1.0388x1070 —7.2845x10"! —8.6726x10" 1 —1.9618x10™0
—1.9178x101 —7.2845x10~!  1.5396x10~2 —6.3601x10~! 1.6256%x10~!
—6.1356x10! —8.6726x10~! —6.3601x10~! 1.8609x107° 1.5032x107°
—1.5920x107% —1.9618%x10" 1.6256x10~! 1.5032x107° 1.4024x10%°

e Different random orthogonal matrix =- Different
limit point.
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Example 2

e Repeat the experiment with 2, 000 test data.
¢ Entries in @ and A are from random symmetric
matrices with distribution A(0, 1).

¢ Orthogonal matrices () are from the QR de-
composition of non-symmetric random matrices

(Stewart ,80).

e Collect the length of integration required for reach-
ing convergence in each case.

¢ Inherent only to the individual problem data
(and the stopping criterion).

¢ Independent of the machine used.
e Histogram:
o =~ T7% of the cases converge with the length of
integration less than 7.
o =~ 93% converge with length less than 17.
© Maximal length of integration = 296.

o All 2,000 cases converge.
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Figure 2: Histogram on the length of integration required for convergence.
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Conclusion

e The lift-and-project method makes a connection
with the Wielandt-Hoffman theorem.

e The gradient flow method can be integrated by any
available ordinary differential equation solver.

e Numerical methods for general PIEP will not work.
e The gradient flow method always converges.

e A constructive proof of the Schur-Horn theorem.



