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Overview

e Often a physical process is described by a mathematical
model of which parameters represent important physi-
cal quantities.

¢ Direct analysis — Analyze or predict the behavior
of the underlying physical process from the param-
eters.

¢ Inverse analysis — Validate, determine, or estimate
the parameters adaptively from the behavior of the
physical process.
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[nverse Eigenvalue Problem (IEP)

e The mathematical model involves matrices whose spec-
tral properties determine the dynamics of the physical
system.

e Reconstruct a matrix from prescribed spectral data.
¢ Spectral data may involve a mixture information of

eigenvalues or eigenvectors.

¢ Sometimes complete information is difficult to ob-
tain. Only partial information is available.

¢ For feasibility, often necessary to restrict the con-
struction to special classes of matrices.
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Fundamental Questions

e Solvability:

¢ Determine a necessary or a sufficient condition under
which an IEP has a solution.

e Computability:

¢ Develop a scheme through which, knowing a priori
that the given spectral data are feasible, a matrix
can be constructed numerically.

e Sensitivity:

¢ Quantify how a solution to an IEP is subject to
changes of the spectral data.

e Applicability:

¢ Differentiate whether the given data are exact or
approximate, complete or incomplete, and whether
only an estimation of the parameters of the system
is sufficient.

¢ Decide between physical realizability and physical
uncertainty which constraint of the problem should
be enforced.
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Brief History

e Studies of IEP’s have been quite extensive
¢ Engineering application.
¢ Algebraic theorization.
e Mathematical techniques employed in the study are
quite sophisticated:
¢ Algebraic curves.
¢ Degree theory.
¢ Differential geometry.
¢ Matrix theory.
¢ Differential equations.
¢ Functional analysis.
O

e Results are quite few and scattered even within the
same field of discipline.
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Literature Review

e Inverse Sturm-Liouville problem:

¢ Ambartsumyan’29

¢ Krein’33

¢ Borg’46, Levinson’49

¢ Gel’fand& Levitan’51

o Kac’66 (Can one hear the shape of a drum?)

¢ Hochstadt’73, Barcilon’74, McLaughlin’76, Hald’78

¢ Zayed’82, Issacson et al’83, McLaughlin’86, An-
dersson’88

¢ Lowe et al’95, Rundell’97
e Matrix theory:

¢ Downing&Householder’56, Mirsky’58
¢ Hochstadt’67

¢ de Oliveira’70, Hald'72, Golub’73, Friedland’77, de
Boor&Golub’78

¢ Biegler-Konig'81, Shapiro’83, Barcilon’86, Sun’S6,
Boley& Golub’87
¢ Landau’94, Chu’98
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e Applied Mechanics:

¢ Barcilon’74
o Gottlieb’83, Gladwell’86
¢ Ram’91, Gladwell’96, Nylen&Uhlig’97

e Computation:

¢ Morel’ 76, Boley&Golub’77
¢ Nocedal et al’83, Friedland et al’88, Laurie’88
¢ Chu’90, Zhoud&sDai’91, Trench’97, Xu’98



Introduction

Applications

e System identification and control theory:.
o State/output feedback pole assignment problems.
e Applied mechanics and structure design.

o Construct a model of a (damped) mass-spring sys-
tem with prescribed natural frequencies/modes.

e Applied physics.

¢ Compute the electronic structure of an atom from
measured energy levels.

¢ Neutron transport theory.
e Numerical analysis.

¢ Preconditioning.
¢ Computing B-stable RK methods with real poles.

¢ Gaussian quadratures.
e Mathematical analysis.

¢ Inverse Sturm-Liouville problems.
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An Example

F
-

e Vibration of equally spaced particles (with spacing h
and mass m;) on a string subject to a constant hori-
zontal tension I

e Fiquation of motion for 4 particles:
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e In matrix form:

d’x
O X = [3717 X2, T3, aj4]T
2 -1 0 0]
—1 2 -1 0
A=y 9
0 0-1 2
oD = di&g(dl, dg, dg, d4) with d; = mljh'

e Eigenvalues of DA are the squares of the so called nat-
ural frequencies of the system.

e Want to place weights m; so that the system has a
prescribed set of natural frequencies.
o A is symmetric and tridiagonal.
¢ D is diagonal.
¢ This is a multiplicative inverse eigenvalue problem.
e Open Question: Can such a string have arbitrarily pre-

scribed natrual frequencies by adjusting the diagonal
matrix D7
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Classification
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e Based on constraint.

¢ Spectral constraint.

¢ Structure constraint.
e Based on physical suitability.
¢ Physical realizability.

¢ Physical uncertainty.

e Based on discipline.

¢ Essentially mathematical problem.

¢ Essentially engineering problem.
e Based on expectation.

¢ Determination problem.

¢ Estimation problem.
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Via Algebraic Characteristics

WI EP

(single variate)

MVIEP
LSIEP
PIEP
SIEP
PDIEP
AIEP
MIEP

= Multi-Variate IEP
Least Squares IEP
Parameterized IEP
Structured IEP
Partially Described IEP
Additive IEP

= Multiplicative IEP
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PIEP

e Generic form:

o (Given

> A family of matrices A(c) € M with ¢ € F™,
> A set of scalars {2 C F,

¢ Find
> Values of parameter ¢ such that
o(A(c)) C Q
e Remarks:

¢ Not necessarily m = n.
¢ Commonly used €2:
> € = { A dior
> () = left-half complex plan.

> () = anything but must have a specific number of
Z€T0S.
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Some Special PIEP’s

o Alc) = Ap+ > 1 cid;
oA, € R(n), F=R.
o A; ES(’I@), F =R.

e (ATIEP) A(c) = A(X)=Ap+ X, X e N.
oAy €C(n), F=C, N =D¢c(n).

e (MIEP) A(c) = A(X) = XAy, X e N.
¢ Preconditioning?

o Alc) = A(Ky,... ,K,)=Ay+ > | BIK,C;.

¢ Pole assignment problem.
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SIEP

e Generic form:

o (Given

> A set NV of specially structured matrices,
> A set of scalars {\;}}_; € F,

o Find
> X € N such that

o(X) = { Atz
e Some special cases:
o N = {Toeplitz matrices in S(n)}.
o N = {Persymmetric Jacobi matrices in S(n)}.

o N = {Nonnegative matrices in S(n)}.
o N = {Row-stochastic matrices in R(n)}.
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A Few More Special SIEP’s

e Given scalars A7 < p; < A ;,e=1,... ,n—1, find a
Jacobi matrix J such that

o(J) = M=
o(J(1:n—1,1:n—=1)) = {u,. ..., 1}

e Given scalars {1, ..., Ao} and {pq, ... , pono} € C,
find tridiagonal symmetric matrices C' and K for the
A-matrix Q(A) = AT + A\C' + K so that

O(Q) = {)\1,... ,)\Qn},
o@Q@1:n—1,1:n—1)) = {1, on-2}-

e Given distinct scalars {A1,... , Ao} C R and a Jacobi

matrix .J, € R(n), find a Jacobi matrix a Jacobi matrix
Jon € R(2n) so that

O'(Jzn) — {>\17 I 7)\271}7
Jon(1:n,1:n) = J,.

e Given a family of matrices A(c) € R™" with ¢ € R",
m > n, find a parameter ¢ such that the singular values
of A(c) are precisely the same as a prescribed set of
nonnegative real values {oy,... ,0,}.



Classification 17

LSIEP

e Maintain the structure, approximate the eigenvalues:

¢ Given
> A set of scalars {\},... , A} CF (m <n),
> A set N of specially structured matrices,

¢ Find

> A matrix X € N
> An index subset 0 = {07 < ... < 0g,,,} such that

F(X, o) — %Z(A%(X) Z ),

1=1

1s minimized.
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e Maintain the spectrum, approximate the structure:

o (Given

> A set M of spectrally constrained matrices,
> A set N of specially structured matrices,
> A projection P from M onto N,

o Find
> X € M that minimizes

F(X) = o]l X — POOJP.
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Via Physical Characteristics

e By mechanical types:

¢ Continuous vs. discrete.

¢ Damped vs. undamped.
e By data type:

¢ Spectral, modal, or nodal.

¢ Complete vs incomplete.



20 Introduction

A Glimpse of Some Major Issues

e Studies on IEP’s have been intensive, ranging from ac-
quiring a pragmatic solution to a real-world application
dealing the metaphysical theory of an abstract fromu-
lation.

e Results are scattered even within the same field of dis-
cipline.

e Only a handful of the problems have been completely
understood.

e Many interesting yet challenging questions remain to
be answered.
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Complex Solvability

e Solving an IEP over complex field amounts to solving a
polynomial system with complex coeflicients. Generally
speaking, the system is generically solvable.

e Given Ay € C(n) and arbitrary {\;}7_, C C,
o There exists D € De(n) such that
o(Ao+ D) = { A}

and there are at most n! solutions.

o If det(Ap(l:7,1:7)#0,5=1,...,n, then there
exists D € De(n) such that

o(DAg) = { A Jim

and there are at most n! solutions.
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Real Solvability

e Solving an IEP over real field is a much harder problem.
Sufficient conditions are generally quite restrictive.

e Assume all matrices involved are real,

¢ If the prescribed real eigenvalues are sufficiently dif-
ferent, then there exist ¢, ... , ¢, € R such that

O'(A() + Z CZAZ> = {)\Z}Zzl
1=1

¢ The inverse eigenvalue problem associated with

A() + i Cz'Az'
1=1

is unsolvable almost everywhere if and only if any
of the prescribed eigenvalues has multiplicity great
than 1.

e Symmetric Toeplitz matrices can have arbitrary spec-
tra.
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Numerical Methods
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e Direct methods

¢ Lanczos method.

¢ Orthogonal reduction methods.
e [terative methods

¢ Newton-type iteration.
e Continuous methods:

¢ Homotopy approach.
¢ Projected gradient method.
o ASVD approach.
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Sensitivity Analysis

e Assume all matrices are symmetric and the PIEP for

= Ay + i c;A;
i=1
is solvable.
e Assume A(c) = Q(c)diag{\;}_,Q(c)" and define
J(c) = [chTquZ ], i,j=1,...,n,
b= [a(c)" Aoar(c), ... 7anOQn( )}T-
o [f

6= I =AMl + D114 = Ayl

is sufficiently small, then

o The PIEP associated with A i =0,...,n and
{A1,..., A} is solvable.

¢ There is a solution ¢ near to c,

le - el 1A= Al + 140 — Aolls S0, 14; — Ao 2
< koo J(c + = +O(07).
Tl (J(c) N bl 17T ()
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Summary

e An IEP concerns the reconstruction of a matrix satis-
fying two constraints.
o Spectral constraint — the prescribed spectral data.

o Structural constraint — the desirable structure.
e Different constraints define a variety of IEP’s.

e Studies on [EP’s have been intensive, ranging from en-
gineering application to algebraic theorization.

¢ Many unanswered yet interesting questions.

e A common phenomenon in all applications is that the
physical parameters of a certain system are to be re-
constructed from knowledge of its dynamical behavior,
in particular, of its natural frequencies/modes.

¢ Sometimes the constraints can be precisely deter-
mined.

¢ Sometimes the constraints are only approximate and
often incomplete.



