Chapter 6

Inverse Problem in the Schur-Horn Theorem

- Overview
- Schur-Horn theorem
- Lift and projection
- A projected gradient method
- Convergence
- Numerical experiment
- Given vectors $a = [a_i], \lambda = [\lambda_i] \in R^n$, a majorizes λ if and only if
	- Arranged in increasing order:

$$
a_{j_1} \leq \ldots \leq a_{j_n},
$$

$$
\lambda_{m_1} \leq \ldots \leq \lambda_{m_n};
$$

 \Diamond For all $k = 1, 2, \ldots, n$

$$
\sum_{i=1}^k a_{j_i} \ge \sum_{i=1}^k \lambda_{m_i};
$$

 \Diamond Equality holds for $k = n$.

- Majororization theory has important applications (Marshall el al., 79, Arnold '87).
- Would like to construct a Hermitian matrix with specified diagonal entries and eigenvalues.

 \Diamond Can this be done?

How to do it?

- Two methods are proposed:
	- \diamond Lift and projection method
		- \triangleright Iterative approach
		- \triangleright Linear convergence
		- \triangleright Connects to the Wielandt-Hoffman theorem.
	- \diamond Projected gradient method
		- \triangleright Continuous approach
		- \triangleright Easy to implement
		- \triangleright Offers a new proof of existence.

• The Theorem: Hermitian matrix H with eigenvalues λ and diagonal entries a if and only if a majorizes λ .

 \Diamond The known proof is not constructive.

- An inverse eigenvalue problem (SHIEP): Construct a Hermitian matrix with given eigenvalues and diagonal entries.
	- \Diamond Known as the harder part of the Schur-Horn Theorem.
	- \Diamond Far more variable in the SHIEP than constraints \Rightarrow Solution is far from unique.

Notion

• Notation:

$$
diag(M) = Diagonal matrix from matrix M
$$

\n
$$
diag(v) = Diagonal matrix from vector v
$$

\n
$$
T(a) := \{T \in R^{n \times n} | diag(T) = diag(a)\}
$$

\n
$$
\mathcal{M}(\Lambda) := \{Q^T \Lambda Q | Q \in \mathcal{O}(n)\}
$$

\n
$$
\Lambda := diag(\lambda)
$$

\n
$$
\mathcal{O}(n) = Orthogonal matrices in R^{n \times n}.
$$

 \bullet Idea:

$$
\min_{T \in \mathcal{T}(a), Z \in \mathcal{M}(\Lambda)} \|T - Z\|
$$

- \diamond Find the shortest distance between $\mathcal{T}(a)$ and $\mathcal{M}(\Lambda)$.
- \Diamond Schur-Horn Theorem \Rightarrow $\mathcal{T}(a) \cap \mathcal{M}(\Lambda) \neq \emptyset$.
- \circ SHIEP \equiv Find the intersection.

• PIEP:

- \Diamond Given symmetric matrices $A_0, A_1, \ldots, A_n \in R^{n \times n}$ and $\lambda \in R^n$,
- \Diamond Find values of $c := (c_1, \ldots, c_n)^T \in R^n$ such that eigenvalues of

$$
A(c) := A_0 + c_1 A_1 + \ldots + c_n A_n
$$

are precisely λ .

- SHIEP in terms of PIEP?
	- \Diamond Needs to specify A_i a priori so that a SHIEP solution may be written in the form of a PIEP.
	- Not easy because off-diagonal elements are free and too many.
	- Numerical techniques proposed for PIEP are not directly applicable for SHIEP unless A_i are properly selected.
- Totally $2n 1$ given data elements a and λ .
- Sensible to restrict the structure of the matrix, say a Jacobi matrix?

 \diamond Interesting, but

 \diamond An example: No real numbers b_1, b_2 such that

$$
\left[\begin{array}{ccc} 1 & b_1 & 0 \\ b_1 & 2 & b_2 \\ 0 & b_2 & 3 \end{array}\right]
$$

has eigenvalues $\{-5, -4, 15\}.$

Lift and Projection

- Alternate between $\mathcal T$ and $\mathcal M(\Lambda)$ in the following way:
	- \diamond A lift: From $T^{(k)} \in \mathcal{T},$ find $Z^{(k)} \in \mathcal{M}(\Lambda)$ such that

$$
||T^{(k)} - Z^{(k)}|| = \text{dist}(T^{(k)}, \mathcal{M}(\Lambda)).
$$

 $\Diamond A$ projection: Find $T^{(k+1)} \in \mathcal{T}$ such that

$$
||T^{(k+1)} - Z^{(k)}|| = \text{dist}(\mathcal{T}, Z^{(k)}).
$$

Figure 1: Geometric sketch of lifting and projection.

Calculation

• Projection is easy.

$$
\diamond \text{ If } T = [t_{ij}] = P(Z = [z_{ij}]) \text{ onto } T, \text{ then}
$$

$$
t_{ij} := \begin{cases} z_{ij}, & \text{if } i \neq j \\ a_i, & \text{if } i = j. \end{cases}
$$

• Lifting is by Wielandt-Hoffman theorem.

- \diamond Assume Λ and $T \in \mathcal{T}$ have simple spectrum.
	- \triangleright Multiple eigenvalues needs only a slight modification.
- \Diamond Spectral decomposition $T = Q^T D Q$.
- $\delta \pi$ = permutation so that $\lambda_{\pi_1}, \ldots, \lambda_{\pi_n}$ and D are in the same algebraic ordering.
- \Diamond Then the lift of T onto $\mathcal{M}(\Lambda)$ is

$$
Z:=Q^T{\rm diag}(\lambda_{\pi_1},\ldots,\lambda_{\pi_n})Q
$$

• Both lifting or projection minimize the distance between a point and a set:

 $||T^{(k+1)}-Z^{(k+1)}||^2 \leq ||T^{(k+1)}-Z^{(k)}||^2 \leq ||T^{(k)}-Z^{(k)}||^2.$

- The lift and projection is a descent method.
- The method is essentially the same as Von Neumann's alternating projection method for convex sets (Cheney '59, Deutsch '83, Boyle et al. '89).
	- \Diamond M(Λ) is not convex.
	- $\Diamond A$ stationary point is not necessarily in the intersection $T \cap M(\Lambda)$.
	- \diamond The proximity map is defined by applying the Wielandt-Hoffman theorem.
	- Linear convergence.

Gradient Flow

• Solve the problem:

$$
\min_{Q \in \mathcal{O}(n)} F(Q) := \frac{1}{2} || \text{diag}(Q^T \Lambda Q) - \text{diag}(a) ||^2.
$$

- \bullet Schur-Horn theorem \Rightarrow Existence of a Q at which F vanishes.
- Fréchet derivative of F :

$$
F'(Q)U = 2\langle \text{diag}(Q^T \Lambda Q) - \text{diag}(a), \text{diag}(Q^T \Lambda U) \rangle
$$

= 2\langle \text{diag}(Q^T \Lambda Q) - \text{diag}(a), Q^T \Lambda U \rangle
= 2\langle \Lambda Q(\text{diag}(Q^T \Lambda Q) - \text{diag}(a)), U \rangle.

- Diagonal matrix in the first entry of the inner product \Rightarrow The second equality.
- \Diamond Adjoint property \Rightarrow The third equality.
- Gradient ∇F can be interpreted as:

$$
\nabla F(Q) = 2\Lambda Q \beta(Q)
$$

$$
\diamond \beta(Q) := \text{diag}(Q^T \Lambda Q) - \text{diag}(a).
$$

• The projected gradient of $\nabla F(Q)$ onto $\mathcal{O}(n)$:

$$
g(Q) = Q[Q^T \Lambda Q, \beta(Q)]
$$

• The projected Hessian:

$$
\langle g'(Q)QK, QK \rangle = \langle \text{diag}[Q^T \Lambda Q, K] - [\beta(Q), K],
$$

$$
[Q^T \Lambda Q, K] \rangle.
$$

• The steepest descent flow on $\mathcal{O}(n)$:

$$
\dot{Q} = -g(Q).
$$

 \bullet An isospectral flow on $\mathcal{M}(\Lambda)$:

$$
\dot{X} = [X, [\alpha(X), X]]
$$

$$
\diamond X := Q^T \Lambda Q.
$$

$$
\diamond \alpha(X) := \beta(Q) = \text{diag}(X) - \text{diag}(a).
$$

- \diamond Reducing the distance between diag(X) and diag(a).
- The SHIEP can be solved by integrating the differential equation.

Convergence

• First order necessary condition:

$$
[\alpha(X),X]=0.
$$

- Second order necessary condition if $\beta(Q) = 0$: $\langle g'(Q)QK, QK \rangle = ||diag[Q^{T}\Lambda Q, K]||q^{2} \geq 0$ for all skew-symmetric matrices K .
- The strict inequality is not true in general. \Diamond Denote $\Omega := \text{diag}[X, K] = \text{diag}\{\omega_1, \ldots, \omega_n\}.$ \Diamond Then

$$
\omega_i = \sum_{s=1}^{i-1} x_{si} k_{si} - \sum_{t=i+1}^{n} x_{it} k_{it}.
$$

- \Diamond The system $\omega_i = 0$ for $i = 1, \ldots, n$ contains only $n-1$ independent equations in the $\frac{n(n-1)}{2}$ unknowns k_{ij} .
- \diamond Can find a non-trivial skew symmetric matrix K that makes $\Omega = 0$.
- If $\beta(Q) \neq 0$ at a stationary point Q, then there exists a skew-symmetric matrix K such that $\langle g'(Q)QK, QK \rangle < 1$ 0.
- If $\beta(Q) \neq 0$ at a stationary point Q, there exists an unstable direction along which F is increasing.
- Converge to an unstable equilibrium point is numerically impossible.
- Only X's such that $\beta(Q) = 0$ are the possible asymptotically stable equilibrium points.

Proof of Unstable Manifold

\n- Assume
$$
\beta(Q) = \text{diag}\{\beta_1 I_{n_1}, \ldots, \beta_k I_{n_k}\}.
$$
\n- $[Q^T \Lambda Q, \beta(Q)] = 0 \Rightarrow$ $X = Q^T \Lambda Q = \text{diag}\{X_{11}, \ldots, X_{kk}\}.$ \diamond $X_{ii} = n_i \times n_i$ real symmetric matrix.
\n- Define $E := Q\beta(Q)Q^T$.
\n- $[\Lambda, E] = 0 \Rightarrow$ \diamond $E = \text{diag}(e_1, \ldots, e_n).$ \diamond $\{e_1, \ldots, e_n = \text{a permutation of elements of } \beta(Q).$ α^T $M + \alpha$ $f \in X \Rightarrow Q$ $M + \beta$ $M + \beta$ <math display="

• Q^T = Matrix of eigenvectors of $X \Rightarrow Q$ has the same block structure as X .

- Consider a skew-symmetric matrix $K = [K_{ij}]$ such that,
	- \diamond Partitioned in the same way as X
	- $\Diamond K_{ii} = 0$ for all $i = 1, \ldots, k$.

• Observe

- $\Diamond \text{diag}[Q^T \Lambda Q, K] = 0.$
- The projected Hessian:

$$
\langle g'(Q)QK, QK \rangle
$$

= -\langle [\beta(Q), K], [Q^T \Lambda Q, K] \rangle
= -\langle E\tilde{K} - \tilde{K}E, \Lambda \tilde{K} - \tilde{K} \Lambda \rangle
= -2 \sum_{i < j} (\lambda_i - \lambda_j)(e_i - e_j) \tilde{k}_{ij}^2

 \diamond Easy to pick up values of \tilde{k}_{ij} so that

 $\langle g'(Q)QK, QK \rangle < 0.$

Numerical Experiment

- Initial value:
	- \Diamond Cannot use Λ as the initial value.
	- $\phi \times X_0 := Q^T \Lambda Q$ with Q a random orthogonal matrix.
- Integrator:
	- \diamond Subroutine ODE
	- \Diamond RELERR = ABSERR = 10⁻¹².
	- \diamond Check output values at interval of 1.

Example 1

• Test data:

```
a = [4.3792 \times 10^{-1}, 1.0388 \times 10^{+0}, 1.5396 \times 10^{-2}, 1.8609 \times 10^{+0}, 1.4024 \times 10^{+0}]
```

```
\lambda = [-1.4169 \times 10^{+0}, -5.6698 \times 10^{-1}, 4.3890 \times 10^{-1}, 1.4162 \times 10^{+0}, 4.8842 \times 10^{+0}]
```
• Random orthogonal matrix:

```
[-6.4009\times10^{-1}-5.3594\times10^{-1}-1.8454\times10^{-1}-3.3375\times10^{-2}-5.1757\times10^{-1}]\mathbf{I}\overline{1}\overline{1}\overline{1}\mathbf{r}\overline{1}\overline{1}\overline{1}\overline{1}\overline{1}2.1804\times10^{-1} - 1.2359\times10^{-1} - 5.0336\times10^{-1} - 8.2193\times10^{-1} 9.0802×10<sup>-2</sup>
-7.2099\times10^{-1} 5.6072\times10^{-1} 1.4302\times10^{-2} -2.4876\times10^{-1} 3.2199\times10^{-1}2.8417\times10^{-3}-1.9828\times10^{-1} \quad 8.4401\times10^{-1}-4.9375\times10^{-1}-6.7297\times10^{-2}-1.5134\times10^{-1} - 5.8632\times10^{-1} 3.0406×10<sup>-3</sup> 1.3284×10<sup>-1</sup> 7.8464×10<sup>-1</sup>
```
• Limit point: At $t \approx 11$, the gradient flow converges to:

```
\sqrt{ }\overline{1}\overline{1}\overline{1}\overline{1}\mathbf{r}\overline{1}\overline{1}\mathbf{r}\overline{1}\overline{1}4.3792\times10^{-1} 2.6691\times10^{-1} -1.9178\times10^{-1} -6.1356\times10^{-1} -1.5920\times10^{+0}2.6691\times10^{-1} 1.0388×10<sup>+0</sup> −7.2845×10<sup>-1</sup> −8.6726×10<sup>-1</sup> −1.9618×10<sup>+0</sup>
-1.9178\times10^{-1} - 7.2845\times10^{-1} 1.5396\times10^{-2} - 6.3601\times10^{-1} 1.6256\times10^{-1}-6.1356\times10^{-1} - 8.6726\times10^{-1} - 6.3601\times10^{-1} 1.8609\times10^{+0} 1.5032\times10^{+0}-1.5920\times10^{+0} - 1.9618\times10^{+0} 1.6256\times10^{-1} 1.5032\times10^{+0} 1.4024\times10^{+0}
```
• Different random orthogonal matrix ⇒ Different limit point.

- Repeat the experiment with 2,000 test data.
	- \Diamond Entries in a and λ are from random symmetric matrices with distribution $\mathcal{N}(0, 1)$.
	- \Diamond Orthogonal matrices Q are from the QR decomposition of non-symmetric random matrices (Stewart ,80).
- Collect the length of integration required for reaching convergence in each case.
	- \Diamond Inherent only to the individual problem data (and the stopping criterion).
	- \diamond Independent of the machine used.
- Histogram:
	- $\infty \approx 77\%$ of the cases converge with the length of integration less than 7.
	- $\infty \approx 93\%$ converge with length less than 17.
	- \diamond Maximal length of integration = 296.
	- \Diamond All 2,000 cases converge.

Figure 2: Histogram on the length of integration required for convergence.

- The lift-and-project method makes a connection with the Wielandt-Hoffman theorem.
- The gradient flow method can be integrated by any available ordinary differential equation solver.
- Numerical methods for general PIEP will not work.
- The gradient flow method always converges.
- A constructive proof of the Schur-Horn theorem.