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IEP versus ISVP

e Inverse Eigenvalue Problem (IEP):

o (Given

> Symmetric matrices Ag, A4,..., A, € R"";
> Real numbers AT > ... > A°,

o Find

> Values of ¢ == (cq,...,c,)! € R
> Figenvalues of the matrix

Alc) = Ao+ 11+ ... + A,

are precisely A, ..., A .
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e Inverse Singular Value Problem ISVP:

¢ Given
> General matrices By, By, ..., B, € R™*" m >
n;
> Nonnegative real numbers o] > ... > o,
¢ Find
> Values of ¢ := (cy,...,c,)! € R"

> Singular values of the matrix

B(C) =DBy+cB1+...+¢,B,

*

are precisely o7, ..., 0.
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Existence Question

e Not always does the IEP have a solution.
e Inverse Toeplitz Eigenvalue Problem (ITEP)

o A special case of the (IEP) where Ay = 0 and
Ay = (Aﬁ?) with
am Lt =gl =k =1
710, otherwise.
¢ Symmetric Toeplitz matrices can have arbitrary

real spectra. (Landau 94, nonconstructive proof
by topological degree argument).

e Not aware of any result concerning the existence
question for ISVP.
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Notation

e O(n) := All orthogonal matrices in R"*";
o > = (X;;) := A "diagonal” matrix in ™"
o, it1<i=7<n

D = .
& 0, otherwise.

e M(X) :={UXV!|U € O(m),V € O(n)}

¢ Contains all matrices in R™*"™ whose singular
values are precisely o7,..., 0,

e 53:={B(c)|c € R"}.

e Solving the ISVP = Finding an intersection of the
two sets M(2) and B.
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A Continuous Approach

e Assume
o (By, Br) =0 for 1 <k <n.

e The projection of X onto the linear subspace spanned
by By,..., By

P(X) = é(x, By) By
e The distance from X to the affine subspace B:
dist(X, B) = [|[X — (Bo + P(X))|.

e Define, for any U € R™™ and V € R" ", a resid-
ual matrix:

RU,V):=UxV! — (By+ P(UZV)).
e Consider the optimization problem:

|
Minimize  F(U, V) = S||R(U, V)|1?
Subject to (U, V) € O(m) x O(n).
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Compute the Projected Gradient

e Frobenius inner product on R™*™ x R™*":

<(A1, Bl>, (Ag, BQ)> = <A1, A2>+<Bl, Bg>

e The gradient VI may be interpreted as the pair of
matrices:

VEU, V)= (RUV)VZ RU,V)'U).

e Tangent space can be split:
T (O(m) x O(n)) = TyO(m) x TyO(n).

e Projection is easy because:

R = TyO(n) @ TyO(n)*
= VS(n): @ VS(n)
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e Project the gradient VF(U, V) onto the tangent
space T(y)(O(m) x O(n)):
g(U,V) =
RUVVSITUT-USVIR(U, V)T
2
RUWVTUSVT-VSIUTR(U, V)
2

U,

V.

e Descent vector field:
d(U, V)
dt

defines a steepest descent flow on the manifold O(m) x
O(n) for the objective function F(U, V).

—g(U, V)



Inverse Singular Value Problems 147

The Differential Equation on Mg(2)

e Define
X(t)=Ut)xvV ().

e X (t) satisfies the differential system:

dX _ XT(Bo+ P(X)) = (By+ P(X))' X
dt 2

t _X(By+ P(X))' = (By+ P(X))'X

; .

e X (t) moves on the surface M4(¥) in the steepest
descent direction to minimize dist(X (t), B).

e This is a continuous method for the ISVP.
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Remarks

e No assumption on the multiplicity of singular values
is needed.

e Any tangent vector T'(X) to M(X) at a point X €

M (X) about which a local chart can be defined
must be of the form

T(X)=XK - HX

for some skew symmetric matrices H € R"™ "™ and

K ¢ R™".



Inverse Singular Value Problems 149

An Iterative Method for IEP

e Assume all eigenvalues AJ, ..., A\’ are distinct.
e Consider:
¢ The affine subspace
A= {A(c)|lc € R"}.
¢ The isospectral surface
M.(A) = {QAQTIQ € O(n))

where

A :=diag{\],..., A\ }.

e Any tangent vector T'(X) to M.(A) at a point X €
M (A\) must be of the form

T(X)= XK — KX

for some skew-symmetric matrix K € R™*".
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A Classical Newton Method

e A function f: R — R.
e The scheme:

20 = g — () ()

e The intercept:

o The new iterate z**Y = The z-intercept of the

tangent line of the graph of f from (z*), f(2z))).
e The lifting:
o (z V), f(z*1)) = The natural "lift” of the

intercept along the y-axis to the graph of f from
which the next tangent line will begin.
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An Analogy of the Newton Method

e Think of:
o The surface M (A) as playing the role of the
graph of f.
¢ The affine subspace A as playing the role of the
T-axIs.
e Given X € M,(N),
o There exist a Q) € O(n) such that

OV X — A
o The matrix X + XWK — KX® with any

skew-symmetric matrix K represents a tangent
vector to M,(A) emanating from X ).

e Seek an A-intercept A(c”*V) of such a vector with
the affine subspace A.

e Lift up the point A(c*™1)) € Ato a point X+ ¢
M(N).
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Find the Intercept

e Find a skew-symmetric matrix K*) and a vector
V1) such that

xW L xW ) _ ) x W) — A(C(V+1).
e Equivalently, find K such that

A+ AR® — KA = QW' o@D,

T

o KW .= QW) KWQW is skew-symmetric.

e Can find ¢ and K) separately.
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e Diagonal elements in the system =

JWpv+l) — A+ _ pv)
¢ Known quantities:

Jz'(l'/) = qz(V)TAj%(V), fori,j=1,...,n
M= (XL AT

by = %’ﬂth?% fori=1,...,n

qz-(y) — the i-th column of the matrix Q(V).

v+1)

e The vector c! can be solved.

e Off-diagonal elements in the system together with

¢t = K (and, hence, K)):

i )" f( 1)), )
Ky:ﬂz fj*mﬂ,mqgi<jgn
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Find the Lift-up

e No obvious coordinate axis to follow.
e Solving the IEP = Finding M.(A)nA.

e Suppose all the iterations are taking place near a
point of intersection. Then

X(V+1) ~ A<C(l/+1)) .

e Also should have
A(C(V_|_1)> ~ G_K(V)X(V>€K(V).

e Replace e v by the Cayley transform:

KW) KW) ,
R:=(I+ 5 (I — 5 )_1zeK().

e Define
X .= RTXWR € M.(A).

e The next iteration is ready to begin.
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Remarks

e Note that
X (1) oy RTeK(”)A<C(V+1))€—K(V)R ~ A<C(1/+1))

V+1))

represents a lifting of the matrix A(c! from the

affine subspace A to the surface M(A).

e The above offers a geometrical interpretation of Method
[II developed by Friedland, Nocedal and Overton
(SINUM, 1987).

e (Quadratic convergence even for multiple eigenval-
ues case.
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An Iterative Approach for ISVP

e Assume

¢ Matrices By, Bi, ..., B, are arbitrary.

o All singular values o7, ...,0, are positive and
distinct.

o Given X GM( )

o There exist U € O(m) and V) € O(n) such
that

o Seek a B-intercept B(c”*V) of a line that is
tangent to the manifold M(¥) at X,

o Lift the matrix B(c"*Y) € Bto apoint X1 ¢
M (%),
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Find the Intercept

e Find skew-symmetric matrices H®) € R™™ and
KW € R and a vector ¢**Y) € R™ such that

xW L xW W) _ g xw) — B(c(”H))
e Fquivalently,
Y+ NKY - g0y = g0 By
¢ Underdetermined skew-symmetric matrices:

v — g gugw
KW — o’

Y

KWy W)

e Can determine V™). H®) and K separately.
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e Totally m(@_l) + "(n2_1) +mn unknowns — the vector

) and the skew matrices H®) and K®).

e Only mn equations.

e Observe: I:IZ-S-V), n+1<i=#j5<m,

(m—n)(m—n—1)
2

o Locate at the lower right corner of H®).

& unknowns.

¢ Are not bound to any equations at all.
o Set

~

Higy):Oforn+1§i7éj§m.

e Denote

Then
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Determine ¢#+1)

eftorl <i=735<n,
JWw+l) — 5x _ p)

& Know quantities:

Js(ty) = ug”)TBtvé”), for 1 <s,t <n,

o = (oF,...,09),

b = ug”)TBovgy), for 1 < s <n.
ul") = column vectors of U,
") = column vectors of V),

v+1)

e The vector ¢ 1s obtained.

o cvt) = W)
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Determine H) and K

eforn+1<i:<mand1<j<n,

N . (¥)
Hp:_sz_Wi.
9

o lorl <i1<j<n,
‘/Vz'('y) = Ziikz(]'y) — [:]Z-(-V)ij,
WJ'('V) - ijf(y('z'y) — [:[]("V)Zz‘i
= YKy + 'S

Solving for I:]Z-g-y) and f(éw =

) L )
g0 _ g _ oW + oW
J J <O';k>2 . (O'}F)Q

oW + o,

(07)? = (07)?

f(i({/) _ [(](;/) _

e The intercept is now completely found.
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Find the Lift-Up

e Define orthogonal matrices

e Define the lifted matrix on M(X):
xwtl) . pTx (g

e Observe
X (1) o RT<6H(V)B(C(V+1)>6—K(V)>S

and
RTeH v

~ I,

e_K(V)S

~ I,

if | H®)|| and ||K®)|| are small.
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e For computation,

¢ Only need orthogonal matrices

U(V+1) — RTU(V)
vt = gty ),

& Does not need to form X ¥V explicitly.
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Quadratic Convergence

e Measure the discrepancy between (UW), V")) e R™*m x
R™"™ in the induced Frobenius norm.

e Observe:

& Suppose:
> The ISVP has an exact solution at c*.
> SVD of B(c*) = Uxv?e,
¢ Define error matrix::
E:=(E,E)={U-UV-V).
oTHUUT = e and VVT = el then
vt = (B, +0)UT
= I, + EUT
= "' =I,+H+O(]|H]|).

and a similar expression for VV7.

¢ Thus,
|(H, K)|| = O(|[E]]).
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e At the v-th stage, define
EY) .= (BY Ey = (oW — U, v — V).

e How far is U(”)TB(C*)V(”) away from 37
o Write

U(”)TB(C*)V(”) — ¢~ H ek
_ (U(V)Te_ *(‘V)U(V) Z(V(V)Te *EV)V(V)>
with
HY — gWHE©ye’
KW — yWR»y»’
¢ Then

Y ) o KLY o T

& S0
|(HY, KM = O(|EM)).

¢ Norm invariance under orthogonal transforma-
tions =

1(HY, KW= O(|EY)).
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e Rewrite

UV B )V =2+ XKW —HOT + 0| BV|2).

e Compare:
U (B(e") — B(cr D))y )
= S(KY — KWy — (HY) — AW")y
+ O([EBV|P).

e Diagonal elements =
JW(c" = D) = O(||[BV|P).
¢ Thus
e — ]| = O([IEY[]).
e Off-diagonal elements =

|HY) — HY|| = O(||[EY|]?),
(v (v V)12
| KW — KW = O(|[EW)|]).

¢ Therefore,

~

[(H), K¥)]| =

E

e Together,
|HY — HY|| = O(|EV|P),
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e Observe:
Er) . gl _fr = RTyW _ B )
H)
= |U=—)-U-H Y+ O(I[HD| )
Hw) Hw)
(T+= )| T+ AR

— [H(V) — HY + o(||HWHW)||

H(V)_ V
HIHOIP) (L + )0
o It is clear now that
v+1
12 = 0| B,
(v+1)

e A similar argument works for Fs

e We have proved that
|EVD|| = O(|[EY[]?).
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Multiple Singular Values

e Previous definition in finding the B-intercept of a
tangent line of M(X) allows

¢ No zero singular values.

¢ No multiple singular values.
e Now assume

¢ All singular values are positive.

¢ Only the first singular value o7 is multiple, with
multiplicity p.
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e Observe:

¢ All formulas work, except

> For 1 <4 < 7 < p, only know
(v) (v) _

> No values for I:]g) and IN(Z-(]’-/) can be deter-
mined.

> Additional q := 221 equations for the vec-

2
v+1)

tor c! arise.

e Multiple singular values gives rise to an overdeter-

mined system for ¢V,

o Tangent lines from M (¥) may not intercept
the affine subspace B at all.

o The ISVP needs to be modified.
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Modified ISVP

e GGiven
e * % *
¢ Positive values 0] = ... =0, > 07, > ... >
*
Thg
e Find
¢ Real values of ¢y, ..., ¢y,

¢ The n — ¢ largest singular values of the matrix

matrix B(c) are o7,...,05 .
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Find the Intercept

e Use the equation
54 SR0 A5 = g7 By
to find the B-intercept where
¢ The diagonal matrix

.« ; * k [ A
Y= diag{o], ..., 00 4 Onqils---50n}

¢ Additional singular values 6,41, . . ., 05, are free
parameters.
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The Algorithm

Given U™ € O(m) and V) € O(n),

v+1)

e Solve for ¢! from the system of equations:

n T T
s (“z(y) Bkvz‘(w) e =of —u” Byl”,
forie=1,...,n—q

T
> (u§”>TBkv§”> + u,@ Bkvgy)) c,(fﬂ) =

T
—u" Byl — uf”)” By,

forl1 <s<t<p.

e Define 6,(;) by

) o it 1<k<n-—gq;
g = T
" u;({;w B(c(”“))v;(gy), ifn—q<k<n

v+1)

e Once c! is determined, calculate W®).
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e Define skew symmetric matrices K*) and H®):

o For 1 <1 < 5 < p, the equation to be satisfied
1S

W = W W FWaw),

ij ij ij 9J
> Many ways to define IN(Z-SI/) and Hz-(j )
DSetf(Z(;)EOforlgi<j§p.

o KW is defined by

~(v) (V) (V) (v)
o; W, W
7 1
KW . Q@p(<5 =, i 1<i<y<n; p<y;
. @25

%)
0, if1<i<j<p

o H™) is defined by

g if 1<i<j<p
)
0 ._ )~ (] fn4+1<i<m; 1<5<n;
v a(uﬂﬂ )
Gy H1SI<J<m p<y;
0, ifn+1<i#j57<m.

e Once H™) and K™ are determined, proceed the
lifting in the same way as for the ISVP.
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Remarks

e No longer on a fixed manifold M,(X) since X is
changed per step.

e The algorithm for multiple singular value case con-
verges quadratically.
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Zero Singular Value

e Zero singular value = rank deficiency:.

e Finding a lower rank matrix in a generic affine sub-
space B is intuitively a more difficult problem.

e More likely the ISVP does not have a solution.

e Consider the simplest case whereo] > ... >0} | >
o, = 0.
¢ Except for ]:Im (and I:Im), t=n+1,...,m,all
other quantities including ¢ 1 are well-defined.

¢ It is necessary that
W/Z-(:):Ofori:nJrl,...,m.

¢ If the necessary condition fails, then no tangent
line of M (X)) from the current iterate X ) will
intersect the affine subspace B.
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Example of the Continuous Approach

e Integrator — Subroutine ODE (Shampine et al,
"75).

o ABSERR and RELERR = 10712,

¢ Output values examined at interval of 10.

e T'wo consecutive output points differ by less than
1071% = Convergence.

e Stable equilibrium point is not necessarily a solu-

tion to the ISVP.

e Change to different initial value X (0) if necessary.
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Example of the Iterative Approach

e Fasy implementation by MATLAB.

¢ Consider the case when m =5 and n = 4.
¢ Randomly generated basis matrices by the Gaus-
sian distribution.

e Numerical experiment meant solely to examine the
quadratic convergence.
o Randomly generate a vector ¢ € R*.

o Singular values of B(c) used as the prescribed
singular values.

o Perturb each entry of ¢ by a uniform distribu-
tion between —1 and 1.

¢ Use the perturbed vector as the initial guess.
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Observations

e The limit point c* is not necessary the same as the
original vector ¢

e Singular values of B(c*) do agree with those of
B(c").

e Differences between singular values of B(c")) and
B(c*) are measured in the 2-norm.

e (Quadratic convergence is observed.
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Example of Multiple Singular Values

e Construction of an example is not trivial.

& Same basis matrices as before.
¢ Assume p = 2.
o Prescribed singular values o* = (5,5, 2)".

o Initial guess of ¢?) is searched by trials
e The order of singular values could be altered.
¢ The value 5 is no longer the largest singular

value.

& Unless the initial guess ¢ is close enough to an
exact solution c*, no reason to expect that the
algorithm will preserve the ordering.

¢ Once convergence occurs, then o* must be part
of the singular values of the final matrix.

e At the initial stage the convergence is slow, but
eventually the rate is picked up and becomes quadratic.



