Chapter 3

Parameterized Inverse Eigenvalue Problems

- Overview.
- General Results.
- Additive Inverse Eigenvalue Problems.
- Multiplicative Inverse Eigenvalue Problems.

Overview

- The structural constraint is regulated by a set of parameters.
- Most discussion concentrates on linear dependence of the problem on the parameters.

Generic Form

 \bullet Given

- $\Diamond A$ family of matrices $A(c) \in \mathcal{M}$ with parameters $c \in \mathbf{F}^m$,
- \diamond A set of scalars $\Omega \subset \mathbf{F}$,

• Find

 \diamond Values of parameter c such that

 $\sigma(A(c)) \subset \Omega$.

 \triangleright M = One particular class of submatrices in $\mathbf{F}^{n \times n}$.

 \triangleright \mathbf{F} = One particular field of scalars.

• Remark:

- \Diamond Degree of free parameters m needs not be the same as the size n of the matrix.
- \Diamond Commonly used Ω :
	- $\triangleright \Omega = {\lambda_k^*}_{k=1}^n$.
	- $\triangleright \Omega =$ left-half complex plan.
- \Diamond Depending upon how $A(c)$ is defined, the PIEP can appear in very different form.

Variations

• Linear dependence on parameters (LiPIEP):

$$
A(c) = A_0 + \sum_{i=1}^{m} c_i A_i.
$$

- $\Diamond A_i \in \mathcal{R}(n)$, $\mathbf{F} = \mathbb{R}$. $\Diamond A_i \in \mathcal{S}(n)$, $\mathbf{F} = \mathbb{R}$.
- **(AIEP)** $A(c) = A(X) = A_0 + X, X \in \mathcal{N}$.
	- $\Diamond \mathcal{N} =$ Some special class of submatrices.
	- \Diamond X can be expressed in terms of linear combinations of basis $\{A_i\}$ of N.
- **(MIEP)** $A(c) = A(X) = XA_0, X \in \mathcal{N}$.
	- \Diamond XA₀ can still be expressed as a linear combination of some A_i , $i = 1, \ldots, m$.
	- \diamond If $X = \text{diag}\{c_1, \ldots, c_n\}$, write $A_0 = [a_1^T, \ldots, a_n^T]^T$ in rows. Then

$$
XA_0 = \sum_{i=1}^n c_i \underbrace{e_i a_i^T}_{A_i}.
$$

• **(Generalized Pole Assignment Problem)** $A(c) = A(K_1, \ldots, K_q) = A_0 + \sum_{i=1}^q B_i K_i C_i.$

General Results

- Lot of attention has been paid to the theory and numerical method of the LiPIEP.
	- \diamond Finding a solution over real field is more complicated and difficult than over complex field.
- Whatever is known about LiPIEP applies to AIEP and MIEP.
- Pole assignment problem itself stands alone as an important application for decades.
	- ¦ Has been extensively studied already.
	- \diamond Many theoretical results and numerical techniques are available.
	- \diamond Approaches include skills from linear system theory, combinatorics, complex analysis to algebraic geometry.
	- \Diamond Will not be discussed in this note.

Existence Theory for Linear PIEP

• Most discussions concentrate on the LiPIEP.

$$
A(c) = A_0 + \sum_{i=1}^{m} c_i A_i.
$$

- Complex solvability is generally expected by solving polynomial systems.
- Presence of multiple eigenvalues in real case makes a big difference.

Complex Solvability

- Given *n* complex numbers $\{\lambda_k^*\}_{k=1}^n$,
	- \Diamond For almost all $A_i \in \mathbb{C}^{n \times n}$, there exists $c \in \mathbb{C}^n$ such that $A(c) = A_0 + \sum_{k=1}^n c_k A_k$ has eigenvalues $\{\lambda_k^*\}_{k=1}^n$.
	- \Diamond There are at most n! distinct solutions.

Real Solvability $(n = m)$

• Notation and Definitions:

$$
A_k := \begin{bmatrix} a_{ij}^{(k)} \end{bmatrix}, \quad k = 0, 1, \dots, n,
$$

\n
$$
E := \begin{bmatrix} a_{ii}^{(k)} \end{bmatrix}, \quad i, k = 1, \dots, n,
$$

\n
$$
S := \sum_{i=1}^m |A_k|,
$$

\n
$$
\pi(M) := ||M - \text{diag}(M)||_{\infty},
$$

\n
$$
d(\lambda) := \min_{i \neq j} |\lambda_i - \lambda_j|
$$

• Normalize the diagonals of A_j :

 \Diamond Assume $E^{-1} = [\ell_{ij}]$ exists and $\tilde{c} := Ec$. \diamond Rewrite

$$
A(c) = A_0 + \sum_{k=1}^n c_k A_k = A_0 + \sum_{k=1}^n \left(\sum_{j=1}^n \ell_{kj} \tilde{c}_j \right) A_k
$$

= $A_0 + \sum_{j=1}^n \tilde{c}_j \left(\sum_{k=1}^n \ell_{kj} A_k \right).$

$$
diag(\tilde{A}_j) = e_j, \quad j = 1, \dots n.
$$

- [34] Sufficient condition:
	- \Diamond Given
		- $\triangleright n$ real numbers $\lambda^* = {\lambda_k^*}_{k=1}^n$, and
		- $\rhd n + 1$ real $n \times n$ matrices A_i , $i = 0, 1, \ldots, n$,
	- \diamond Assume

$$
\rho \operatorname{diag}(A_k) = e_k, \, k = 1, \dots, n,
$$
\n
$$
\rho \pi(S) < 1,
$$
\n
$$
\rho \operatorname{The gap} d(\lambda^*) \text{ is sufficiently large, i.e.,}
$$
\n
$$
d(\lambda^*) \ge 4 \frac{\pi(S) \|\operatorname{diag}(\lambda^*) - \operatorname{diag}(A_0)\|_{\infty} + \pi(A_0)}{1 - \pi(S)}.
$$

- \Diamond Then the LiPIEP (with $m = n$) has a real solution $c \in \mathbb{R}^n$.
- ¦ Idea of proof:
	- \triangleright Prove that Gerschgorin circles of $A(c)$ are disjoint.
	- \triangleright Use Brouser fixed-point theorem to find a fixed point for the map $T(c) = \lambda^* + c - \lambda(A(c)).$
- Open Question: What can be said if $m > n$?

Multiple Eigenvalue

- Consider the LiPIEP associated with
	- \diamond Matrices $A_i \in \mathbb{R}^{n \times n}$, $i = 0, 1, \dots, m$, and
	- $\diamond k$ real eigenvalue $\{\lambda_1^*, \ldots, \lambda_k^*\},$ $\rhd \lambda_i^*$ has multiplicity $r_i \geq 0$. $\triangleright r_1 + \ldots + r_k = n.$
- Let $r = \max\{r_1, \ldots, r_k\} = \text{maximal multiplicity.}$
- [310, 332] The LiPIEP is unsolvable almost everywhere if $n - m + r(r - 1) > 1$.
	- δ If $n = m$, then the LiPIEP is unsolvalbe almost everywhere if and only if $r > 1$.

Sensitivity Analysis

- The solution to an IEP is generally not unique.
- The IEP is generally ill-posed.
	- \Diamond Even if a solution depends continuously upon the problem data, the numerical solution could differ by a great deal with small perturbation.

Forward Problem for General $A(c)$

- Assume
	- $\Diamond A(c) \in \mathbb{C}^{n \times n}$ is analytic in $c \in \mathbb{C}^m$ over a neighborhood of 0.
	- \Diamond λ_0 is a *simple* eigenvalue of $A(0)$.
	- ∞ **x**₀ and **y**₀ are the right and left unit eigenvector, respectively, of $A(0)$ corresponding to λ_0 .

• Then

- \diamond There exists an analytic function $\lambda(c)$ in a neighborhood N of $0 \in \mathbb{C}^m$ such that
	- $\rhd \lambda(c)$ is a simple eigenvalue of $A(c)$.

$$
\triangleright \lambda(0) = \lambda_0.
$$

 \Diamond There exist analytic functions $\mathbf{x}(c)$ and $\mathbf{y}(c)$ in N such that

 \rhd **x**(c) is a right eigenvector corresponding to $\lambda(c)$. \rhd **y**(c) is a left eigenvector corresponding to $\lambda(c)$. \rhd **x**(0) = **x**₀, **y**(0) = **y**₀.

• Furthermore,

$$
\left(\frac{\partial \lambda(c)}{\partial c_i}\right)_{c=0} = \mathbf{y}_0^T \left(\frac{\partial A(c)}{\partial c}\right)_{c=0} \mathbf{x}_0.
$$

Inverse Problem for Linear Symmetric $A(c)$

• Assume all matrices are symmetric and the LiPIEP

$$
A(c) = A_0 + \sum_{i=1}^{n} c_i A_i
$$

is solvable.

• Assume
$$
A(c) = Q(c) \text{diag} \{\lambda_k^*\}_{k=1}^n Q(c)^T
$$
 and define
\n
$$
J(c) = [\mathbf{q}_i(c)^T A_j \mathbf{q}_i(c)], \quad i, j = 1, ..., n,
$$
\n
$$
b = [\mathbf{q}_1(c)^T A_0 \mathbf{q}_1(c), ..., \mathbf{q}_n^T A_0 \mathbf{q}_n(c)]^T.
$$

• [360] If

$$
\delta = \|\lambda^* - \tilde{\lambda}\|_{\infty} + \sum_{i=0}^{n} \|A_i - \tilde{A}_i\|_2
$$

is sufficiently small, then

- \Diamond The PIEP associated with \tilde{A}_i , $i = 0, \ldots, n$ and $\{\tilde{\lambda}_1,\ldots,\tilde{\lambda}_n\}$ is solvable.
- \diamond There is a solution \tilde{c} near to c ,

$$
\frac{\|c-\tilde{c}\|_{\infty}}{\|c\|_{\infty}} \leq \kappa_{\infty}(J(c)) \left(\frac{\|\lambda^* - \tilde{\lambda}\|_{\infty} + \|A_0 - \tilde{A}_0\|_2}{\|\lambda^* - b\|_{\infty}} + \frac{\sum_{i=1}^n \|A_i - \tilde{A}_i\|_2}{\|J(c)\|_{\infty}} \right) + O(\delta^2).
$$

Numerical Methods

• Direct methods.

¦ Lanczos method.

• Iterative methods.

 \diamond Newton's method.

 \diamond Orthogonal reduction method.

- Continuous Methods.
	- ¦ Homotopy method.
	- ¦ Projected gradient method.
	- \diamond ASVD flow method.
- Solution can be found in finite number of steps.
- Formulation exists for IEP with Jacobi structure.
- Will be discussed in Chapter 4.

Iterative Methods

- Netwon's method.
	- ¦ Applicable to real symmetric LiPIEP.
	- ¦ Fast, but only local convergence.
	- \diamond Multiple eigenvalue case needs to be handled more carefully.
- Orthogonal reduction method.
	- \diamond Employs QR-like decomposition.
	- \Diamond Can handle multiple eigenvalues easily.

Newton's Method (for real symmetric LiPIEP)

• Assume:

 \diamond All matrices in

$$
A(c) = A_0 + \sum_{i=1}^{n} c_i A_i
$$

are real and symmetric.

 \diamond All eigenvalues $\lambda_1^*, \ldots, \lambda_n^*$ are distinct.

• Consider:

 \diamond The affine subspace

$$
\mathcal{A} := \{ A(c) | c \in R^n \}.
$$

 \diamond The isospectral surface

$$
\mathcal{M}_e(\Lambda) := \{ Q \Lambda Q^T | Q \in \mathcal{O}(n) \}
$$

where

$$
\Lambda := diag\{\lambda_1^*, \ldots, \lambda_n^*\}.
$$

• Any tangent vector $T(X)$ to $\mathcal{M}_e(\Lambda)$ at a point $X \in$ $\mathcal{M}_e(\Lambda)$ must be of the form

$$
T(X)=XK-KX
$$

for some skew-symmetric matrix $K \in R^{n \times n}$.

A Classical Newton Method

- A function $f: R \longrightarrow R$.
- The scheme:

$$
x^{(\nu+1)} = x^{(\nu)} - (f'(x^{(\nu)}))^{-1} f(x^{(\nu)})
$$

- The intercept:
	- \Diamond The new iterate $x^{(\nu+1)}$ = The *x*-intercept of the tangent line of the graph of f from $(x^{(\nu)}, f(x^{(\nu)}))$.
- The lifting:
	- $\varphi(x^{(\nu+1)}, f(x^{(\nu+1)}))$ = The natural "lift" of the intercept along the y-axis to the graph of f from which the next tangent line will begin.

An Analogy of the Newton Method

- Think of:
	- \Diamond The surface $\mathcal{M}_e(\Lambda)$ as playing the role of the graph of f .
	- \Diamond The affine subspace A as playing the role of the xaxis.
- Given $X^{(\nu)} \in \mathcal{M}_e(\Lambda)$,
	- \Diamond There exist a $Q^{(\nu)} \in \mathcal{O}(n)$ such that

 $Q^{(\nu)}{}^T X^{(\nu)} Q^{(\nu)} = \Lambda.$

- \diamond The matrix $X^{(\nu)} + X^{(\nu)}K K X^{(\nu)}$ with any skewsymmetric matrix K represents a tangent vector to $\mathcal{M}_e(\Lambda)$ emanating from $X^{(\nu)}$.
- Seek an A-intercept $A(c^{(\nu+1)})$ of such a vector with the affine subspace A .
- Lift up the point $A(c^{(\nu+1)}) \in \mathcal{A}$ to a point $X^{(\nu+1)} \in$ $\mathcal{M}_e(\Lambda)$.

Find the Intercept

• Find a skew-symmetric matrix $K^{(\nu)}$ and a vector $c^{(\nu+1)}$ such that

$$
X^{(\nu)} + X^{(\nu)}K^{(\nu)} - K^{(\nu)}X^{(\nu)} = A(c^{(\nu+1)}).
$$

• Equivalently, find $\tilde{K}^{(\nu)}$ such that

$$
\Lambda + \Lambda \tilde{K}^{(\nu)} - \tilde{K}^{(\nu)} \Lambda = Q^{(\nu)^T} A (c^{(\nu+1)}) Q^{(\nu)}.
$$

- $\hat{K}^{(\nu)} := Q^{(\nu)^T} K^{(\nu)} Q^{(\nu)}$ is skew-symmetric.
- Can find $c^{(\nu)}$ and $K^{(\nu)}$ separately.

General Results 71

 \bullet Diagonal elements in the system \Rightarrow

$$
J^{(\nu)}c^{(\nu+1)} = \lambda^* - b^{(\nu)}.
$$

 \diamond Known quantities:

$$
J_{ij}^{(\nu)} := \mathbf{q}_i^{(\nu)}^T A_j \mathbf{q}_i^{(\nu)}, \text{ for } i, j = 1, \dots, n
$$

\n
$$
\lambda^* := (\lambda_1^*, \dots, \lambda_n^*)^T
$$

\n
$$
b_i^{(\nu)} := \mathbf{q}_i^{(\nu)}^T A_0 \mathbf{q}_i^{(\nu)}, \text{ for } i = 1, \dots, n
$$

\n
$$
\mathbf{q}_i^{(\nu)} = \text{ the } i\text{-th column of the matrix } Q^{(\nu)}
$$

- The vector $c^{(\nu+1)}$ can be solved.
- Off-diagonal elements in the system together with $c^{(\nu+1)}$ $\Rightarrow \tilde{K}^{(\nu)}$ (and, hence, $K^{(\nu)}$):

$$
\tilde{K}_{ij}^{(\nu)} = \frac{\mathbf{q}_i^{(\nu)}^T A (c^{(\nu+1)}) \mathbf{q}_j^{(\nu)}}{\lambda_i^* - \lambda_j^*}, \text{ for } 1 \le i < j \le n.
$$

.

Find the Lift-up

- No obvious coordinate axis to follow.
- Solving the IEP \equiv Finding $\mathcal{M}_e(\Lambda) \bigcap \mathcal{A}$.
- Suppose all the iterations are taking place near a point of intersection. Then

$$
X^{(\nu+1)} \approx A(c^{(\nu+1)}).
$$

• Also should have

$$
A(c^{(\nu+1)}) \approx e^{-K^{(\nu)}} X^{(\nu)} e^{K^{(\nu)}}.
$$

• Replace $e^{K(\nu)}$ by the Cayley transform:

$$
R := (I + \frac{K^{(\nu)}}{2})(I - \frac{K^{(\nu)}}{2})^{-1} \approx e^{K^{(\nu)}}.
$$

• Define

$$
X^{(\nu+1)} := R^T X^{(\nu)} R \in \mathcal{M}_e(\Lambda).
$$

• The next iteration is ready to begin.

• Note that

$$
X^{(\nu+1)} \approx R^T e^{K^{(\nu)}} A(c^{(\nu+1)}) e^{-K^{(\nu)}} R \approx A(c^{(\nu+1)})
$$

represents a lifting of the matrix $A(c^{(\nu+1)})$ from the affine subspace $\mathcal A$ to the surface $\mathcal M_e(\Lambda)$.

- The above offers a geometrical interpretation of Method III developed by Friedland el al [145].
- Quadratic convergence even for multiple eigenvalues case.

Continuous Methods

- Homotopy method.
	- \diamond Homotopy theory for some AIEP's can be estab**lished**
		- . Open Question: Describe a homotopy for general PIEP.
	- ¦ Provides both an existence proof and a numerical method.
	- \Diamond See discussion in AIEP.
- Projection gradient method.
	- \diamond General, least squares setting.
	- \Diamond Can be generalized to SIEP with any linear structure.
	- \Diamond The method enjoys the globally descent property, but slow.
- ASVD flow method.
	- ¦ Provides stable coordinate transformations for nonsymmetric matrices.
	- ¦ Will be discissed in SIEP for stochastic structure.

Projected Gradient Method (for SIEP)

- The idea works for general *symmetric* $A(c)$ so long as the projection $P(X)$ of a matrix X to A can be calculated.
- The idea applies to SIEP and is described in that setting.
- Idea:
	- $\Diamond X \in \mathcal{M}_e(\Lambda)$ satisfies the spectral constraint.
	- $\Diamond P(X) \in \mathcal{V}$ has the desirable structure in \mathcal{V} .
	- \Diamond Minimize the undesirable part $||X P(X)||$.
- Working with the parameter Q is easier:

Minimize
$$
F(Q) := \frac{1}{2} \langle Q^T \Lambda Q - P(Q^T \Lambda Q),
$$

 $Q^T \Lambda Q - P(Q^T \Lambda Q) \rangle$

Subject to $Q^TQ = I$

 $\Diamond \langle A, B \rangle = \text{trace}(AB^T)$ is the Frobenius inner product.

Feasible Set $O(n)$ & Gradient of F

- The set $O(n)$ is a regular surface.
- The tangent space of $O(n)$ at any orthogonal matrix Q is given by

$$
T_QO(n) = QK(n)
$$

where

 $K(n) = \{$ All skew-symmetric matrices $\}.$

• The normal space of $O(n)$ at any orthogonal matrix Q is given by

$$
N_QO(n) = QS(n).
$$

• The Fréchet Derivative of F at a general matrix A acting on B :

$$
F'(A)B = 2\langle \Lambda A(A^T \Lambda A - P(A^T \Lambda A)), B \rangle.
$$

• The gradient of F at a general matrix A :

$$
\nabla F(A) = 2\Lambda A(A^T \Lambda A - P(A^T \Lambda A)).
$$

General Results 77

The Projected Gradient

• A splitting of $R^{n \times n}$:

$$
R^{n \times n} = T_Q O(n) + N_Q O(n)
$$

= $QK(n) + QS(n)$.

• A unique orthogonal splitting of $X \in R^{n \times n}$:

$$
X = Q \left\{ \frac{1}{2} (Q^T X - X^T Q) \right\} + Q \left\{ \frac{1}{2} (Q^T X + X^T Q) \right\}.
$$

• The projection of $\nabla F(Q)$ into the tangent space:

$$
g(Q) = Q\left\{\frac{1}{2}(Q^T \nabla F(Q) - \nabla F(Q)^T Q)\right\}
$$

= $Q[P(Q^T \Lambda Q), Q^T \Lambda Q].$

An Isospectral Descent Flow

 \bullet A descent flow on the manifold $O(n)$:

$$
\frac{dQ}{dt} = Q[Q^T \Lambda Q, P(Q^T \Lambda Q)].
$$

• A descent flow on the manifold $M(\Lambda)$:

$$
\frac{dX}{dt} = \frac{dQ^T}{dt} \Lambda Q + Q^T \Lambda \frac{dQ}{dt}
$$

$$
= [X, \underbrace{[X, P(X)]}_{k(X)}].
$$

• The entire concept can be obtained by utilizing the Riemannian geometry on the Lie group $O(n)$.

Additive Inverse Eigenvalue Problems

- Subvariations.
- Solvability Issues.
- Sensitivity Issues.
- Numerical Methods.
- Applications.

Subvariations

• Generic form:

- \Diamond Given
	- \triangleright A fixed matrix A and a class of matrices N in $\mathbf{F}^{n\times n}$,
	- \triangleright A subset $\Omega \subset \mathbf{F}$,

 \Diamond Find

- $\triangleright X \in \mathcal{N}$ such that $\sigma(A + X) \subset \Omega$.
- Some special cases:
	- \diamond (AIEP1) A is real, X is real diagonal, and **F** is real.
	- \diamond (AIEP2) A is real symmetric, X is real diagonal, and **F** is real.
	- \diamond (AIEP3) A is complex general, X is complex diagonal, and **F** is complex.
	- \Diamond Open Question: $A = 0$, X has prescribed entries at specific location.

Solvability Issues

• If
$$
X = diag(c_1, ..., c_n)
$$
, then consider

$$
A + X = A + \sum_{i=1}^{n} c_i \underbrace{e_i e_i^T}_{A_i}.
$$

This is a special PIEP.

• Complex solvability [2, 63, 138]:

- \Diamond For any specified $\{\lambda_k^*\}_{k=1}^n \in \mathbb{C}$, the AIEP3 is solvable.
- \Diamond There are at most n! solutions.
- \Diamond For almost all $\{\lambda_k^*\}_{k=1}^n$, there are exactly n! solutions.
- Real solvability
	- \diamond Some sufficient conditions:
		- \triangleright If $d(\lambda^*) > 4\pi(A)$, then AIEP1 is solvable [101].
		- \triangleright If $d(\lambda^*) > 2\sqrt{3} (\pi(A \circ A))^{1/2}$, then AIEP2 is solvable [170].
	- ¦ Some necessary conditions:
		- \triangleright If AIEP1 is solvable, then

$$
\sum_{i \neq j} (\lambda_i^* - \lambda_j^*)^2 \ge 2n \sum_{i \neq j} a_{ij} a_{ji}.
$$

- Unsolvability:
	- \diamond Both AIEP1 and AIEP2 are unsolvable almost everywhere if an multiple eigenvalue is present [332].

Sensitivity Issues (for AIEP2)

- Suppose that the AIEP2 is solvable.
- Assume
	- $\diamond A(X) := A + X = Q(X)^T \Lambda Q(X),$ \triangleright Define

$$
J(X) := [q_{ji}^2(X)],
$$

$$
b(X) := [q_1(X)^T A q_1(X), \dots, q_n(X)^T A q_n(X)]^T.
$$

- \Diamond J(X) is nonsingular,
- \diamond The perturbation

$$
\delta = \|\lambda^* - \tilde{\lambda}\|_{\infty} + \|A - \tilde{A}\|_2
$$

is small enough.

• Then

- \diamond The AIEP2 associated with \tilde{A} and $\tilde{\lambda}$ is solvable.
- \diamond There is a solution \tilde{X} near to X , i.e.,

$$
\frac{\|X-\tilde{X}\|_{\infty}}{\|X\|_{\infty}} \leq \kappa_{\infty}(J(X)) \left(\frac{\|\lambda^*-\tilde{\lambda}\|_{\infty} + \|A-\tilde{A}\|_{2}}{\|\lambda^* - b\|_{\infty}} \right) + O(\delta^2).
$$

Numerical Methods

- Most methods for symmetric or Hermitian problem depend heavily on the fact that the eigenvalues are real and can be totally ordered.
	- \Diamond Can consider each eigenvalue λ_i as piecewise differential function $\lambda_i(X)$.
	- \diamond Newton's iteration for AIEP2 is easy to formulate.
- For general matrices where eigenvalues are complex, tracking each eigenvalue requires some kind of matching mechanism.
	- \diamond Homotopy method naturally track each individual eigenvalue curves as are predetermined by initial values.
	- ¦ Homotopy method for AIEP3 gives rise to both an existence proof and a numerical method for finding all solutions.

Newton's Method (for AIEP2)

• At the *ν*-th iterate, assume $Z^{(\nu)} \in \mathcal{M}_e(\Lambda)$,

$$
Z^{(\nu)} = Q^{(\nu)^T} \Lambda Q^{(\nu)},
$$

\n
$$
A(X^{(\nu)}) := A + X^{(\nu)},
$$

\n
$$
J^{(\nu)} := [q_{ji}^{(\nu)^2}],
$$

\n
$$
b^{(\nu)} := [q_1^{(\nu)^T} A q_1^{(\nu)}, \dots, q_n^{(\nu)^T} A q_n^{(\nu)}]^T.
$$

• Solve $J^{(\nu)}X^{(\nu+1)} = \lambda^* - b^{(\nu)}$ for $X^{(\nu+1)}$.

• Define skew-symmetric matrix

$$
K^{(\nu)} := Q^{(\nu)} \left[\frac{q_i^{(\nu)}^T A(X^{(\nu+1)}) q_j^{(\nu)}}{\lambda_i^* - \lambda_j^*} \right] Q^{(\nu)T}
$$

• Update the lift,

$$
R^{(\nu)} := \left(I + \frac{K^{(\nu)}}{2}\right) \left(I - \frac{K^{(\nu)}}{2}\right)^{-1},
$$

$$
Z^{(\nu+1)} := R^{(\nu)^T} X^{(\nu)} R^{(\nu)},
$$

$$
Q^{(\nu+1)} := R^{(\nu)^T} Q^{(\nu)}.
$$

.

Homotopy Method (for AIEP3)

Multiplicative Inverse Eigenvalue Problems

- Subvariations.
- Solvability Issues.
- Sensitivity Issues.
- Numerical Methods.
- Applications.

Subvariations

• Generic form:

- \Diamond Given
	- \triangleright A fixed matrix A and a class of matrices N in $\mathbf{F}^{n\times n}$,
	- \triangleright A subset $\Omega \subset \mathbf{F}$,

 \Diamond Find

- $\triangleright X \in \mathcal{N}$ such that $\sigma(XA) \subset \Omega$.
- Some special cases:
	- \diamond (MIEP1) A is real, X is real diagonal, and **F** is real.
	- \Diamond (MIEP2) A is real, symmetric, and positive definite, X is nonnegative diagonal, and **F** is real.
	- \diamond (MIEP3) A is complex general, X is complex diagonal, and **F** is complex.
	- \diamond (MIEP4) A is complex Hermitian, **F** is real, want $\sigma(X^{-1}AX^{-1}) = {\lambda_k^*}_{k=1}^n$ [120].
	- \Diamond (MIEP5) Preconditioning applications.

Solvability Issues

• If $X = \text{diag}(c_1, \ldots, c_n)$ and $A = [\mathbf{a}_1^T, \ldots, \mathbf{a}_n^T]^T$, then write

$$
XA = \sum_{i=1}^{n} c_i \underbrace{\mathbf{e}_i \mathbf{a}_i^T}_{A_i}.
$$

This is a special PIEP.

- Complex solvability [137]:
	- \diamond Assume that

 \triangleright All principal minors of A are distinct from zero,

- \diamond Then
	- \rhd For any specified $\{\lambda_k^*\}_{k=1}^n$ ∈ ℂ, the MIEP3 is solvable.
	- \triangleright There are at most n! solutions.
- Real solvability:
	- \diamond Some sufficient conditions:
		- \triangleright Suppose
			- \cdot The diagonals of A are normalized to 1, i.e., $a_{ii} = 1$. (Λ) ≥ 1

$$
\cdot \pi(A) < 1.
$$
\n
$$
4\pi(A)\|
$$

$$
\cdot d(\lambda) \ge \frac{4\pi(A)\|\lambda^*\|_{infty}}{1-\pi(A)}.
$$

- \triangleright Then the MIEP1 is solvable.
- \diamond Some necessary conditions:
	- \triangleright If MIEP1 is solvable, then

$$
\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} \lambda_i^*,
$$

$$
\det(A) \prod_{i=1}^{n} x_i = \prod_{i=1}^{n} \lambda_i^*.
$$

Optimal Conditioning by Diagonal Matrices

• Friedland's result on MIEP1 suggests that a general complex matrix A can be perfectly conditioned.

 \Diamond Lacks an efficient algorithm to implement the result.

- Open question: Want to know the optimal preconditioner of a given sparsity pattern [165].
	- \diamond Suppose
		- \triangleright A is symmetric and positive definite.
		- \triangleright A has property A, i.e., A can be symmetrically permuted into

$$
\left[\begin{array}{cc} D_1 & B \\ B^T & D_2 \end{array}\right]
$$

where D_1 and D_2 are diagonal.

- $D = diag(A).$
- \diamond Then [134]

$$
\kappa(D^{-1/2}AD^{-1/2}) = \min_{\widehat{D} > 0, \widehat{D} = \text{diagonal}} \kappa(\widehat{D}A\widehat{D}).
$$

Sensitivity Issues (for MIEP2)

- Suppose that the MIEP2 is solvable.
- MIEP2 is equivalent to the symmetrized problem: $X^{-1/2}A(X)X^{1/2} = X^{1/2}AX^{1/2}.$
- Define

$$
X^{1/2}AX^{1/2} = U(X)^{T}\Lambda U(X),
$$

$$
W(X) := [u_{ji}^{2}(X)].
$$

• Assume

 \Diamond W(X) is nonsingular,

 \diamond The perturbation

$$
\delta = \|\lambda^* - \tilde{\lambda}\|_{\infty} + \|A - \tilde{A}\|_2
$$

is small enough.

• Then

 \diamond The MIEP2 associated with \tilde{A} and $\tilde{\lambda}$ is solvable. \Diamond There is a solution \tilde{X} near to X , i.e.,

$$
\frac{\|X - \tilde{X}\|_{\infty}}{\|X\|_{\infty}} \le \frac{\lambda_n^*}{\lambda_1^*} \|W(X)^{-1}\|_{\infty} \left(\frac{\|\lambda^* - \tilde{\lambda}\|_{\infty}}{\|\lambda^*\|_{\infty}} + \|A - \tilde{A}\|_2 \right) + O(\delta^2).
$$

Numerical Methods

- For preconditioning purpose, no need to solve the MIEP precisely.
	- \Diamond There are many techniques for picking up a preconditioner.
	- \Diamond Will not be discussed in this note.
- The MIEP is a linear, but not symmetric PIEP even if A is symmetric.
	- \diamond The numerical methods for symmmtric PIEP need to be modified.
	- \Diamond If A is a Jacobi matrix, the problem can be solved by direct methods. Will be discussed in Chapter 4.

Reformulate MIEP1 as Nonlinear Equations

- Formulate MIEP1 as solving $f(X) = 0$ for some nonlinear function $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$.
- Different ways to formulate $f(X)$:

$$
\begin{aligned}\n\diamond f_i(X) &:= \det(XA - \lambda_i^* I). \\
\diamond f_i(X) &:= \lambda_i(XA) - \lambda_i^*. \\
\diamond f_i(X) &:= \alpha_n(XA - \lambda_i^* I), \text{ where } \alpha_n(M) = \text{the small-} \\
\text{est singular values of } M.\n\end{aligned}
$$

• Assume that $\lambda_i \neq 0$ and, therefore, $Y = X^{-1}$ exists.

$$
\diamond g_i(Y) := \det(A - \lambda_i^* Y).
$$

$$
\diamond g_i(Y) := \lambda_i(A, Y) - \lambda_i^*.
$$

Newton's Method (for MIEP2)

• Reformulate the MIEP2 as solving equations

$$
\lambda_i(A, Y) - \lambda_i^* = 0, \quad i = 1, \dots n
$$

to maintain symmetry.

- At the ν -th stage [213],
	- \Diamond Solve the generalized eigenvalue problem

$$
\left(A - \lambda(\nu)Y^{(\nu)}\right)\mathbf{x}^{(\nu)} = 0.
$$

 \rhd Normalize $\mathbf{x}_i^{(\nu)}$ so that $\mathbf{x}_i^{(\nu)}$ \overline{T} $Y^{(\nu)}\mathbf{x}_{i}^{(\nu)}=1.$ \rhd Denote $Q^{(\nu)} = [\mathbf{x}_1^{(\nu)}, \dots \mathbf{x}_n^{(\nu)}] = [q_{ij}^{(\nu)}].$ \diamond Define (the Jacobian matrix of $\lambda(A, Y))$ $J(Y^{(\nu)}) := [-\lambda_i^{(\nu)} q^{(\nu)}_{ji}].$

 \Diamond Solve $J(Y^{(\nu)})d^{(\nu)} = \lambda^* - \lambda^{(\nu)}$. \diamond Update $Y^{(\nu+1)} := Y^{(\nu)} + \text{diag}(d^{(\nu)})$.

Numerical Experience

- Open Question: Given the standard Jacobi matrix A with nonzero row entries $[-1, 2, -1]$, what is the set of all reachable spectra of XA via a nonnegative diagonal matrix X ?
- Open Question: In structure design, often we are only interested in a few low order natrual frequencies. Indeed, for large structures, it is impractical to calculate all of the frequencies and modes. How should one solve the problem if only a few low order frequencies are given?
- The above Newton method is only a locally convergent method. It appears that in the case of divergence, the Jacobian matrix J becomes highly ill-conditioned and nearly singular.
- To effectively develop an algorithm for controlling the vibration of a string with a specified set of natural frequencies, for example, we need to have another mechanism that can somehow provide a good initial guess before the Newton's method can be employed.