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Applications

Pole Assignment Problem

e Dynamic state equation:
x(t) = Ax(t) + Bul(t).

¢ x = state of the system € R".
¢ u = input to the system € R™.
o Ae R B e R"™™
e Want to select u(t) so as to control the dynamics of
x(t).
¢ Classical problem in control theory:.
¢ Extensively studied and very rich in literature.

¢ Several different types.
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State Feedback Control

e Choose input u as a linear function of current state x,
u(t) = Fx(t).
e Closed-loop dynamical system:

x(t) = (A + BF)x(t).

e Want to choose the gain matrix F' so as to

¢ Achieve stability:.
o Speed up response.

e Choose F' so as to reassign eigenvalues of A + BF".

¢ Usually F' carries no structure at all.

¢ It becomes a much harder IEP if F' needs to satisfy
a certain structural constraint.
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Output Feedback Control

e Often x(t) is not directly observable. Instead, only out-
put y(t) where

y(t) = Ox(t)
1s available.

e Choose input u as a linear function of current output
Y,

u(t) = Ky(t).
e Closed-loop dynamical system:

x(t) = (A + BKO)x(t).

e Want to choose the output matrixz K so as to reassign
the eigenvalues of A + BKC.
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Control of Vibration

e Area of applications:

¢ Transverse vibrations of masses on a string.
¢ Buckling of structures.

o Transient current of electric circuits.

o Acoustic vibration in a tube.

e Fquation of motion:
Mx + Cx + Kx = f(x).
oxeR" M, C, K € R"™™",
o M = diagonal, C', K = symmetric tridiagonal.
e Motion is governed by the homogeneous equation.

o Try a solution x(t) = ve.

¢ v and A are solutions to the quadratic eigenvalue
problem

(VM +\C + K)v = 0.

¢ General solution:

2n
x(t) = Z o vipe
k=1
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Undamped System

o (' =0, M, K = symmetric and positive definite.

e Try a solution of the form x(t) = ve™!

e v and w solves the generalized eigenvalue problem
(K —w*M)v =0
¢ w = the natural frequency.

& v = the natural mode.

olet A\ =w? J = M Y2KM Y2 and z = M'/*x.
Solve the Jacobi eigenvalue problem

Jz = \z.
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e T'wo types of inverse eigenvalue problems:

¢ Stiffness matrix K usually is more complicated than
the mass matrix M.

> Determine K from static constraints, but find
M so that some desired natural frequencies are
achieved.

> This is equivalent to an multiplicative inverse eigen-
value problem.

¢ Construct an unreduced, symmetric, and tridiago-
nal matrix J from its n eigenvalues and those of its
leading principal submatrix of dimension n — 1.

> This TEP can be identified as configuring a spring
system from its spectrum and from the spectrum
of the same system but the last mass is fixed to
have no motion.

> This is one kind of Jacobi inverse eigenvalue prob-
lems.



34 Applications

Damped System

e Normalize M to identity.
e Define

o QN) =N NI+ M0+ K.
o Q(A\) = The leading principal submatrix of Q(\) of

dimension n — 1.
e Given scalars
O { A, ..., Ao}, and
o{p, ..., pan—2} € C,
e [ind

¢ tridiagonal symmetric matrices C' and K, or

¢ real-valued, tridiagonal, symmetric, and weakly di-
agonally dominant matrices C' and K with positive
diagonal and negative off-diagonal elements,

e Such that
o det(Q(N)) has zeros precisely {1, ..., Ay, }, and

~

o det(Q(N)) has zeros precisely {1, ... , flon—2}.
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Inverse Sturm-Liouville Problem

e The classical Sturm-Liouville problem:

2

Llu] == —u,(z) + p(x)u,(x) = Nug(z), 0 <x <1
u, (0) — h,(0) = 0
w (1) 4+ Huu(1) = 0.
¢ Eigenvalues of £ are real, simple, countable, and
tend to infinity.
¢ Increasing ¢, h, or H increases all eigenvalues of L.

e Can the function p(z) be determined from eigenvalues?
(Two data sequences are required |150].)
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Matrix Analogue

e Discretize the BVP by the central difference scheme
with mesh h = ——

n+1’
[ 2 -1 0 ]
( —1 2 -1 \
% 02—1 2 0 cx lue
0 2 —1
\ 0 1 2] )

¢ X = diagonal matrix representing the discretization
of p(x).

e Determine X so that the system processes a prescribed
spectrum.

¢ This is an additive inverse eigenvalue problem.

e Caution: There is a significant difference in asymptotic
behavior between the discrete and continuous cases.
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Applied Physics

37

e (Quantum Mechanics
e Geophysics
e Neutron Transport Theory
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Quantum Mechanics

e Computing the electronic structure of an atom requires
the spectral and diagonal information of a Hamiltonian
matrix H.

e Diagonal elements of H cannot be measured accurately.

e Figenvalues of H correspond to energy levels of an atom
that can be measured to a high degree of accuracy.

e Want to use eigenvalues to correct diagonal elements.
o A least squares [EP [110]:

o (Glven

> A real symmetric matrix A,
> A set of real eigenvalues w = [wy, ... ,w,|"

)

¢ Find a real diagonal matrix D such that
lo(A+ D) — w2

1s minimized.
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(Geophysics

e Assuming spherical symmetry, want to infer the in-
ternal structure of the Earth from the frequencies of
spheroidal and torsional modes of oscillations.

e The model involves the generalized Sturm-Liouville prob-
lem, i.e.,

u — (pru YD (D = M,

¢ For well-posedness, k+1 spectra associated with k4
1 distinct sets of boundary conditions are required
to construct the unknown coefficients py, ... , pp |14,
15].

¢ Theoretical solution can be constructed iteratively
for the cases k =1, 2.

¢ Open Question: What is the matrix analogue of this
high order problem and how to solve it numerically?
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Neutron Transport Theory

e Dynamics in an additive neural network

¢ wj;j = connection coefficient between the 7th and jth
Neurons.

o g;- > 0 and g; is bounded.

e Want to choose W so that a designated point u* is a
stable equilibrium.

¢ At the critical point, there is a linear constraint
—Au* + Wg(u") +p = 0.

¢ The eigenvalues of the Jacobian matrix should be in
the left half plane.
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e An equality constrained TEP 235/:

o (Given

> Two sets of real vectors {x;}!_; and {y;}}_; with
p < n, and

> A set of complex numbers £ = {A1,...,\,},
closed in conjugation,

o Find a real matrix A such that

AX@' = Yi
g(A) = L
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Numerical Analysis

Application

e Preconditioning
e High Order Stable Runge-Kutta Schemes

e Gauss Quadratures
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Preconditioning

e Preconditioning the equation Axr = b is a means of
transforming the original system into one that has the
same solution, but is easier (quicker) to solve with an
iterative scheme.

¢ Preconditioning A can be thought of as implicitly
multiplying A by M.
> M is a matrix for which Mz = y can easily be
solved, and

> M~ A is not too far from normal and its eigen-
values are clustered.

¢ Many types of unstructured preconditioners have
been proposed:

> Low-order (Coarse-grid) approximation, SOR, in-

complete LU factorization, polynomial, and so on.

> Open Question: Given a structure of M, what is
the best achievable conditioning [166]7
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e Precondition by low rank matrices might have applica-
tions in practical optimization.

¢ Open Question: Given a matrix matrix C € R™*"
and a constant vector b € R, find a vector x € R"
such that the rank-one updated matrix bx! +C has
a prescribed set of singular values.
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High Order Stable Runge-Kutta Schemes

e An s-stage Runge-Kutta method is uniquely determined
by the Butcher array

cCilair a2 ... Qg
Co|ao21 A9 ... QA9g
Cs| Qg1 Ago ... QAgg

by by ... b

¢ The stability function is given by
R(z) =14 2b" (I — zA)'1.
e To attain stability, implicit methods are preferred.

¢ Fully implicit methods are too expensive.

¢ Diagonally implicit methods (DIRK), i.e.; A is low
triangular with identical diagonal entries, is compu-
tationally more efficient, but is difficult to construct.

o Singly implicit methods (SIRK) requires that the
matrix A, though not lower triangular, should have
an s-fold eigenvalue.
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e An IEP with prescribed entries |269]:

o (Given

> The number s of stages,
> The the desired order p,
> Define k= [(p —1)/2],

> Constants §; = 0.5(4.J% — 1)_1/2, 7=1,...k,
o Find a real number A and Q € REF)*6=k) guch

that

> () + QT is positive semi-definite.

> o(X) = {\} where X € R**¥ is of the form

and q11 = 0 if p is even.

12 =&
&0
0
0| —&
0 e

Application
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Gauss Quadratures

e With respect to a given a weight function w(x) > 0 on
la, b], one can define a sequence of orthonormal poly-
nomials {p,(x)}52, satisfying

/ w(z)pi(x)pj(x)dr = d;;.

o Roots of each p,(x) are simple, distinct, and lie in
the interval |a, b).

o The roots {A; }"; of a fixed p,(x) define a Gaussian
quadrature

/ w(z)f(x)dr = szf()\z'>7

that has degree of precision up to 2n — 1.
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e With po(x) = 1 and p_1(x) = 0, orthogonal polynomi-

als satisfy a three-term recurrence relationship:

pn($> — (anx + an)pn—l(aj) — Cnpn—Q(x)-

¢ In matrix form:

_ T . -
po(z) W o (1) 0 po(z) 0
pi(z) el p1(x) 0

0
X = : +
Pn—2() 0 o | | poa() 0
| po-i(z) || O ot | () || pal) |
p) T

o pu(A;) = 0 if and only if
Aip(Ai) = Tp(N).

¢ T can be symmetrized by diagonal similarity trans-
formation into a Jacobi matrix J.

¢ It can be shown that the weight w; in the quadrature
is given by

9 .
w; =4qy, t=1,...n

where q; is the ¢-th normalized eigenvector of J.



Numerical Analysis 49

e The inverse problem:

¢ Given a quadrature, i.e.,
> abscissas { A} }}_;, and
> weights {wy, ... ,w,} with > w; =1,

¢ Determine the corresponding orthogonal polynomi-
als.
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Low Rank Approximation

e Noise removal in signal /image processing with Toeplitz
structure.

¢ rank = noise level where SNR is high.

e Model reduction problem in speech encoding and filter
design with Hankel structure.

o rank = # of sinusoidal components in the signal.

e GCD approximation for multivariate polynomials with
Sylvester structure.

¢ rank = degree of GCD.

e Molecular structure modeling for protein folding with
nonnegative matrices.

o rank < 5.
e LSI application.

¢ rank = # of factors capturing the random nature of
the indexing matrix but structure = 7

e Preconditioning or regularization of ill-posed inverse
problems.



