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Overview

• Inverse Eigenvalue Problem (IEP):

� Reconstruction of matrices from prescribed spec-
tral data.

� Spectral data may involve complete or partial
information of eigenvalues or eigenvectors.

� Often necessary to restrict the construction to
special classes of matrices.

• Fundamental questions:

� Solvability: Determine a necessary or a sufficient
condition under which an IEP has a solution.

� Computability: Develop a scheme through which,
knowing a priori that the given spectral data are
feasible, a matrix can be constructed numeri-
cally.
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An Example: Parametrized IEP

• Given

� Symmetric matrices A0, A1, . . . , An ∈ Rn×n;

� Real numbers λ∗1 ≥ . . . ≥ λ∗n,

• Find

� Values of c := (c1, . . . , cn)
T ∈ Rn

� Eigenvalues of the matrix

A(c) := A0 + c1A1 + . . . + cnAn

are precisely λ∗1, . . . , λ
∗
n.

• Not always does the PIEP has a solution.

• Iterative and continuous methods exist (Friedland
et al. ’87, Chu et al., ’90).
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Inverse Stochastic Spectrum Problem

• Construct a stochastic matrix with prescribed spec-
trum.

� Stochastic structure.

� No strings of symmetry.

� Eigenvalues can appear in complex conjugate
pairs.

• A hard problem (Karpelevič ’51, Minc ’88).

� The set Θn of points in the complex plane that
are eigenvalues of stochastic n × n matrices is
completely characterized.

� The Karpelevič theorem characterizes only one
complex value a time and does not provide fur-
ther insights into when two or more points in Θn

are eigenvalues of the same stochastic matrix.
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Karpelevič’s Theorem

• A number λ is an eigenvalue for a stochastic matrix
if and only if it belongs to a region Θn such as the
one shown below for n = 4.
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Figure 1: Θ4 by the Karpelevič Theorem.
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� Region is symmetric about the real axis.

� The points on the unit circles are given by e2πa/b

where a and b range over all integers such that
0 ≤ a < b ≤ n.

� The boundary of Θn consists of curvilinear arcs
connecting these points in circular order. These
arcs are characterized by specific parametric equa-
tions (Minc, ’88).
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Relation to Nonnegative Matrices

• A complex nonzero number α is an eigenvalue of a
nonnegative matrix with a positive maximal eigen-
value r if and only if α/r is an eigenvalue of a
stochastic matrix.

• If A is a nonnegative matrix with positive maximal
eigenvalue r and a positive maximal eigenvector x,
then D−1r−1AD is a stochastic matrix where D :=
diag{x1, . . . , xn}.
� The IEP for nonnegative matrices (NIEP) has

received considerable interest in the literature
(Berman et al., 94).

� Some necessary and a few sufficient conditions
for the NIEP are available.

• A continuous method for the NIEP of symmetric
matrices has been studied (Chu, ’91).
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Basic Formulation

• Notation:

M(Λ) := {PΛP−1|P ∈ Rn×n is nonsingular}
π(Rn

+) := {B ◦ B|B ∈ Rn×n}
� Λ = real-valued matrix carrying the spectrum

information.

� ◦ = Hadamard product.

• Idea:

� Find the intersection ofM(Λ) and π(Rn+).

� The intersection, if exists, results in a nonnega-
tive matrix isospectral to Λ.

� Reduce the nonnegative matrix, if its maximal
eigenvector is positive, to a stochastic matrix by
diagonal similarity transformation.
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Reformulation

Minimize F (P,R) :=
1

2
||PJP−1 −R ◦ R||2

Subject to P ∈ Gl(n), R ∈ gl(n)

• P and R are used as coordinates to maneuver ele-
ments inM(Λ) and π(Rn

+) to reduce the objective
value.

• Feasible domains are open sets.

• A minimum may not exist.
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Gradient of F

• Inner product in the product topology:

〈(X1, Y1), (X2, Y2)〉 := 〈X1,X2〉 + 〈Y1, Y2〉.

•With respect to the product topology:

∇F (P,R) =(
(∆(P,R)M(P )T −M(P )T∆(P,R))P−T ,

−2∆(P,R) ◦R) .

� Abbreviation:

M(P ) := PJP−1

∆(P,R) := M(P )−R ◦R.
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Steepest Descent Flow

• Steepest descent flow:

dP

dt
= [M(P )T ,∆(P,R)]P−T

dR

dt
= 2∆(P,R) ◦R.

• Advantages:

� No longer need the projection of ∇F (P,R) as
does in the symmetric case.

� The zero structure in the original matrix R(0)
is preserved throughout the integration — may
be used to explore the possibility of construct-
ing a Markov chain with prescribed linkages and
spectrum.

• Disadvantage:

� The solution flow P (t) is susceptible to becom-
ing unbounded — a possible frailty.

� The involvement of P−1 is somewhat worrisome.
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ASVD flow

• An analytic singular value decomposition of the
path of matrices P (t) is an analytic path of fac-
torizations

P (t) = X(t)S(t)Y (t)T

where X(t) and Y (t) are orthogonal and S(t) is
diagonal.

• An ASVD exists if P (t) is analytic (Bunse-Gerstner
et al., ’91).

• The P (t) defined by the differential system is an-
alytic follows from the Cauchy-Kovalevskaya the-
orem since the coefficients of the vector field are
analytic.
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New Coordinate System

• The two matrices P and R are used, respectively,
as coordinates to describe the isospectral matrices
and nonnegative matrices.

� May have used more dimensions of variables than
necessary — does no harm.

�When flows P (t) and R(t) are introduced, in a
sense a flow in M(Λ) and a flow in π(Rn

+) are
also introduced.

• The motion of the coordinate P is further described
by three other variables X , S, and Y according to
the ASVD.

• To produce the steepest descent flow, a coordinate
system (X(t), S(t), Y (t), R(t)) is eventually imposed
on matrices inM(Λ)× π(Rn

+).
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Calculating the ASVD

• Differentiate P (t) = X(t)S(t)Y (t)T : (Wright ’92):

Ṗ = ẊSY T +XṠY T +XSẎ T

XTṖY = XTẊ︸ ︷︷ ︸
Z

S + Ṡ + S Ẏ TY︸ ︷︷ ︸
W

� Z,W are skew-symmetric matrices.

• Define Q := XTṖY .

� Q is known since Ṗ is already specified.

� The inverse of P (t) is calculated from

P−1 = Y S−1XT.

� The diagonal entries of S = diag{s1, . . . , sn}
provide us with information about the proximity
of P (t) to singularity.
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• Flow for S(t):

dS

dt
= diag(Q).

• Obtain W (t) and Z(t):

qjk = zjksk + sjwjk,

−qkj = zjksj + skwjk.

� If s2
k 6= s2

j , then

zjk =
skqjk + sjqkj
s2
k − s2

j

,

wjk =
sjqjk + skqkj
s2
j − s2

k

for all j > k.

• Flow for X(t) and Y (t):

dX

dt
= XZ.

dY

dt
= YW.

• The flow is now ready to be integrated by any IVP
solvers.
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Convergence

• The approach fails only when:

� P (t) becomes singular in finite time — requires
a restart.

� F (P (t), R(t)) converges to a nonzero constant
— a LS local solution is found.

• Gradient flows enjoy global convergence:

� G(t) := F (P (t), R(t)) enjoys the property:

dG

dt
= −‖∇F (P (t), R(t))‖2 ≤ 0

along any solution curve (P (t), R(t)).

� Suppose P (t) remains nonsingular. Then G(t)
converges.
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Numerical Experiment

• Integrator: MATLAB ODE SUITE

� ode113 = ABM, PECE, non-stiff system.

� ode15s = Klopfenstein-Shampine, quasi-
constant step size, stiff system.

• Stopping criteria:

� ABSERR = RELERR = 10−12.

� ‖∆(P,R)‖ ≤ 10−9 ⇒ a stochastic matrix has
been found.

� Relative improvement of ∆(P,R) between two
consecutive output points ≤ 10−9 ⇒ a LS solu-
tion is found.
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Example 1

• Spectrum:

{1.0000,−0.2403, 0.1186± 0.1805i,−0.1018}

• Initial values:

P0 =



0.2002 0.4213 0.9229 0.7243 0.4548
0.6964 0.0752 0.9361 0.2235 0.0981
0.7538 0.3620 0.2157 0.5272 0.2637
0.4366 0.3220 0.8688 0.1729 0.8697
0.8897 0.1436 0.7097 0.5343 0.7837


R0 = .83281

• Limit point:

B =



0.1679 0.0522 0.4721 0.0000 0.3078
0.1436 0.1779 0.4186 0.1901 0.0698
0.0000 0.1377 0.5291 0.3034 0.0299
0.0560 0.4690 0.2404 0.0038 0.2309
0.1931 0.1011 0.5339 0.1553 0.0165


.
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Figure 2: A log-log plot of F (P (t), R(t)) versus t for Example 1.
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Figure 3: A comparison of steps taken by ode113 and ode15s for Example 1.

• Both solvers work reasonably.

� ode15s advances with larger step sizes at the
cost of solving implicit algebraic equations.

� Jacobians are calculated by finite difference. Func-
tion calls could be reduced by fewer output points.

• Different initial values lead to different stochastic
matrices.
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Example 2

• Spectrum:

{1.0000,−0.2608, 0.5046, 0.6438,−0.4483}

• Looking for a Markov chain with ring linkage, i.e.,
each state is linked at most to its two immediate
neighbors.
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• Initial values:

P0 =



0.1825 0.7922 0.2567 0.9260 0.9063
0.1967 0.5737 0.7206 0.5153 0.0186
0.5281 0.2994 0.9550 0.6994 0.1383
0.7948 0.6379 0.5787 0.1005 0.9024
0.5094 0.8956 0.3954 0.6125 0.4410



R0 = 0.9210



1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1


.

• Limit point:

D =



0.0000 0.3094 0 0 0.6906
0.0040 0.5063 0.4896 0 0
0 0.0000 0.5134 0.4866 0
0 0 0.7733 0.2246 0.0021
0.4149 0 0 0.3900 0.1951


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Example 3

• Spectrum

{1.0000,−0.2403, 0.3090± 0.5000i,−0.1018}

• Initial values: same as Example 1 (or modify R0).

• Slow convergence:

E =



0.3818 0.0000 0.4568 0.0000 0.1614
0.5082 0.3314 0.0871 0.0049 0.0684
0.0000 0.0000 0.5288 0.4712 0.0000
0.0266 0.7634 0.0292 0.0310 0.1498
0.5416 0.0524 0.3835 0.0196 0.0029



F =



0.3237 0 0.4684 0 0.2079
0.4742 0.3184 0.1303 0.0007 0.0764
0 0.0000 0.5231 0.4769 0
0.0066 0.7536 0.0372 0.0958 0.1068
0.5441 0.0429 0.3959 0.0022 0.0149


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Figure 4: A log-log plot of F (P (t), R(t)) versus t for Example 3.
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Figure 5: History of the smallest singular value for Example 3.

Conclusion

• The theory of solvability on the StIEP or the NIEP
is yet to be developed.

• An ODE approach capable of solving the StIEP or
the NIEP numerically, if the prescribed spectrum is
feasible, is proposed.

• The method is easy to implement by existing ODE
solvers.

• The method can also be used to approximate least
squares solutions or linearly structured matrices.


