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Pole Assignment Problem

• Dynamic state equation:

ẋ(t) = Ax(t) + Bu(t).

¦ x = state of the system ∈ Rn.

¦ u = input to the system ∈ Rm.

¦ A ∈ Rn×n, B ∈ Rn×m.

• Want to select u(t) so as to control the dynamics of
x(t).

¦ Classical problem in control theory.

¦ Extensively studied and very rich in literature.

¦ Several different types.
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State Feedback Control

• Choose input u as a linear function of current state x,

u(t) = Fx(t).

• Closed-loop dynamical system:

ẋ(t) = (A + BF )x(t).

• Want to choose the gain matrix F so as to

¦ Achieve stability.

¦ Speed up response.

• Choose F so as to reassign eigenvalues of A + BF .

¦ Usually F carries no structure at all.

¦ It becomes a much harder IEP if F needs to satisfy
a certain structural constraint.
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Output Feedback Control

• Often x(t) is not directly observable. Instead, only out-
put y(t) where

y(t) = Cx(t)

is available.

• Choose input u as a linear function of current output
y,

u(t) = Ky(t).

• Closed-loop dynamical system:

ẋ(t) = (A + BKC)x(t).

• Want to choose the output matrix K so as to reassign
the eigenvalues of A + BKC.
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Control of Vibration

• Area of applications:

¦ Transverse vibrations of masses on a string.

¦ Buckling of structures.

¦ Transient current of electric circuits.

¦ Acoustic vibration in a tube.

• Equation of motion:

M ẍ + Cẋ + Kx = f(x).

¦ x ∈ Rn, M , C, K ∈ Rn×n.

¦ M = diagonal, C, K = symmetric tridiagonal.

• Motion is governed by the homogeneous equation.

¦ Try a solution x(t) = veλt.

¦ v and λ are solutions to the quadratic eigenvalue
problem

(λ2M + λC + K)v = 0.

¦ General solution:

x(t) =

2n∑
k=1

αkvke
λkt.
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Undamped System

• C = 0, M, K = symmetric and positive definite.

• Try a solution of the form x(t) = veiωt

• v and ω solves the generalized eigenvalue problem

(K − ω2M)v = 0

¦ ω = the natural frequency.

¦ v = the natural mode.

• Let λ = ω2, J := M−1/2KM−1/2, and z = M 1/2x.
Solve the Jacobi eigenvalue problem

Jz = λz.
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• Two types of inverse eigenvalue problems:

¦ Stiffness matrix K usually is more complicated than
the mass matrix M .

. Determine K from static constraints, but find
M so that some desired natural frequencies are
achieved.

. This is equivalent to an multiplicative inverse eigen-
value problem.

¦ Construct an unreduced, symmetric, and tridiago-
nal matrix J from its n eigenvalues and those of its
leading principal submatrix of dimension n − 1.

. This IEP can be identified as configuring a spring
system from its spectrum and from the spectrum
of the same system but the last mass is fixed to
have no motion.

. This is one kind of Jacobi inverse eigenvalue prob-
lems.
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Damped System

• Normalize M to identity.

• Define

¦ Q(λ) = λ2I + λC + K.

¦ Q̃(λ) = The leading principal submatrix of Q(λ) of
dimension n − 1.

• Given scalars

¦ {λ1, . . . , λ2n}, and

¦ {µ1, . . . , µ2n−2} ∈ C,

• Find

¦ tridiagonal symmetric matrices C and K, or

¦ real-valued, tridiagonal, symmetric, and weakly di-
agonally dominant matrices C and K with positive
diagonal and negative off-diagonal elements,

• Such that

¦ det(Q(λ)) has zeros precisely {λ1, . . . , λ2n}, and

¦ det(Q̃(λ)) has zeros precisely {µ1, . . . , µ2n−2}.
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Inverse Sturm-Liouville Problem

• The classical Sturm-Liouville problem:

L[u] := −u
′′
n(x) + p(x)un(x) = λnun(x), 0 < x < 1

u
′
n(0) − hun(0) = 0

u
′
n(1) + Hun(1) = 0.

¦ Eigenvalues of L are real, simple, countable, and
tend to infinity.

¦ Increasing q, h, or H increases all eigenvalues of L.

• Can the function p(x) be determined from eigenvalues?
(Two data sequences are required [150].)
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Matrix Analogue

• Discretize the BVP by the central difference scheme
with mesh h = 1

n+1,


1

h2




2 −1 0
−1 2 −1

0 −1 2 . . . 0
... . . .

0 2 −1
0 −1 2




+ X




u = λu.

¦ X = diagonal matrix representing the discretization
of p(x).

• Determine X so that the system processes a prescribed
spectrum.

¦ This is an additive inverse eigenvalue problem.

• Caution: There is a significant difference in asymptotic
behavior between the discrete and continuous cases.



Applied Physics 37

Applied Physics

• Quantum Mechanics

• Geophysics

• Neutron Transport Theory
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Quantum Mechanics

• Computing the electronic structure of an atom requires
the spectral and diagonal information of a Hamiltonian
matrix H .

• Diagonal elements of H cannot be measured accurately.

• Eigenvalues of H correspond to energy levels of an atom
that can be measured to a high degree of accuracy.

• Want to use eigenvalues to correct diagonal elements.

• A least squares IEP [110]:

¦ Given

. A real symmetric matrix A,

. A set of real eigenvalues ω = [ω1, . . . , ωn]
T ,

¦ Find a real diagonal matrix D such that

‖σ(A + D) − ω‖2

is minimized.
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Geophysics

• Assuming spherical symmetry, want to infer the in-
ternal structure of the Earth from the frequencies of
spheroidal and torsional modes of oscillations.

• The model involves the generalized Sturm-Liouville prob-
lem, i.e.,

u(2k) − (p1u
(k−1))(k−1) + . . . + (−1)kpku = λu.

¦ For well-posedness, k+1 spectra associated with k+
1 distinct sets of boundary conditions are required
to construct the unknown coefficients p1, . . . , pk [14,
15].

¦ Theoretical solution can be constructed iteratively
for the cases k = 1, 2.

¦ Open Question: What is the matrix analogue of this
high order problem and how to solve it numerically?
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Neutron Transport Theory

• Dynamics in an additive neural network

dui

dt
= −aiui +

n∑
j=1

ωijgj(uj) + pi, , i = 1, . . . n.

¦ ωij = connection coefficient between the ith and jth
neurons.

¦ g
′
j > 0 and gj is bounded.

• Want to choose W so that a designated point u∗ is a
stable equilibrium.

¦ At the critical point, there is a linear constraint

−Au∗ + Wg(u∗) + p = 0.

¦ The eigenvalues of the Jacobian matrix should be in
the left half plane.
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• An equality constrained IEP [235]:

¦ Given

. Two sets of real vectors {xi}p
i=1 and {yi}p

i=1 with
p ≤ n, and

. A set of complex numbers L = {λ1, . . . , λn},
closed in conjugation,

¦ Find a real matrix A such that

Axi = yi,

σ(A) = L
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Numerical Analysis

• Preconditioning

• High Order Stable Runge-Kutta Schemes

• Gauss Quadratures
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Preconditioning

• Preconditioning the equation Ax = b is a means of
transforming the original system into one that has the
same solution, but is easier (quicker) to solve with an
iterative scheme.

¦ Preconditioning A can be thought of as implicitly
multiplying A by M−1.

. M is a matrix for which Mz = y can easily be
solved, and

. M−1A is not too far from normal and its eigen-
values are clustered.

¦ Many types of unstructured preconditioners have
been proposed:

. Low-order (Coarse-grid) approximation, SOR, in-
complete LU factorization, polynomial, and so on.

. Open Question: Given a structure of M , what is
the best achievable conditioning [166]?
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• Precondition by low rank matrices might have applica-
tions in practical optimization.

¦ Open Question: Given a matrix matrix C ∈ Rm×n

and a constant vector b ∈ Rm, find a vector x ∈ Rn

such that the rank-one updated matrix bxT +C has
a prescribed set of singular values.
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High Order Stable Runge-Kutta Schemes

• An s-stage Runge-Kutta method is uniquely determined
by the Butcher array

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
... ... ...
cs as1 as2 . . . ass

b1 b2 . . . bs

¦ The stability function is given by

R(z) = 1 + zbT (I − zA)−11.

• To attain stability, implicit methods are preferred.

¦ Fully implicit methods are too expensive.

¦ Diagonally implicit methods (DIRK), i.e., A is low
triangular with identical diagonal entries, is compu-
tationally more efficient, but is difficult to construct.

¦ Singly implicit methods (SIRK) requires that the
matrix A, though not lower triangular, should have
an s-fold eigenvalue.
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• An IEP with prescribed entries [269]:

¦ Given

. The number s of stages,

. The the desired order p,

. Define k = b(p − 1)/2c,

. Constants ξj = 0.5(4J2 − 1)−1/2, j = 1, . . . , k,

¦ Find a real number λ and Q ∈ R(s−k)×(s−k) such
that

. Q + QT is positive semi-definite.

. σ(X) = {λ} where X ∈ Rs×s is of the form

X =




1/2 −ξ1

ξ1 0
0
... . . .

0 −ξk

0 ξk Q




and q11 = 0 if p is even.
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Gauss Quadratures

• With respect to a given a weight function ω(x) ≥ 0 on
[a, b], one can define a sequence of orthonormal poly-
nomials {pn(x)}∞n=0 satisfying∫ b

a

ω(x)pi(x)pj(x)dx = δij.

¦ Roots of each pn(x) are simple, distinct, and lie in
the interval [a, b].

¦ The roots {λi}n
i=1 of a fixed pn(x) define a Gaussian

quadrature∫ b

a

ω(x)f(x)dx =

n∑
i=1

wif(λi),

that has degree of precision up to 2n − 1.
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• With p0(x) ≡ 1 and p−1(x) ≡ 0, orthogonal polynomi-
als satisfy a three-term recurrence relationship:

pn(x) = (anx + an)pn−1(x) − cnpn−2(x).

¦ In matrix form:

x




p0(x)
p1(x)

...
pn−2(x)
pn−1(x)




︸ ︷︷ ︸
p(x)

=




−a1

a1

1
a1

0 0
c2

a2

−a2

a2

1
a2

0
... . . . ...
0 1

an−1

0 . . . cn

an

−an

an




︸ ︷︷ ︸
T




p0(x)
p1(x)

...
pn−2(x)
pn−1(x)




+




0
0

...
0

pn(x)




¦ pn(λj) = 0 if and only if

λip(λi) = Tp(λi).

¦ T can be symmetrized by diagonal similarity trans-
formation into a Jacobi matrix J .

¦ It can be shown that the weight wj in the quadrature
is given by

wi = q2
1i, i = 1, . . . n

where qi is the i-th normalized eigenvector of J .
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• The inverse problem:

¦ Given a quadrature, i.e.,

. abscissas {λ∗
k}n

k=1, and

. weights {w1, . . . , wn} with
∑n

i=1 wi = 1,

¦ Determine the corresponding orthogonal polynomi-
als.
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Low Rank Approximation

• Noise removal in signal/image processing with Toeplitz
structure.

¦ rank = noise level where SNR is high.

• Model reduction problem in speech encoding and filter
design with Hankel structure.

¦ rank = # of sinusoidal components in the signal.

• GCD approximation for multivariate polynomials with
Sylvester structure.

¦ rank = degree of GCD.

• Molecular structure modeling for protein folding with
nonnegative matrices.

¦ rank ≤ 5.

• LSI application.

¦ rank = # of factors capturing the random nature of
the indexing matrix but structure = ?

• Preconditioning or regularization of ill-posed inverse
problems.


