Chapter 2

Applications

- Pole Assignment Problem
- Control of Vibration
- Inverse Strum-Liouville Problem
- Geophysics Application
- Numerical Analysis
- Low Rank Application

Pole Assignment Problem

• Dynamic state equation:

$$
\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t).
$$

 \Diamond **x** = state of the system $\in \mathbb{R}^n$.

- \Diamond **u** = input to the system $\in \mathbb{R}^m$.
- $\Diamond A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}.$
- Want to select $\mathbf{u}(t)$ so as to control the dynamics of $\mathbf{x}(t)$.
	- ¦ Classical problem in control theory.
	- ¦ Extensively studied and very rich in literature.
	- \diamond Several different types.

State Feedback Control

• Choose input **u** as a linear function of current state **x**,

$$
\mathbf{u}(t) = F\mathbf{x}(t).
$$

• Closed-loop dynamical system:

$$
\dot{\mathbf{x}}(t) = (A + BF)\mathbf{x}(t).
$$

- Want to choose the *gain matrix* F so as to
	- ¦ Achieve stability.
	- \diamond Speed up response.
- Choose F so as to reassign eigenvalues of $A + BF$.
	- \diamond Usually F carries no structure at all.
	- \diamond It becomes a much harder IEP if F needs to satisfy a certain structural constraint.

Output Feedback Control

• Often $\mathbf{x}(t)$ is not directly observable. Instead, only output $\mathbf{y}(t)$ where

$$
\mathbf{y}(t) = C\mathbf{x}(t)
$$

is available.

• Choose input **u** as a linear function of current output **y**,

$$
\mathbf{u}(t) = K\mathbf{y}(t).
$$

• Closed-loop dynamical system:

$$
\dot{\mathbf{x}}(t) = (A + BKC)\mathbf{x}(t).
$$

• Want to choose the *output matrix K* so as to reassign the eigenvalues of $A + BKC$.

Control of Vibration

- Area of applications:
	- \diamond Transverse vibrations of masses on a string.
	- \diamond Buckling of structures.
	- \Diamond Transient current of electric circuits.
	- \diamond Acoustic vibration in a tube.
- Equation of motion:

$$
M\ddot{\mathbf{x}} + C\dot{\mathbf{x}} + K\mathbf{x} = f(\mathbf{x}).
$$

 $\diamond \mathbf{x} \in \mathbb{R}^n, M, C, K \in \mathbb{R}^{n \times n}$.

- $\Diamond M =$ diagonal, $C, K =$ symmetric tridiagonal.
- Motion is governed by the homogeneous equation.
	- \Diamond Try a solution $\mathbf{x}(t) = \mathbf{v}e^{\lambda t}$.
	- \Diamond **v** and λ are solutions to the quadratic eigenvalue problem

$$
(\lambda^2 M + \lambda C + K)\mathbf{v} = 0.
$$

 \Diamond General solution:

$$
\mathbf{x}(t) = \sum_{k=1}^{2n} \alpha_k \mathbf{v}_k e^{\lambda_k t}.
$$

Undamped System

- $C = 0$, M, K = symmetric and positive definite.
- Try a solution of the form $\mathbf{x}(t) = \mathbf{v}e^{i\omega t}$
- **v** and ω solves the generalized eigenvalue problem

$$
(K - \omega^2 M)\mathbf{v} = 0
$$

 $\Diamond \omega =$ the natural frequency.

 \diamond **v** = the natural mode.

• Let $\lambda = \omega^2$, $J := M^{-1/2}KM^{-1/2}$, and $\mathbf{z} = M^{1/2}\mathbf{x}$. Solve the Jacobi eigenvalue problem

$$
J\mathbf{z}=\lambda\mathbf{z}.
$$

- Two types of inverse eigenvalue problems:
	- \Diamond Stiffness matrix K usually is more complicated than the mass matrix M.
		- \triangleright Determine K from static constraints, but find M so that some desired natural frequencies are achieved.
		- \triangleright This is equivalent to an multiplicative inverse eigenvalue problem.
	- ¦ Construct an unreduced, symmetric, and tridiagonal matrix J from its n eigenvalues and those of its leading principal submatrix of dimension $n - 1$.
		- \triangleright This IEP can be identified as configuring a spring system from its spectrum and from the spectrum of the same system but the last mass is fixed to have no motion.
		- \triangleright This is one kind of Jacobi inverse eigenvalue problems.

Damped System

- Normalize M to identity.
- Define
	- $\Diamond Q(\lambda) = \lambda^2 I + \lambda C + K.$
	- $\hat{Q}(\lambda)$ = The leading principal submatrix of $Q(\lambda)$ of dimension $n-1$.
- Given scalars

$$
\diamond
$$
 { λ_1 ,..., λ_{2n} }, and
\n \diamond { μ_1 ,..., μ_{2n-2} } $\in \mathbb{C}$,

• Find

- \diamond tridiagonal symmetric matrices C and K, or
- \diamond real-valued, tridiagonal, symmetric, and weakly diagonally dominant matrices C and K with positive diagonal and negative off-diagonal elements,
- Such that

 $\diamond \det(Q(\lambda))$ has zeros precisely $\{\lambda_1,\ldots,\lambda_{2n}\}\$, and $\diamond \det(\tilde{Q}(\lambda))$ has zeros precisely $\{\mu_1,\ldots,\mu_{2n-2}\}.$

Inverse Sturm-Liouville Problem

• The classical Sturm-Liouville problem:

$$
\mathcal{L}[u] := -u''_n(x) + p(x)u_n(x) = \lambda_n u_n(x), \ 0 < x < 1
$$
\n
$$
u'_n(0) - hu_n(0) = 0
$$
\n
$$
u'_n(1) + Hu_n(1) = 0.
$$

- \Diamond Eigenvalues of $\mathcal L$ are real, simple, countable, and tend to infinity.
- \Diamond Increasing q, h, or H increases all eigenvalues of \mathcal{L} .
- Can the function $p(x)$ be determined from eigenvalues? (Two data sequences are required [150].)

Matrix Analogue

• Discretize the BVP by the central difference scheme with mesh $h = \frac{1}{n+1}$,

$$
\left(\begin{array}{ccc}\n2 & -1 & 0 & & \\
-1 & 2 & -1 & & \\
\frac{1}{h^2} & 0 & -1 & 2 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & & 2 & -1 & \\
0 & & -1 & 2\n\end{array}\right) + X \right) \mathbf{u} = \lambda \mathbf{u}.
$$

- \Diamond X = diagonal matrix representing the discretization of $p(x)$.
- \bullet Determine X so that the system processes a prescribed spectrum.

 \diamond This is an additive inverse eigenvalue problem.

• Caution: There is a significant difference in asymptotic behavior between the discrete and continuous cases.

Applied Physics

- \bullet Quantum Mechanics
- \bullet Geophysics
- \bullet Neutron Transport Theory

Quantum Mechanics

- Computing the electronic structure of an atom requires the spectral and diagonal information of a Hamiltonian matrix H.
- Diagonal elements of H cannot be measured accurately.
- Eigenvalues of H correspond to energy levels of an atom that can be measured to a high degree of accuracy.
- Want to use eigenvalues to correct diagonal elements.
- A least squares IEP [110]:
	- \Diamond Given
		- \triangleright A real symmetric matrix A,
		- \triangleright A set of real eigenvalues $\omega = [\omega_1, \dots, \omega_n]^T$,
	- \diamond Find a real diagonal matrix D such that

$$
\|\sigma(A+D)-\omega\|_2
$$

is minimized.

- Assuming spherical symmetry, want to infer the internal structure of the Earth from the frequencies of spheroidal and torsional modes of oscillations.
- The model involves the generalized Sturm-Liouville problem, i.e.,

$$
u^{(2k)} - (p_1 u^{(k-1)})^{(k-1)} + \ldots + (-1)^k p_k u = \lambda u.
$$

- \diamond For well-posedness, $k+1$ spectra associated with $k+1$ 1 distinct sets of boundary conditions are required to construct the unknown coefficients p_1, \ldots, p_k [14, 15].
- \diamond Theoretical solution can be constructed iteratively for the cases $k = 1, 2$.
- ¦ Open Question: What is the matrix analogue of this high order problem and how to solve it numerically?

Neutron Transport Theory

• Dynamics in an additive neural network

$$
\frac{du_i}{dt} = -a_i u_i + \sum_{j=1}^n \omega_{ij} g_j(u_j) + p_i, \quad , i = 1, \dots n.
$$

- $\delta \omega_{ij}$ = connection coefficient between the *i*th and *j*th neurons.
- $\Diamond g'_j > 0$ and g_j is bounded.
- Want to choose W so that a designated point **u**[∗] is a stable equilibrium.
	- \diamond At the critical point, there is a linear constraint

 $-Au^* + Wg(u^*) + p = 0.$

 \Diamond The eigenvalues of the Jacobian matrix should be in the left half plane.

- An equality constrained IEP [235]:
	- \diamond Given
		- \rhd Two sets of real vectors $\{\mathbf x_i\}_{i=1}^p$ and $\{\mathbf y_i\}_{i=1}^p$ with $p \leq n$, and
		- \triangleright A set of complex numbers $\mathcal{L} = {\lambda_1, ..., \lambda_n},$ closed in conjugation,
	- \diamond Find a real matrix A such that

$$
A\mathbf{x}_i = \mathbf{y}_i, \n\sigma(A) = \mathcal{L}
$$

Numerical Analysis

- \bullet Preconditioning
- High Order Stable Runge-Kutta Schemes
- Gauss Quadratures
- Preconditioning the equation $Ax = b$ is a means of transforming the original system into one that has the same solution, but is easier (quicker) to solve with an iterative scheme.
	- \diamond Preconditioning A can be thought of as implicitly multiplying A by M^{-1} .
		- $\triangleright M$ is a matrix for which $Mz = y$ can easily be solved, and
		- $\triangleright M^{-1}A$ is not too far from normal and its eigenvalues are clustered.
	- \diamond Many types of unstructured preconditioners have been proposed:
		- . Low-order (Coarse-grid) approximation, SOR, incomplete LU factorization, polynomial, and so on.
		- \triangleright Open Question: Given a structure of M, what is the best achievable conditioning [166]?
- Precondition by low rank matrices might have applications in practical optimization.
	- \diamond Open Question: Given a matrix matrix $C \in \mathbb{R}^{m \times n}$ and a constant vector $\mathbf{b} \in \mathbb{R}^m$, find a vector $\mathbf{x} \in \mathbb{R}^n$ such that the rank-one updated matrix $\mathbf{b}\mathbf{x}^T + C$ has a prescribed set of singular values.

High Order Stable Runge-Kutta Schemes

• An s-stage Runge-Kutta method is uniquely determined by the Butcher array

$$
\begin{array}{c|cccc}\nc_1 & a_{11} & a_{12} & \dots & a_{1s} \\
c_2 & a_{21} & a_{22} & \dots & a_{2s} \\
\vdots & \vdots & & \vdots \\
c_s & a_{s1} & a_{s2} & \dots & a_{ss} \\
b_1 & b_2 & \dots & b_s\n\end{array}
$$

 \diamond The stability function is given by

$$
R(z) = 1 + zBT(I - zA)-11.
$$

- To attain stability, implicit methods are preferred.
	- ¦ Fully implicit methods are too expensive.
	- \diamond Diagonally implicit methods (DIRK), i.e., A is low triangular with identical diagonal entries, is computationally more efficient, but is difficult to construct.
	- \Diamond Singly implicit methods (SIRK) requires that the matrix A, though not lower triangular, should have an s-fold eigenvalue.
- An IEP with prescribed entries [269]:
	- \Diamond Given
		- \triangleright The number s of stages,
		- \triangleright The the desired order p,
		- \rhd Define $k = |(p 1)/2|$,
		- \triangleright Constants $\xi_j = 0.5(4J^2 1)^{-1/2}, j = 1, \ldots, k,$
	- \diamond Find a real number λ and $Q \in \mathbb{R}^{(s-k)\times (s-k)}$ such that
		- $\triangleright Q + Q^T$ is positive semi-definite. $\triangleright \sigma(X) = \{\lambda\}$ where $X \in \mathbb{R}^{s \times s}$ is of the form

and $q_{11} = 0$ if p is even.

Gauss Quadratures

• With respect to a given a weight function $\omega(x) \geq 0$ on $[a, b]$, one can define a sequence of orthonormal polynomials ${p_n(x)}_{n=0}^\infty$ satisfying

$$
\int_a^b \omega(x) p_i(x) p_j(x) dx = \delta_{ij}.
$$

- \Diamond Roots of each $p_n(x)$ are simple, distinct, and lie in the interval $[a, b]$.
- \Diamond The roots $\{\lambda_i\}_{i=1}^n$ of a fixed $p_n(x)$ define a Gaussian quadrature

$$
\int_a^b \omega(x) f(x) dx = \sum_{i=1}^n w_i f(\lambda_i),
$$

that has degree of precision up to $2n - 1$.

• With $p_0(x) \equiv 1$ and $p_{-1}(x) \equiv 0$, orthogonal polynomials satisfy a three-term recurrence relationship:

$$
p_n(x) = (a_n x + a_n)p_{n-1}(x) - c_n p_{n-2}(x).
$$

 \diamond In matrix form:

$$
x\begin{bmatrix}p_0(x) \\ p_1(x) \\ \vdots \\ p_{n-2}(x) \\ p_{n-1}(x) \end{bmatrix} = \begin{bmatrix} \frac{-a_1}{a_1} & \frac{1}{a_1} & 0 & 0 \\ \frac{c_2}{a_2} & \frac{-a_2}{a_2} & \frac{1}{a_2} \\ 0 & \ddots & \vdots \\ 0 & \ddots & \frac{1}{a_n} & \frac{1}{a_n} \\ 0 & \ddots & \frac{c_n}{a_n} & \frac{-a_n}{a_n} \end{bmatrix} \begin{bmatrix}p_0(x) \\ p_1(x) \\ \vdots \\ p_{n-2}(x) \\ p_{n-1}(x) \end{bmatrix} + \begin{bmatrix}0 \\ 0 \\ \vdots \\ 0 \\ p_n(x) \end{bmatrix}
$$

 φ $p_n(\lambda_j) = 0$ if and only if

$$
\lambda_i \mathbf{p}(\lambda_i) = T\mathbf{p}(\lambda_i).
$$

- \diamond T can be symmetrized by diagonal similarity transformation into a Jacobi matrix J.
- \Diamond It can be shown that the weight w_j in the quadrature is given by

$$
w_i = q_{1i}^2, \quad i = 1, \ldots n
$$

where \mathbf{q}_i is the *i*-th normalized eigenvector of J .

- The inverse problem:
	- \diamond Given a quadrature, i.e.,
		- \triangleright abscissas $\{\lambda_k^*\}_{k=1}^n$, and
		- \rhd weights $\{w_1, \ldots, w_n\}$ with $\sum_{i=1}^n w_i = 1$,
	- \diamond Determine the corresponding orthogonal polynomials.

Low Rank Approximation

- Noise removal in signal/image processing with Toeplitz structure.
	- \Diamond rank = noise level where SNR is high.
- Model reduction problem in speech encoding and filter design with Hankel structure.

 \Diamond rank = $\#$ of sinusoidal components in the signal.

• GCD approximation for multivariate polynomials with Sylvester structure.

 \Diamond rank = degree of GCD.

• Molecular structure modeling for protein folding with nonnegative matrices.

 \Diamond rank ≤ 5 .

- LSI application.
	- \Diamond rank = $\#$ of factors capturing the random nature of the indexing matrix but structure $= ?$
- Preconditioning or regularization of ill-posed inverse problems.