Chapter 2

Applications

- Pole Assignment Problem
- Control of Vibration
- Inverse Strum-Liouville Problem
- Geophysics Application
- Numerical Analysis
- Low Rank Application

Pole Assignment Problem

• Dynamic state equation:

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t).$$

 $\diamond \mathbf{x} = \text{state of the system} \in \mathbb{R}^n.$

- $\diamond \mathbf{u} = \text{input to the system} \in \mathbb{R}^m.$
- $\diamond A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}.$
- Want to select $\mathbf{u}(t)$ so as to control the dynamics of $\mathbf{x}(t)$.
 - \diamond Classical problem in control theory.
 - \diamond Extensively studied and very rich in literature.
 - \diamond Several different types.

State Feedback Control

 \bullet Choose input ${\bf u}$ as a linear function of current state ${\bf x},$

$$\mathbf{u}(t) = F\mathbf{x}(t).$$

• Closed-loop dynamical system:

$$\dot{\mathbf{x}}(t) = (A + BF)\mathbf{x}(t).$$

- Want to choose the gain matrix F so as to
 - \diamond Achieve stability.
 - \diamond Speed up response.
- Choose F so as to reassign eigenvalues of A + BF.
 - \diamond Usually F carries no structure at all.
 - \diamond It becomes a much harder IEP if F needs to satisfy a certain structural constraint.

Output Feedback Control

• Often $\mathbf{x}(t)$ is not directly observable. Instead, only output $\mathbf{y}(t)$ where

$$\mathbf{y}(t) = C\mathbf{x}(t)$$

is available.

Choose input u as a linear function of current output y,

$$\mathbf{u}(t) = K\mathbf{y}(t).$$

• Closed-loop dynamical system:

$$\dot{\mathbf{x}}(t) = (A + BKC)\mathbf{x}(t).$$

• Want to choose the *output matrix* K so as to reassign the eigenvalues of A + BKC.

Control of Vibration

- Area of applications:
 - \diamond Transverse vibrations of masses on a string.
 - \diamond Buckling of structures.
 - ♦ Transient current of electric circuits.
 - \diamond Acoustic vibration in a tube.
- Equation of motion:

$$M\ddot{\mathbf{x}} + C\dot{\mathbf{x}} + K\mathbf{x} = f(\mathbf{x}).$$

 $\diamond \mathbf{x} \in \mathbb{R}^n, \, M, \, C, \, K \in \mathbb{R}^{n \times n}.$

- $\diamond M =$ diagonal, C, K = symmetric tridiagonal.
- Motion is governed by the homogeneous equation.
 - \diamond Try a solution $\mathbf{x}(t) = \mathbf{v}e^{\lambda t}$.
 - $\diamond \, {\bf v}$ and λ are solutions to the quadratic eigenvalue problem

$$(\lambda^2 M + \lambda C + K)\mathbf{v} = 0.$$

 \diamond General solution:

$$\mathbf{x}(t) = \sum_{k=1}^{2n} \alpha_k \mathbf{v}_k e^{\lambda_k t}.$$

Undamped System

- C = 0, M, K = symmetric and positive definite.
- Try a solution of the form $\mathbf{x}(t) = \mathbf{v}e^{i\omega t}$
- **v** and ω solves the generalized eigenvalue problem

$$(K - \omega^2 M)\mathbf{v} = 0$$

 $\diamond \omega =$ the natural frequency.

 $\diamond \mathbf{v} =$ the natural mode.

• Let $\lambda = \omega^2$, $J := M^{-1/2} K M^{-1/2}$, and $\mathbf{z} = M^{1/2} \mathbf{x}$. Solve the Jacobi eigenvalue problem

$$J\mathbf{z} = \lambda \mathbf{z}.$$

- Two types of inverse eigenvalue problems:
 - \diamond Stiffness matrix K usually is more complicated than the mass matrix M.
 - \triangleright Determine K from static constraints, but find M so that some desired natural frequencies are achieved.
 - ▷ This is equivalent to an multiplicative inverse eigenvalue problem.
 - \diamond Construct an unreduced, symmetric, and tridiagonal matrix J from its n eigenvalues and those of its leading principal submatrix of dimension n-1.
 - This IEP can be identified as configuring a spring system from its spectrum and from the spectrum of the same system but the last mass is fixed to have no motion.
 - This is one kind of Jacobi inverse eigenvalue problems.

Damped System

- Normalize M to identity.
- Define
 - $\diamond Q(\lambda) = \lambda^2 I + \lambda C + K.$
 - ♦ $\tilde{Q}(\lambda)$ = The leading principal submatrix of $Q(\lambda)$ of dimension n-1.
- Given scalars

$$\{ \lambda_1, \ldots, \lambda_{2n} \}, \text{ and} \\ \{ \mu_1, \ldots, \mu_{2n-2} \} \in \mathbb{C},$$

• Find

- \diamond tridiagonal symmetric matrices C and K, or
- \diamond real-valued, tridiagonal, symmetric, and weakly diagonally dominant matrices C and K with positive diagonal and negative off-diagonal elements,
- Such that

 $\diamond \det(Q(\lambda))$ has zeros precisely $\{\lambda_1, \ldots, \lambda_{2n}\}$, and $\diamond \det(\tilde{Q}(\lambda))$ has zeros precisely $\{\mu_1, \ldots, \mu_{2n-2}\}$.

Inverse Sturm-Liouville Problem

• The classical Sturm-Liouville problem:

$$\mathcal{L}[u] := -u_n''(x) + p(x)u_n(x) = \lambda_n u_n(x), \ 0 < x < 1$$
$$u_n'(0) - hu_n(0) = 0$$
$$u_n'(1) + Hu_n(1) = 0.$$

- \diamond Eigenvalues of ${\cal L}$ are real, simple, countable, and tend to infinity.
- \diamond Increasing q, h, or H increases all eigenvalues of \mathcal{L} .
- Can the function p(x) be determined from eigenvalues? (Two data sequences are required [150].)

Matrix Analogue

• Discretize the BVP by the central difference scheme with mesh $h = \frac{1}{n+1}$,

$$\begin{pmatrix} 1 & \begin{bmatrix} 2 & -1 & 0 & & \\ -1 & 2 & -1 & & \\ 0 & -1 & 2 & \dots & 0 \\ \vdots & & \ddots & & \\ 0 & & & 2 & -1 \\ 0 & & & -1 & 2 \end{bmatrix} + X \mathbf{u} = \lambda \mathbf{u}.$$

- $\diamond X =$ diagonal matrix representing the discretization of p(x).
- Determine X so that the system processes a prescribed spectrum.

♦ This is an additive inverse eigenvalue problem.

• Caution: There is a significant difference in asymptotic behavior between the discrete and continuous cases.

Applied Physics

- Quantum Mechanics
- Geophysics
- Neutron Transport Theory

- Computing the electronic structure of an atom requires the spectral and diagonal information of a Hamiltonian matrix *H*.
- Diagonal elements of H cannot be measured accurately.
- Eigenvalues of H correspond to energy levels of an atom that can be measured to a high degree of accuracy.
- Want to use eigenvalues to correct diagonal elements.
- A least squares IEP [110]:
 - ♦ Given
 - \triangleright A real symmetric matrix A,
 - \triangleright A set of real eigenvalues $\omega = [\omega_1, \ldots, \omega_n]^T$,
 - \diamond Find a real diagonal matrix D such that

$$\|\sigma(A+D) - \omega\|_2$$

is minimized.

- Assuming spherical symmetry, want to infer the internal structure of the Earth from the frequencies of spheroidal and torsional modes of oscillations.
- The model involves the generalized Sturm-Liouville problem, i.e.,

$$u^{(2k)} - (p_1 u^{(k-1)})^{(k-1)} + \ldots + (-1)^k p_k u = \lambda u.$$

- \diamond For well-posedness, k+1 spectra associated with k+1 distinct sets of boundary conditions are required to construct the unknown coefficients p_1, \ldots, p_k [14, 15].
- \diamond Theoretical solution can be constructed iteratively for the cases k = 1, 2.
- ♦ Open Question: What is the matrix analogue of this high order problem and how to solve it numerically?

Neutron Transport Theory

• Dynamics in an additive neural network

$$\frac{du_i}{dt} = -a_i u_i + \sum_{j=1}^n \omega_{ij} g_j(u_j) + p_i, \quad , i = 1, \dots n.$$

- $\omega_{ij} =$ connection coefficient between the *i*th and *j*th neurons.
- $\diamond g'_j > 0$ and g_j is bounded.
- Want to choose W so that a designated point \mathbf{u}^* is a stable equilibrium.
 - \diamond At the critical point, there is a linear constraint

 $-A\mathbf{u}^* + W\mathbf{g}(\mathbf{u}^*) + \mathbf{p} = 0.$

♦ The eigenvalues of the Jacobian matrix should be in the left half plane.

- An equality constrained IEP [235]:
 - \diamond Given
 - ▷ Two sets of real vectors $\{\mathbf{x}_i\}_{i=1}^p$ and $\{\mathbf{y}_i\}_{i=1}^p$ with $p \leq n$, and
 - \triangleright A set of complex numbers $\mathcal{L} = \{\lambda_1, \ldots, \lambda_n\},$ closed in conjugation,
 - \diamond Find a real matrix A such that

$$A\mathbf{x}_i = \mathbf{y}_i, \sigma(A) = \mathcal{L}$$

Numerical Analysis

- Preconditioning
- High Order Stable Runge-Kutta Schemes
- Gauss Quadratures

- Preconditioning the equation Ax = b is a means of transforming the original system into one that has the same solution, but is easier (quicker) to solve with an iterative scheme.
 - \diamond Preconditioning A can be thought of as implicitly multiplying A by M^{-1} .
 - $\triangleright M$ is a matrix for which Mz = y can easily be solved, and
 - $> M^{-1}A$ is not too far from normal and its eigenvalues are clustered.
 - Many types of unstructured preconditioners have been proposed:
 - ▷ Low-order (Coarse-grid) approximation, SOR, incomplete LU factorization, polynomial, and so on.
 - \triangleright Open Question: Given a structure of M, what is the best achievable conditioning [166]?

- Precondition by low rank matrices might have applications in practical optimization.
 - ♦ Open Question: Given a matrix matrix $C \in \mathbb{R}^{m \times n}$ and a constant vector $\mathbf{b} \in \mathbb{R}^m$, find a vector $\mathbf{x} \in \mathbb{R}^n$ such that the rank-one updated matrix $\mathbf{b}\mathbf{x}^T + C$ has a prescribed set of singular values.

High Order Stable Runge-Kutta Schemes

• An *s*-stage Runge-Kutta method is uniquely determined by the Butcher array

 \diamond The stability function is given by

$$R(z) = 1 + z\mathbf{b}^T(I - zA)^{-1}\mathbf{1}.$$

- To attain stability, implicit methods are preferred.
 - \diamond Fully implicit methods are too expensive.
 - Diagonally implicit methods (DIRK), i.e., A is low triangular with *identical* diagonal entries, is compu-tationally more efficient, but is difficult to construct.
 - \diamond Singly implicit methods (SIRK) requires that the matrix A, though not lower triangular, should have an *s*-fold eigenvalue.

- An IEP with prescribed entries [269]:
 - \diamond Given
 - \triangleright The number *s* of stages,
 - \triangleright The the desired order p,
 - \triangleright Define $k = \lfloor (p-1)/2 \rfloor$,
 - ▷ Constants $\xi_j = 0.5(4J^2 1)^{-1/2}, j = 1, \dots, k,$
 - \diamond Find a real number λ and $Q \in \mathbb{R}^{(s-k) \times (s-k)}$ such that
 - $\triangleright Q + Q^T \text{ is positive semi-definite.}$ $\triangleright \sigma(X) = \{\lambda\} \text{ where } X \in \mathbb{R}^{s \times s} \text{ is of the form}$

and $q_{11} = 0$ if p is even.

Gauss Quadratures

• With respect to a given a weight function $\omega(x) \ge 0$ on [a, b], one can define a sequence of orthonormal polynomials $\{p_n(x)\}_{n=0}^{\infty}$ satisfying

$$\int_{a}^{b} \omega(x) p_{i}(x) p_{j}(x) dx = \delta_{ij}$$

- \diamond Roots of each $p_n(x)$ are simple, distinct, and lie in the interval [a, b].
- \diamond The roots $\{\lambda_i\}_{i=1}^n$ of a fixed $p_n(x)$ define a Gaussian quadrature

$$\int_{a}^{b} \omega(x) f(x) dx = \sum_{i=1}^{n} w_{i} f(\lambda_{i}),$$

that has degree of precision up to 2n - 1.

• With $p_0(x) \equiv 1$ and $p_{-1}(x) \equiv 0$, orthogonal polynomials satisfy a three-term recurrence relationship:

$$p_n(x) = (a_n x + a_n) p_{n-1}(x) - c_n p_{n-2}(x).$$

 \diamond In matrix form:

$$x \underbrace{\begin{bmatrix} p_0(x) \\ p_1(x) \\ \vdots \\ p_{n-2}(x) \\ p_{n-1}(x) \end{bmatrix}}_{\mathbf{p}(x)} = \underbrace{\begin{bmatrix} \frac{-a_1}{a_1} \frac{1}{a_1} & 0 & 0 \\ \frac{c_2}{a_2} \frac{-a_2}{a_2} \frac{1}{a_2} & \\ 0 & & \\ \vdots & \ddots \vdots & \\ 0 & & \frac{1}{a_{n-1}} \\ 0 & & \frac{1}{a_{n-1}} \\ 0 & & \frac{c_n}{a_n} \frac{-a_n}{a_n} \end{bmatrix}}_{\mathbf{p}(x)} \begin{bmatrix} p_0(x) \\ p_1(x) \\ \vdots \\ p_{n-2}(x) \\ p_{n-1}(x) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ p_n(x) \end{bmatrix}$$

 $\diamond p_n(\lambda_j) = 0$ if and only if

$$\lambda_i \mathbf{p}(\lambda_i) = T \mathbf{p}(\lambda_i).$$

- $\diamond T$ can be symmetrized by diagonal similarity transformation into a Jacobi matrix J.
- ♦ It can be shown that the weight w_j in the quadrature is given by

$$w_i = q_{1i}^2, \quad i = 1, \dots n$$

where \mathbf{q}_i is the *i*-th normalized eigenvector of J.

• The inverse problem:

 \diamond Given a quadrature, i.e.,

- \triangleright abscissas $\{\lambda_k^*\}_{k=1}^n$, and
- \triangleright weights $\{w_1, \ldots, w_n\}$ with $\sum_{i=1}^n w_i = 1$,
- ♦ Determine the corresponding orthogonal polynomials.

Low Rank Approximation

- Noise removal in signal/image processing with Toeplitz structure.
 - \diamond rank = noise level where SNR is high.
- Model reduction problem in speech encoding and filter design with Hankel structure.

 \diamond rank = # of sinusoidal components in the signal.

• GCD approximation for multivariate polynomials with Sylvester structure.

```
\diamond rank = degree of GCD.
```

• Molecular structure modeling for protein folding with nonnegative matrices.

 \diamond rank ≤ 5 .

- LSI application.
 - \Rightarrow rank = # of factors capturing the random nature of the indexing matrix but structure = ?
- Preconditioning or regularization of ill-posed inverse problems.