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Overview

• Often a physical process is described by a mathematical
model of which parameters represent important physi-
cal quantities.

¦ Direct analysis — Analyze or predict the behavior
of the underlying physical process from the param-
eters.

¦ Inverse analysis — Validate, determine, or estimate
the parameters adaptively from the behavior of the
physical process.
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Inverse Eigenvalue Problem (IEP)

• The mathematical model involves matrices whose spec-
tral properties determine the dynamics of the physical
system.

• Reconstruct a matrix from prescribed spectral data.

¦ Spectral data may involve a mixture information of
eigenvalues or eigenvectors.

¦ Sometimes complete information is difficult to ob-
tain. Only partial information is available.

¦ For feasibility, often necessary to restrict the con-
struction to special classes of matrices.
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Fundamental Questions

• Solvability:

¦ Determine a necessary or a sufficient condition under
which an IEP has a solution.

• Computability:

¦ Develop a scheme through which, knowing a priori
that the given spectral data are feasible, a matrix
can be constructed numerically.

• Sensitivity:

¦ Quantify how a solution to an IEP is subject to
changes of the spectral data.

• Applicability:

¦ Differentiate whether the given data are exact or
approximate, complete or incomplete, and whether
only an estimation of the parameters of the system
is sufficient.

¦ Decide between physical realizability and physical
uncertainty which constraint of the problem should
be enforced.
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Brief History

• Studies of IEP’s have been quite extensive

¦ Engineering application.

¦ Algebraic theorization.

• Mathematical techniques employed in the study are
quite sophisticated:

¦ Algebraic curves.

¦ Degree theory.

¦ Differential geometry.

¦ Matrix theory.

¦ Differential equations.

¦ Functional analysis.

¦ ...

• Results are quite few and scattered even within the
same field of discipline.
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Literature Review

• Inverse Sturm-Liouville problem:

¦ Ambartsumyan’29

¦ Krein’33

¦ Borg’46, Levinson’49

¦ Gel’fand&Levitan’51

¦ Kac’66 (Can one hear the shape of a drum?)

¦ Hochstadt’73, Barcilon’74, McLaughlin’76, Hald’78

¦ Zayed’82, Issacson et al’83, McLaughlin’86, An-
dersson’88

¦ Lowe et al’95, Rundell’97

• Matrix theory:

¦ Downing&Householder’56, Mirsky’58

¦ Hochstadt’67

¦ de Oliveira’70, Hald’72, Golub’73, Friedland’77, de
Boor&Golub’78

¦ Biegler-König’81, Shapiro’83, Barcilon’86, Sun’86,
Boley&Golub’87

¦ Landau’94, Chu’98
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• Applied Mechanics:

¦ Barcilon’74

¦ Gottlieb’83, Gladwell’86

¦ Ram’91, Gladwell’96, Nylen&Uhlig’97

• Computation:

¦ Morel’76, Boley&Golub’77

¦ Nocedal et al’83, Friedland et al’88, Laurie’88

¦ Chu’90, Zhou&Dai’91, Trench’97, Xu’98
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Applications

• System identification and control theory.

¦ State/output feedback pole assignment problems.

• Applied mechanics and structure design.

¦ Construct a model of a (damped) mass-spring sys-
tem with prescribed natural frequencies/modes.

• Applied physics.

¦ Compute the electronic structure of an atom from
measured energy levels.

¦ Neutron transport theory.

• Numerical analysis.

¦ Preconditioning.

¦ Computing B-stable RK methods with real poles.

¦ Gaussian quadratures.

• Mathematical analysis.

¦ Inverse Sturm-Liouville problems.
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An Example

h

m

m
m

m

x
x

x
x

FF
1

1

2

2
3

3

4

4

• Vibration of equally spaced particles (with spacing h
and mass mi) on a string subject to a constant hori-
zontal tension F .

• Equation of motion for 4 particles:

m1
d2x1

dt2
= −F
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• In matrix form:

d2x

dt2
= −DAx

¦ x = [x1, x2, x3, x4]
T

¦ A =




2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2




¦ D = diag(d1, d2, d3, d4) with di = F
mih

.

• Eigenvalues of DA are the squares of the so called nat-
ural frequencies of the system.

• Want to place weights mi so that the system has a
prescribed set of natural frequencies.

¦ A is symmetric and tridiagonal.

¦ D is diagonal.

¦ This is a multiplicative inverse eigenvalue problem.

• Open Question: Can such a string have arbitrarily pre-
scribed natrual frequencies by adjusting the diagonal
matrix D?
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Classification

• Based on constraint.

¦ Spectral constraint.

¦ Structure constraint.

• Based on physical suitability.

¦ Physical realizability.

¦ Physical uncertainty.

• Based on discipline.

¦ Essentially mathematical problem.

¦ Essentially engineering problem.

• Based on expectation.

¦ Determination problem.

¦ Estimation problem.
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Via Algebraic Characteristics

AIEP

MIEP

PIEP

SIEP

LSIEP

MVIEP

(single variate)

PDIEP

MVIEP = Multi-Variate IEP
LSIEP = Least Squares IEP
PIEP = Parameterized IEP
SIEP = Structured IEP

PDIEP = Partially Described IEP
AIEP = Additive IEP
MIEP = Multiplicative IEP
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PIEP

• Generic form:

¦ Given

. A family of matrices A(c) ∈ M with c ∈ Fm,

. A set of scalars Ω ⊂ F,

¦ Find

. Values of parameter c such that

σ(A(c)) ⊂ Ω

• Remarks:

¦ Not necessarily m = n.

¦ Commonly used Ω:

. Ω = {λ∗
k}n

k=1.

. Ω = left-half complex plan.

. Ω = anything but must have a specific number of
zeros.
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Some Special PIEP’s

• A(c) = A0 +
∑n

i=1 ciAi

¦ Ai ∈ R(n), F = R.

¦ Ai ∈ S(n), F = R.

• (AIEP) A(c) = A(X) = A0 + X , X ∈ N .

¦ A0 ∈ C(n), F = C, N = DC(n).

• (MIEP) A(c) = A(X) = XA0, X ∈ N .

¦ Preconditioning?

• A(c) = A(K1, . . . , Kq) = A0 +
∑q

i=1 BiKiCi.

¦ Pole assignment problem.
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SIEP

• Generic form:

¦ Given

. A set N of specially structured matrices,

. A set of scalars {λ∗
k}n

k=1 ∈ F,

¦ Find

. X ∈ N such that

σ(X) = {λ∗
k}n

k=1.

• Some special cases:

¦ N = {Toeplitz matrices in S(n)}.
¦ N = {Persymmetric Jacobi matrices in S(n)}.
¦ N = {Nonnegative matrices in S(n)}.
¦ N = {Row-stochastic matrices in R(n)}.
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A Few More Special SIEP’s

• Given scalars λ∗
i ≤ µi ≤ λ∗

i+1, i = 1, . . . , n − 1, find a
Jacobi matrix J such that

σ(J) = {λ∗
k}n

k=1

σ(J(1 : n − 1, 1 : n − 1)) = {µ1, . . . , µn−1}.
• Given scalars {λ1, . . . , λ2n} and {µ1, . . . , µ2n−2} ∈ C,

find tridiagonal symmetric matrices C and K for the
λ-matrix Q(λ) = λ2I + λC + K so that

σ(Q) = {λ1, . . . , λ2n},
σ(Q(1 : n − 1, 1 : n − 1)) = {µ1, . . . , µ2n−2}.

• Given distinct scalars {λ1, . . . , λ2n} ⊂ R and a Jacobi
matrix Jn ∈ R(n), find a Jacobi matrix a Jacobi matrix
J2n ∈ R(2n) so that

σ(J2n) = {λ1, . . . , λ2n},
J2n(1 : n, 1 : n) = Jn.

• Given a family of matrices A(c) ∈ Rm×n, with c ∈ Rn,
m ≥ n, find a parameter c such that the singular values
of A(c) are precisely the same as a prescribed set of
nonnegative real values {σ1, . . . , σn}.
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LSIEP

• Maintain the structure, approximate the eigenvalues:

¦ Given

. A set of scalars {λ∗
1, . . . , λ∗

m} ⊂ F (m ≤ n),

. A set N of specially structured matrices,

¦ Find

. A matrix X ∈ N

. An index subset σ = {σ1 < . . . < σm} such that

F (X, σ) :=
1

2

m∑
i=1

(λσi
(X) − λ∗

i )
2,

is minimized.
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• Maintain the spectrum, approximate the structure:

¦ Given

. A set M of spectrally constrained matrices,

. A set N of specially structured matrices,

. A projection P from M onto N ,

¦ Find

. X ∈ M that minimizes

F (X) :=
1

2
‖X − P (X)‖2.
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Via Physical Characteristics

• By mechanical types:

¦ Continuous vs. discrete.

¦ Damped vs. undamped.

• By data type:

¦ Spectral, modal, or nodal.

¦ Complete vs incomplete.
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A Glimpse of Some Major Issues

• Studies on IEP’s have been intensive, ranging from ac-
quiring a pragmatic solution to a real-world application
dealing the metaphysical theory of an abstract fromu-
lation.

• Results are scattered even within the same field of dis-
cipline.

• Only a handful of the problems have been completely
understood.

• Many interesting yet challenging questions remain to
be answered.



A Glimpse of Some Major Issues 21

Complex Solvability

• Solving an IEP over complex field amounts to solving a
polynomial system with complex coefficients. Generally
speaking, the system is generically solvable.

• Given A0 ∈ C(n) and arbitrary {λ∗
k}n

k=1 ⊂ C,

¦ There exists D ∈ DC(n) such that

σ(A0 + D) = {λ∗
k}n

k=1

and there are at most n! solutions.

¦ If det(A0(1 : j, 1 : j) 6= 0, j = 1, . . . , n, then there
exists D ∈ DC(n) such that

σ(DA0) = {λ∗
k}n

k=1

and there are at most n! solutions.
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Real Solvability

• Solving an IEP over real field is a much harder problem.
Sufficient conditions are generally quite restrictive.

• Assume all matrices involved are real,

¦ If the prescribed real eigenvalues are sufficiently dif-
ferent, then there exist c1, . . . , cn ∈ R such that

σ(A0 +

n∑
i=1

ciAi) = {λ∗
k}n

k=1.

¦ The inverse eigenvalue problem associated with

A0 +

n∑
i=1

ciAi

is unsolvable almost everywhere if and only if any
of the prescribed eigenvalues has multiplicity great
than 1.

• Symmetric Toeplitz matrices can have arbitrary spec-
tra.
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Numerical Methods

• Direct methods

¦ Lanczos method.

¦ Orthogonal reduction methods.

• Iterative methods

¦ Newton-type iteration.

• Continuous methods:

¦ Homotopy approach.

¦ Projected gradient method.

¦ ASVD approach.
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Sensitivity Analysis

• Assume all matrices are symmetric and the PIEP for

A(c) = A0 +

n∑
i=1

ciAi

is solvable.

• Assume A(c) = Q(c)diag{λ∗
k}n

k=1Q(c)T and define

J(c) =
[
qi(c)

TAjqi(c)
]
, i, j = 1, . . . , n,

b =
[
q1(c)

TA0q1(c), . . . , qT
n A0qn(c)

]T
.

• If

δ = ‖λ − λ̃‖∞ +

n∑
i=0

‖Ai − Ãi‖2

is sufficiently small, then

¦ The PIEP associated with Ãi, i = 0, . . . , n and
{λ̃1, . . . , λ̃n} is solvable.

¦ There is a solution c̃ near to c,

‖c − c̃‖∞
‖c‖∞ ≤ κ∞(J(c))

(
‖λ − λ̃‖∞ + ‖A0 − Ã0‖2

‖λ − b‖∞ +

∑n
i=1 ‖Ai − Ãi‖2

‖J(c)‖∞

)
+ O(δ2).



A Glimpse of Some Major Issues 25

Summary

• An IEP concerns the reconstruction of a matrix satis-
fying two constraints.

¦ Spectral constraint – the prescribed spectral data.

¦ Structural constraint – the desirable structure.

• Different constraints define a variety of IEP’s.

• Studies on IEP’s have been intensive, ranging from en-
gineering application to algebraic theorization.

¦ Many unanswered yet interesting questions.

• A common phenomenon in all applications is that the
physical parameters of a certain system are to be re-
constructed from knowledge of its dynamical behavior,
in particular, of its natural frequencies/modes.

¦ Sometimes the constraints can be precisely deter-
mined.

¦ Sometimes the constraints are only approximate and
often incomplete.


