Chapter 8

Inverse Singular Value Problems

- IEP versus ISVP
- Existence question
- A continuous approach
- An iterative method for the IEP
- An iterative method for the ISVP

IEP versus ISVP

- Inverse Eigenvalue Problem (IEP):
 - ♦ Given
 - \triangleright Symmetric matrices $A_0, A_1, ..., A_n \in \mathbb{R}^{n \times n}$;
 - \triangleright Real numbers $\lambda_1^* \ge \ldots \ge \lambda_n^*$,
 - ♦ Find
 - \triangleright Values of $c := (c_1, \ldots, c_n)^T \in \mathbb{R}^n$
 - ▶ Eigenvalues of the matrix

$$A(c) := A_0 + c_1 A_1 + \ldots + c_n A_n$$

are precisely $\lambda_1^*, \ldots, \lambda_n^*$.

- Inverse Singular Value Problem ISVP:
 - ♦ Given
 - \triangleright General matrices $B_0, B_1, \ldots, B_n \in \mathbb{R}^{m \times n}, m \ge n$;
 - \triangleright Nonnegative real numbers $\sigma_1^* \ge \ldots \ge \sigma_n^*$,
 - ♦ Find
 - \triangleright Values of $c := (c_1, \ldots, c_n)^T \in \mathbb{R}^n$
 - ▷ Singular values of the matrix

$$B(c) := B_0 + c_1 B_1 + \ldots + c_n B_n$$

are precisely $\sigma_1^*, \ldots, \sigma_n^*$.

Existence Question

- Not always does the IEP have a solution.
- Inverse Toeplitz Eigenvalue Problem (ITEP)
 - \diamond A special case of the (IEP) where $A_0 = 0$ and $A_k := (A_{ij}^{(k)})$ with

$$A_{ij}^{(k)} := \begin{cases} 1, & \text{if } |i-j| = k-1; \\ 0, & \text{otherwise.} \end{cases}$$

- ♦ Symmetric Toeplitz matrices can have *arbitrary* real spectra. (Landau '94, nonconstructive proof by topological degree argument).
- Not aware of any result concerning the existence question for ISVP.

Notation

- $\mathcal{O}(n) := \text{All orthogonal matrices in } R^{n \times n};$
- $\Sigma = (\Sigma_{ij}) := A$ "diagonal" matrix in $R^{m \times n}$

$$\Sigma_{ij} := \begin{cases} \sigma_i^*, & \text{if } 1 \leq i = j \leq n; \\ 0, & \text{otherwise.} \end{cases}$$

- $\mathcal{M}_s(\Sigma) := \{U\Sigma V^T | U \in \mathcal{O}(m), V \in \mathcal{O}(n)\}$
 - \diamond Contains all matrices in $R^{m \times n}$ whose singular values are precisely $\sigma_1^*, \ldots, \sigma_n^*$.
- $\bullet \ \mathcal{B} := \{B(c) | c \in \mathbb{R}^n\}.$
- Solving the ISVP \equiv Finding an intersection of the two sets $\mathcal{M}_s(\Sigma)$ and \mathcal{B} .

A Continuous Approach

Assume

$$\diamond \langle B_i, B_j \rangle = \delta_{ij} \text{ for } 1 \le i \le j \le n.$$

 $\diamond \langle B_0, B_k \rangle = 0 \text{ for } 1 \le k \le n.$

• The projection of X onto the linear subspace spanned by B_1, \ldots, B_n :

$$P(X) = \sum_{k=1}^{n} \langle X, B_k \rangle B_k.$$

• The distance from X to the affine subspace \mathcal{B} :

$$dist(X, \mathcal{B}) = ||X - (B_0 + P(X))||.$$

• Define, for any $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$, a residual matrix:

$$R(U, V) := U\Sigma V^T - (B_0 + P(U\Sigma V^T)).$$

• Consider the optimization problem:

Minimize
$$F(U, V) := \frac{1}{2} ||R(U, V)||^2$$

Subject to $(U, V) \in \mathcal{O}(m) \times \mathcal{O}(n)$.

Compute the Projected Gradient

• Frobenius inner product on $R^{m \times m} \times R^{n \times n}$:

$$\langle (A_1, B_1), (A_2, B_2) \rangle := \langle A_1, A_2 \rangle + \langle B_1, B_2 \rangle.$$

• The gradient ∇F may be interpreted as the pair of matrices:

$$\nabla F(U, V) = (R(U, V)V\Sigma^T, R(U, V)^TU\Sigma).$$

• Tangent space can be split:

$$\mathcal{T}_{(U,V)}(\mathcal{O}(m) \times \mathcal{O}(n)) = \mathcal{T}_U \mathcal{O}(m) \times \mathcal{T}_V \mathcal{O}(n).$$

• Projection is easy because:

$$R^{n \times n} = T_V \mathcal{O}(n) \oplus T_V \mathcal{O}(n)^{\perp}$$
$$= V \mathcal{S}(n)^{\perp} \oplus V \mathcal{S}(n)$$

• Project the gradient $\nabla F(U, V)$ onto the tangent space $\mathcal{T}_{(U,V)}(\mathcal{O}(m) \times \mathcal{O}(n))$:

$$\begin{split} g(U,V) &= \\ \left(\frac{R(U,V)V\Sigma^TU^T - U\Sigma V^TR(U,V)^T}{2}U, \\ \frac{R(U,V)^TU\Sigma V^T - V\Sigma^TU^TR(U,V)}{2}V\right). \end{split}$$

• Descent vector field:

$$\frac{d(U,V)}{dt} = -g(U,V)$$

defines a steepest descent flow on the manifold $\mathcal{O}(m) \times \mathcal{O}(n)$ for the objective function F(U, V).

The Differential Equation on $\mathcal{M}_s(\Sigma)$

• Define

$$X(t) := U(t)\Sigma V(t)^{T}.$$

• X(t) satisfies the differential system:

$$\frac{dX}{dt} = X \frac{X^{T}(B_0 + P(X)) - (B_0 + P(X))^{T}X}{2} - \frac{X(B_0 + P(X))^{T} - (B_0 + P(X))^{T}X}{2}X.$$

- X(t) moves on the surface $\mathcal{M}_s(\Sigma)$ in the steepest descent direction to minimize $dist(X(t), \mathcal{B})$.
- This is a continuous method for the ISVP.

Remarks

- No assumption on the multiplicity of singular values is needed.
- Any tangent vector T(X) to $\mathcal{M}_s(\Sigma)$ at a point $X \in \mathcal{M}_s(\Sigma)$ about which a local chart can be defined must be of the form

$$T(X) = XK - HX$$

for some skew symmetric matrices $H \in \mathbb{R}^{m \times m}$ and $K \in \mathbb{R}^{n \times n}$.

An Iterative Method for IEP

- Assume all eigenvalues $\lambda_1^*, \ldots, \lambda_n^*$ are distinct.
- Consider:
 - ♦ The affine subspace

$$\mathcal{A} := \{ A(c) | c \in \mathbb{R}^n \}.$$

♦ The isospectral surface

$$\mathcal{M}_e(\Lambda) := \{Q\Lambda Q^T | Q \in \mathcal{O}(n)\}$$

where

$$\Lambda := diag\{\lambda_1^*, \dots, \lambda_n^*\}.$$

• Any tangent vector T(X) to $\mathcal{M}_e(\Lambda)$ at a point $X \in \mathcal{M}_e(\Lambda)$ must be of the form

$$T(X) = XK - KX$$

for some skew-symmetric matrix $K \in \mathbb{R}^{n \times n}$.

A Classical Newton Method

- A function $f: R \longrightarrow R$.
- The scheme:

$$x^{(\nu+1)} = x^{(\nu)} - (f'(x^{(\nu)}))^{-1} f(x^{(\nu)})$$

- The intercept:
 - \diamond The new iterate $x^{(\nu+1)}$ = The x-intercept of the tangent line of the graph of f from $(x^{(\nu)}, f(x^{(\nu)}))$.
- The lifting:
 - $(x^{(\nu+1)}, f(x^{(\nu+1)}))$ = The natural "lift" of the intercept along the y-axis to the graph of f from which the next tangent line will begin.

An Analogy of the Newton Method

• Think of:

- \diamond The surface $\mathcal{M}_e(\Lambda)$ as playing the role of the graph of f.
- \diamond The affine subspace \mathcal{A} as playing the role of the x-axis.
- Given $X^{(\nu)} \in \mathcal{M}_e(\Lambda)$,
 - \diamond There exist a $Q^{(\nu)} \in \mathcal{O}(n)$ such that

$$Q^{(\nu)T} X^{(\nu)} Q^{(\nu)} = \Lambda.$$

- \diamond The matrix $X^{(\nu)} + X^{(\nu)}K KX^{(\nu)}$ with any skew-symmetric matrix K represents a tangent vector to $\mathcal{M}_e(\Lambda)$ emanating from $X^{(\nu)}$.
- Seek an \mathcal{A} -intercept $A(c^{(\nu+1)})$ of such a vector with the affine subspace \mathcal{A} .
- Lift up the point $A(c^{(\nu+1)}) \in \mathcal{A}$ to a point $X^{(\nu+1)} \in \mathcal{M}_e(\Lambda)$.

Find the Intercept

• Find a skew-symmetric matrix $K^{(\nu)}$ and a vector $c^{(\nu+1)}$ such that

$$X^{(\nu)} + X^{(\nu)}K^{(\nu)} - K^{(\nu)}X^{(\nu)} = A(c^{(\nu+1)}).$$

ullet Equivalently, find $\tilde{K}^{(\nu)}$ such that

$$\Lambda + \Lambda \tilde{K}^{(\nu)} - \tilde{K}^{(\nu)} \Lambda = Q^{(\nu)^T} A(c^{(\nu+1)}) Q^{(\nu)}.$$

$$\diamond \tilde{K}^{(\nu)} := Q^{(\nu)T} K^{(\nu)} Q^{(\nu)}$$
 is skew-symmetric.

• Can find $c^{(\nu)}$ and $K^{(\nu)}$ separately.

• Diagonal elements in the system \Rightarrow

$$J^{(\nu)}c^{(\nu+1)} = \lambda^* - b^{(\nu)}.$$

♦ Known quantities:

$$J_{ij}^{(\nu)} := q_i^{(\nu)^T} A_j q_i^{(\nu)}, \text{ for } i, j = 1, \dots, n$$

$$\lambda^* := (\lambda_1^*, \dots, \lambda_n^*)^T$$

$$b_i^{(\nu)} := q_i^{(\nu)^T} A_0 q_i^{(\nu)}, \text{ for } i = 1, \dots, n$$

$$q_i^{(\nu)} = \text{ the } i\text{-th column of the matrix } Q^{(\nu)}.$$

- The vector $c^{(\nu+1)}$ can be solved.
- Off-diagonal elements in the system together with $c^{(\nu+1)} \Rightarrow \tilde{K}^{(\nu)}$ (and, hence, $K^{(\nu)}$):

$$\tilde{K}_{ij}^{(\nu)} = \frac{q_i^{(\nu)^T} A(c^{(\nu+1)}) q_j^{(\nu)}}{\lambda_i^* - \lambda_j^*}, \text{ for } 1 \le i < j \le n.$$

Find the Lift-up

- No obvious coordinate axis to follow.
- Solving the IEP \equiv Finding $\mathcal{M}_e(\Lambda) \cap \mathcal{A}$.
- Suppose all the iterations are taking place near a point of intersection. Then

$$X^{(\nu+1)} \approx A(c^{(\nu+1)}).$$

• Also should have

$$A(c^{(\nu+1)}) \approx e^{-K^{(\nu)}} X^{(\nu)} e^{K^{(\nu)}}.$$

• Replace $e^{K^{(\nu)}}$ by the Cayley transform:

$$R:=(I+\frac{K^{(\nu)}}{2})(I-\frac{K^{(\nu)}}{2})^{-1}\approx e^{K^{(\nu)}}.$$

• Define

$$X^{(\nu+1)} := R^T X^{(\nu)} R \in \mathcal{M}_e(\Lambda).$$

• The next iteration is ready to begin.

Remarks

• Note that

$$X^{(\nu+1)} \approx R^T e^{K^{(\nu)}} A(c^{(\nu+1)}) e^{-K^{(\nu)}} R \approx A(c^{(\nu+1)})$$

represents a lifting of the matrix $A(c^{(\nu+1)})$ from the affine subspace \mathcal{A} to the surface $\mathcal{M}_e(\Lambda)$.

- The above offers a geometrical interpretation of Method III developed by Friedland, Nocedal and Overton (SINUM, 1987).
- Quadratic convergence even for multiple eigenvalues case.

An Iterative Approach for ISVP

• Assume

- \diamond Matrices B_0, B_1, \ldots, B_n are arbitrary.
- \diamond All singular values $\sigma_1^*, \ldots, \sigma_n^*$ are positive and distinct.
- Given $X^{(\nu)} \in \mathcal{M}_s(\Sigma)$
 - \diamond There exist $U^{(\nu)} \in \mathcal{O}(m)$ and $V^{(\nu)} \in \mathcal{O}(n)$ such that

$$U^{(\nu)T}X^{(\nu)}V^{(\nu)} = \Sigma.$$

- \diamond Seek a \mathcal{B} -intercept $B(c^{(\nu+1)})$ of a line that is tangent to the manifold $\mathcal{M}_s(\Sigma)$ at $X^{(\nu)}$.
- \diamond Lift the matrix $B(c^{(\nu+1)}) \in \mathcal{B}$ to a point $X^{(\nu+1)} \in \mathcal{M}_s(\Sigma)$.

Find the Intercept

• Find skew-symmetric matrices $H^{(\nu)} \in \mathbb{R}^{m \times m}$ and $K^{(\nu)} \in \mathbb{R}^{n \times n}$, and a vector $c^{(\nu+1)} \in \mathbb{R}^n$ such that

$$X^{(\nu)} + X^{(\nu)}K^{(\nu)} - H^{(\nu)}X^{(\nu)} = B(c^{(\nu+1)})$$

• Equivalently,

$$\Sigma + \Sigma \tilde{K}^{(\nu)} - \tilde{H}^{(\nu)} \Sigma = U^{(\nu)T} B(c^{(\nu+1)}) V^{(\nu)}$$

♦ Underdetermined skew-symmetric matrices:

$$\tilde{H}^{(\nu)} := U^{(\nu)}^T H^{(\nu)} U^{(\nu)},$$

 $\tilde{K}^{(\nu)} := V^{(\nu)}^T K^{(\nu)} V^{(\nu)}.$

• Can determine $c^{(\nu+1)}$, $H^{(\nu)}$ and $K^{(\nu)}$ separately.

• Totally $\frac{m(m-1)}{2} + \frac{n(n-1)}{2} + n$ unknowns — the vector $c^{(\nu+1)}$ and the skew matrices $\tilde{H}^{(\nu)}$ and $\tilde{K}^{(\nu)}$.

- Only mn equations.
- Observe: $\tilde{H}_{ij}^{(\nu)}$, $n+1 \le i \ne j \le m$,
 - $\diamondsuit \frac{(m-n)(m-n-1)}{2}$ unknowns.
 - \diamond Locate at the lower right corner of $\tilde{H}^{(\nu)}$.
 - ♦ Are not bound to any equations at all.
 - ♦ Set

$$\tilde{H}_{ij}^{(\nu)} = 0 \text{ for } n+1 \leq i \neq j \leq m.$$

• Denote

$$W^{(\nu)} := U^{(\nu)T} B(c^{(\nu+1)}) V^{(\nu)}.$$

Then

$$W_{ij}^{(\nu)} = \Sigma_{ij} + \Sigma_{ii}\tilde{K}_{ij}^{(\nu)} - \tilde{H}_{ij}^{(\nu)}\Sigma_{jj},$$

Determine $c^{(\nu+1)}$

• For
$$1 \le i = j \le n$$
,
$$J^{(\nu)}c^{(\nu+1)} = \sigma^* - b^{(\nu)}$$

♦ Know quantities:

$$J_{st}^{(\nu)} := u_s^{(\nu)^T} B_t v_s^{(\nu)}, \text{ for } 1 \leq s, t \leq n,$$
 $\sigma^* := (\sigma_1^*, \dots, \sigma_n^*)^T,$
 $b_s^{(\nu)} := u_s^{(\nu)^T} B_0 v_s^{(\nu)}, \text{ for } 1 \leq s \leq n.$
 $u_s^{(\nu)} = \text{column vectors of } U^{(\nu)},$
 $v_s^{(\nu)} = \text{column vectors of } V^{(\nu)}.$

- The vector $c^{(\nu+1)}$ is obtained.
- $\bullet c^{(\nu+1)} \Rightarrow W^{(\nu)}.$

Determine $H^{(\nu)}$ and $K^{(\nu)}$

• For $n+1 \le i \le m$ and $1 \le j \le n$,

$$\tilde{H}_{ij}^{(\nu)} = -\tilde{H}_{ji}^{(\nu)} = -\frac{W_{ij}^{(\nu)}}{\sigma_j^*}.$$

• For $1 \le i < j \le n$,

$$W_{ij}^{(\nu)} = \Sigma_{ii} \tilde{K}_{ij}^{(\nu)} - \tilde{H}_{ij}^{(\nu)} \Sigma_{jj},$$

$$W_{ji}^{(\nu)} = \Sigma_{jj} \tilde{K}_{ji}^{(\nu)} - \tilde{H}_{ji}^{(\nu)} \Sigma_{ii}$$

$$= -\Sigma_{jj} \tilde{K}_{ij}^{(\nu)} + \tilde{H}_{ij}^{(\nu)} \Sigma_{ii}.$$

Solving for $\tilde{H}_{ij}^{(\nu)}$ and $\tilde{K}_{ij}^{(\nu)} \Rightarrow$

$$\tilde{H}_{ij}^{(\nu)} = -\tilde{H}_{ji}^{(\nu)} = \frac{\sigma_i^* W_{ji}^{(\nu)} + \sigma_j^* W_{ij}^{(\nu)}}{(\sigma_i^*)^2 - (\sigma_j^*)^2},$$

$$\tilde{K}_{ij}^{(\nu)} = -\tilde{K}_{ji}^{(\nu)} = \frac{\sigma_i^* W_{ij}^{(\nu)} + \sigma_j^* W_{ji}^{(\nu)}}{(\sigma_i^*)^2 - (\sigma_j^*)^2}.$$

• The intercept is now completely found.

Find the Lift-Up

• Define orthogonal matrices

$$R := (I + \frac{H^{(\nu)}}{2})(I - \frac{H^{(\nu)}}{2})^{-1},$$

$$S := (I + \frac{K^{(\nu)}}{2})((I - \frac{K^{(\nu)}}{2})^{-1}.$$

• Define the lifted matrix on $\mathcal{M}_s(\Sigma)$:

$$X^{(\nu+1)} := R^T X^{(\nu)} S.$$

• Observe

$$X^{(\nu+1)} \approx R^T(e^{H^{(\nu)}}B(c^{(\nu+1)})e^{-K^{(\nu)}})S$$

and

$$R^T e^{H^{(\nu)}} \approx I_m$$

 $e^{-K^{(\nu)}} S \approx I_n,$

if $||H^{(\nu)}||$ and $||K^{(\nu)}||$ are small.

- For computation,
 - ♦ Only need orthogonal matrices

$$U^{(\nu+1)} := R^T U^{(\nu)} V^{(\nu+1)} := S^T V^{(\nu)}.$$

 \diamond Does not need to form $X^{(\nu+1)}$ explicitly.

Quadratic Convergence

- Measure the discrepancy between $(U^{(\nu)}, V^{(\nu)}) \in \mathbb{R}^{m \times m} \times \mathbb{R}^{n \times n}$ in the induced Frobenius norm.
- Observe:
 - ♦ Suppose:
 - \triangleright The ISVP has an exact solution at c^* .

$$\triangleright$$
 SVD of $B(c^*) = \hat{U}\Sigma\hat{V}^T$.

♦ Define error matrix::

$$E := (E_1, E_2) := (U - \hat{U}, V - \hat{V}).$$

 \diamond If $U\hat{U}^T = e^H$ and $V\hat{V}^T = e^K$, then

$$U\hat{U}^{T} = (E_{1} + \hat{U})\hat{U}^{T}$$

$$= I_{m} + E_{1}\hat{U}^{T}$$

$$= e^{H} = I_{m} + H + O(||H||^{2}).$$

and a similar expression for $V\hat{V}^T$.

♦ Thus,

$$||(H, K)|| = O(||E||).$$

• At the ν -th stage, define

$$E^{(\nu)} := (E_1^{(\nu)}, E_2^{(\nu)}) = (U^{(\nu)} - \hat{U}, V^{(\nu)} - \hat{V}).$$

- How far is $U^{(\nu)T}B(c^*)V^{(\nu)}$ away from Σ ?
 - ♦ Write

$$U^{(\nu)T}B(c^*)V^{(\nu)} := e^{-\hat{H}^{(\nu)}} \Sigma e^{\hat{K}^{(\nu)}}$$
$$:= (U^{(\nu)T}e^{-H_*^{(\nu)}}U^{(\nu)}) \Sigma (V^{(\nu)T}e^{K_*^{(\nu)}}V^{(\nu)})$$

with

$$H_*^{(\nu)} := U^{(\nu)} \hat{H}^{(\nu)} U^{(\nu)^T}, K_*^{(\nu)} := V^{(\nu)} \hat{K}^{(\nu)} V^{(\nu)^T},$$

♦ Then

$$e^{H_*^{(\nu)}} = U^{(\nu)}\hat{U}^T, e^{K_*^{(\nu)}} = V^{(\nu)}\hat{V}^T.$$

♦ So

$$||(H_*^{(\nu)}, K_*^{(\nu)})|| = O(||E^{(\nu)}||).$$

 \diamond Norm invariance under orthogonal transformations \Rightarrow

$$||(\hat{H}^{(\nu)}, \hat{K}^{(\nu)})|| = O(||E^{(\nu)}||).$$

• Rewrite

$$U^{(\nu)T}B(c^*)V^{(\nu)} = \Sigma + \Sigma \hat{K}^{(\nu)} - \hat{H}^{(\nu)}\Sigma + O(\|E^{(\nu)}\|^2).$$

• Compare:

$$\begin{split} &U^{(\nu)^T}(B(c^*) - B(c^{(\nu+1)}))V^{(\nu)} \\ &= \Sigma(\hat{K}^{(\nu)} - \tilde{K}^{(\nu)}) - (\hat{H}^{(\nu)} - \tilde{H}^{(\nu)})\Sigma \\ &+ O(||E^{(\nu)}||^2). \end{split}$$

• Diagonal elements \Rightarrow

$$J^{(\nu)}(c^* - c^{(\nu+1)}) = O(||E^{(\nu)}||^2).$$

♦ Thus

$$||c^* - c^{(\nu+1)}|| = O(||E^{(\nu)}||^2).$$

• Off-diagonal elements \Rightarrow

$$||\hat{H}^{(\nu)} - \tilde{H}^{(\nu)}|| = O(||E^{(\nu)}||^2),$$

$$||\hat{K}^{(\nu)} - \tilde{K}^{(\nu)}|| = O(||E^{(\nu)}||^2).$$

♦ Therefore,

$$||(\tilde{H}^{(\nu)}, \tilde{K}^{(\nu)})|| = O(||E^{(\nu)}||).$$

• Together,

$$||H^{(\nu)} - H_*^{(\nu)}|| = O(||E^{(\nu)}||^2),$$

$$||K^{(\nu)} - K_*^{(\nu)}|| = O(||E^{(\nu)}||^2).$$

• Observe:

$$\begin{split} E_1^{(\nu+1)} &:= U^{(\nu+1)} - \hat{U} = R^T U^{(\nu)} - e^{-H_*^{(\nu)}} U^{(\nu)} \\ &= \left[(I - \frac{H^{(\nu)}}{2}) - (I - H_*^{(\nu)} + O(||H_*^{(\nu)}||^2) \right] \\ & (I + \frac{H^{(\nu)}}{2}) \right] (I + \frac{H^{(\nu)}}{2})^{-1} U^{(\nu)} \\ &= \left[H_*^{(\nu)} - H^{(\nu)} + O(||H_*^{(\nu)}H^{(\nu)}|| + ||H^{(\nu)}||^2) \right] (I + \frac{H^{(\nu)}}{2})^{-1} U^{(\nu)}. \end{split}$$

♦ It is clear now that

$$||E_1^{(\nu+1)}|| = O(||E^{(\nu)}||^2).$$

- A similar argument works for $E_2^{(\nu+1)}$.
- We have proved that

$$||E^{(\nu+1)}|| = O(||E^{(\nu)}||^2).$$

Multiple Singular Values

- Previous definition in finding the \mathcal{B} -intercept of a tangent line of $\mathcal{M}_s(\Sigma)$ allows
 - ♦ No zero singular values.
 - ♦ No multiple singular values.
- Now assume
 - ♦ All singular values are positive.
 - \diamond Only the first singular value σ_1^* is multiple, with multiplicity p.

- Observe:
 - ♦ All formulas work, except
 - \triangleright For $1 \le i < j \le p$, only know

$$W_{ij}^{(\nu)} + W_{ji}^{(\nu)} = 0.$$

- \triangleright No values for $\tilde{H}_{ij}^{(\nu)}$ and $\tilde{K}_{ij}^{(\nu)}$ can be determined.
- \triangleright Additional $q := \frac{p(p-1)}{2}$ equations for the vector $c^{(\nu+1)}$ arise.
- Multiple singular values gives rise to an overdetermined system for $c^{(\nu+1)}$.
 - \diamond Tangent lines from $\mathcal{M}_s(\Sigma)$ may not intercept the affine subspace \mathcal{B} at all.
 - ♦ The ISVP needs to be modified.

Modified ISVP

- Given
 - \diamond Positive values $\sigma_1^* = \ldots = \sigma_p^* > \sigma_{p+1}^* > \ldots > \sigma_{n-q}^*,$
- Find
 - \diamond Real values of c_1, \ldots, c_n ,
 - \diamond The n-q largest singular values of the matrix matrix B(c) are $\sigma_1^*, \ldots, \sigma_{n-q}^*$.

Find the Intercept

• Use the equation

$$\hat{\Sigma} + \hat{\Sigma}\tilde{K}^{(\nu)} - \tilde{H}^{(\nu)}\hat{\Sigma} = U^{(\nu)T}B(c^{(\nu+1)}V^{(\nu)})$$

to find the \mathcal{B} -intercept where

♦ The diagonal matrix

$$\hat{\Sigma} := diag\{\sigma_1^*, \dots, \sigma_{n-q}^*, \hat{\sigma}_{n-q+1}, \dots, \hat{\sigma}_n\}$$

 \diamond Additional singular values $\hat{\sigma}_{n-q+1}, \ldots, \hat{\sigma}_n$ are free parameters.

The Algorithm

Given $U^{(\nu)} \in \mathcal{O}(m)$ and $V^{(\nu)} \in \mathcal{O}(n)$,

• Solve for $c^{(\nu+1)}$ from the system of equations:

$$\sum_{k=1}^{n} \left(u_i^{(\nu)T} B_k v_i^{(\nu)} \right) c_k^{(\nu+1)} = \sigma_i^* - u_i^{(\nu)T} B_0 v_i^{(\nu)},$$
for $i = 1, \dots, n - q$

$$\sum_{k=1}^{n} \left(u_s^{(\nu)T} B_k v_t^{(\nu)} + u_t^{(\nu)T} B_k v_s^{(\nu)} \right) c_k^{(\nu+1)} =$$

$$-u_s^{(\nu)T} B_0 v_t^{(\nu)} - u_t^{(\nu)T} B_0 v_s^{(\nu)},$$
for $1 \le s < t \le p$.

• Define $\hat{\sigma}_k^{(\nu)}$ by

$$\hat{\sigma}_k^{(\nu)} := \begin{cases} \sigma_k^*, & \text{if } 1 \leq k \leq n - q; \\ u_k^{(\nu)T} B(c^{(\nu+1)}) v_k^{(\nu)}, & \text{if } n - q < k \leq n \end{cases}$$

• Once $c^{(\nu+1)}$ is determined, calculate $W^{(\nu)}$.

ullet Define skew symmetric matrices $\tilde{K}^{(\nu)}$ and $\tilde{H}^{(\nu)}$:

 \diamond For $1 \leq i < j \leq p$, the equation to be satisfied is

$$W_{ij}^{(\nu)} = \hat{\sigma}_i^{(\nu)} \tilde{K}_{ij}^{(\nu)} - \tilde{H}_{ij}^{(\nu)} \hat{\sigma}_j^{(\nu)}.$$

 \triangleright Many ways to define $\tilde{K}_{ij}^{(\nu)}$ and $\tilde{H}_{ij}^{(\nu)}$.

$$\triangleright$$
 Set $\tilde{K}_{ij}^{(\nu)} \equiv 0$ for $1 \le i < j \le p$.

 $\diamond \tilde{K}^{(\nu)}$ is defined by

$$\tilde{K}_{ij}^{(\nu)} := \begin{cases} \frac{\hat{\sigma}_{i}^{(\nu)} W_{ij}^{(\nu)} + \hat{\sigma}_{j}^{(\nu)} W_{ji}^{(\nu)}}{(\hat{\sigma}_{i}^{(\nu)})^{2} - (\hat{\sigma}_{j}^{(\nu)})^{2}}, & \text{if } 1 \leq i < j \leq n; \ p < j; \\ 0, & \text{if } 1 \leq i < j \leq p \end{cases}$$

 $\diamond \tilde{H}^{(\nu)}$ is defined by

$$\tilde{H}_{ij}^{(\nu)} := \begin{cases} -\frac{W_{ij}^{(\nu)}}{\hat{\sigma}_{j}^{(\nu)}}, & \text{if } 1 \leq i < j \leq p; \\ -\frac{W_{ij}^{(\nu)}}{\hat{\sigma}_{j}^{(\nu)}}, & \text{if } n+1 \leq i \leq m; \ 1 \leq j \leq n; \\ \frac{\hat{\sigma}_{i}^{(\nu)}W_{ji}^{(\nu)} + \hat{\sigma}_{j}^{(\nu)}W_{ij}^{(\nu)}}{(\hat{\sigma}_{i}^{(\nu)})^{2} - (\hat{\sigma}_{j}^{(\nu)})^{2}}, & \text{if } 1 \leq i < j \leq n; \ p < j; \\ 0, & \text{if } n+1 \leq i \neq j \leq m. \end{cases}$$

• Once $\tilde{H}^{(\nu)}$ and $\tilde{K}^{(\nu)}$ are determined, proceed the lifting in the same way as for the ISVP.

Remarks

- No longer on a fixed manifold $\mathcal{M}_s(\Sigma)$ since $\hat{\Sigma}$ is changed per step.
- The algorithm for multiple singular value case converges quadratically.

Zero Singular Value

- Zero singular value \Rightarrow rank deficiency.
- Finding a lower rank matrix in a generic affine subspace \mathcal{B} is intuitively a more difficult problem.
- More likely the ISVP does not have a solution.
- Consider the simplest case where $\sigma_1^* > \ldots > \sigma_{n-1}^* > \sigma_n^* = 0$.
 - \diamond Except for \tilde{H}_{in} (and \tilde{H}_{ni}), $i = n + 1, \ldots, m$, all other quantities including $c^{(\nu+1)}$ are well-defined.
 - ♦ It is necessary that

$$W_{in}^{(\nu)} = 0 \text{ for } i = n+1, \dots, m.$$

 \diamond If the necessary condition fails, then no tangent line of $\mathcal{M}_s(\Sigma)$ from the current iterate $X^{(\nu)}$ will intersect the affine subspace \mathcal{B} .

Example of the Continuous Approach

- Integrator Subroutine ODE (Shampine et al, '75).
 - \diamond ABSERR and RELERR = 10^{-12} .
 - ♦ Output values examined at interval of 10.
- Two consecutive output points differ by less than $10^{-10} \Rightarrow$ Convergence.
- Stable equilibrium point is not necessarily a solution to the ISVP.
- Change to different initial value X(0) if necessary.

Example of the Iterative Approach

- Easy implementation by MATLAB.
 - \diamond Consider the case when m=5 and n=4.
 - ♦ Randomly generated basis matrices by the Gaussian distribution.
- Numerical experiment meant solely to examine the quadratic convergence.
 - \diamond Randomly generate a vector $c^{\#} \in \mathbb{R}^4$.
 - \diamond Singular values of $B(c^{\#})$ used as the prescribed singular values.
 - \diamond Perturb each entry of $c^{\#}$ by a uniform distribution between -1 and 1.
 - ♦ Use the perturbed vector as the initial guess.

Observations

- The limit point c^* is not necessary the same as the original vector $c^{\#}$.
- Singular values of $B(c^*)$ do agree with those of $B(c^\#)$.
- Differences between singular values of $B(c^{(\nu)})$ and $B(c^*)$ are measured in the 2-norm.
- Quadratic convergence is observed.

Example of Multiple Singular Values

- Construction of an example is not trivial.
 - ♦ Same basis matrices as before.
 - \diamond Assume p=2.
 - \diamond Prescribed singular values $\sigma^* = (5, 5, 2)^T$.
 - \diamond Initial guess of $c^{(0)}$ is searched by trials
- The order of singular values could be altered.
 - ♦ The value 5 is no longer the largest singular value.
 - \diamond Unless the initial guess $c^{(0)}$ is close enough to an exact solution c^* , no reason to expect that the algorithm will preserve the ordering.
 - \diamond Once convergence occurs, then σ^* must be part of the singular values of the final matrix.
- At the initial stage the convergence is slow, but eventually the rate is picked up and becomes quadratic.