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Parameterized Inverse Eigenvalue Problems

Overview

e The structural constraint is regulated by a set of pa-
rameters.

e Most discussion concentrates on linear dependence of
the problem on the parameters.



Overview 53

(zeneric Form

e (Glven

o A family of matrices A(c) € M with parameters
ceF"
o A set of scalars (2 C F,
e F'ind
¢ Values of parameter ¢ such that

a(A(c)) C Q.

> M = One particular class of submatrices in F"*".
> F' = One particular field of scalars.

e Remark:
¢ Degree of free parameters m needs not be the same
as the size n of the matrix.
¢ Commonly used €2:
> = {AL o
> () = left-half complex plan.

o Depending upon how A(c) is defined, the PIEP can
appear in very different form.
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Variations

e Linear dependence on parameters (LiPIEP):
A(C) = A() + Z Cz'Az'-
i=1

oA, € R(n), F=R.
oA, €Sn), F=R
o (ATIEP) A(c) = A(X)=Ay+ X, X e N.
o N = Some special class of submatrices.
¢ X can be expressed in terms of linear combinations
of basis {A;y of V.
e (MIEP) A(c) = A(X) = XAy, X e N.
o X Ay can still be expressed as a linear combination
of some A;, 1 =1,... ,m.

oIf X = diag{cy,... ,c,}, write Ag = [al,... ,al]t

Y n
in rows. Then
n

XAy =) cea, .
0 Zc e;a;
1=1 A,
e (Generalized Pole Assignment Problem)

A(C) = A(Kl, R ,Kq> = A() + quzl BZKZCZ
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General Results

e Lot of attention has been paid to the theory and nu-
merical method of the LiPIEP.

¢ Finding a solution over real field is more complicated
and difficult than over complex field.

e Whatever is known about LiPIEP applies to AIEP and
MIEP.

e Pole assignment problem itself stands alone as an im-
portant application for decades.

¢ Has been extensively studied already.

¢ Many theoretical results and numerical techniques
are available.

¢ Approaches include skills from linear system theory,
combinatorics, complex analysis to algebraic geom-
etry:.

o Will not be discussed in this note.
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Existence Theory for Linear PIEP

e Most discussions concentrate on the LiPIEP.
Alc) = Ay + Z c; A;.
i=1

e Complex solvability is generally expected by solving
polynomial systems.

e Presence of multiple eigenvalues in real case makes a
big difference.
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Complex Solvability

e Given n complex numbers {A\;}7_,

¢ For almost all A, € C"", there exists ¢ € C”
such that A(c) = Ay + >_,_; cAg has eigenvalues

A=t

o There are at most n! distinct solutions.
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Real Solvability (n = m)

e Notation and Deﬁni@ions_:
Ak = CL(k) , ]43:0,1,...,%,

tj

E = _a(-k)_, n,k=1,....n,

S = Z|Ak\

m(M) = HM diag(M) || oo,
d(A) = min |A; — Ayl

7]

e Normalize the diagonals of A;:
o Assume B! = [(;;] exists and ¢ := Fc.
o Rewrite

A(C) = Ay + Z A = Ag + S: S: gkjéj Ay
_ _ j=1

— A0+ch (Z zijk>
g=1

Aj

diag(A;) =e¢;, j=1,...n
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e 31| Sufficient condition:

o (Given

> n real numbers A* = {7 }}_,, and

>n + 1 real n X n matrices A;, 1 =0,1,... . n,
¢ Assume

> diag(Ay) =ep, k=1,... ,n,

> m(S) < 1,

> The gap d(\*) is sufficiently large, i.e.,
|diag(A*) — diag(A)[|s + 7(Ao)
1 —mn(9)
o Then the LiPIEP (with m = n) has a real solution
cec R"
¢ Idea of proof:

AN > , )

> Prove that Gerschgorin circles of A(c) are dis-
joint.

> Use Brouser fixed-point theorem to find a fixed
point for the map T'(c) = A" + ¢ — A(A(c)).

e Open Question: What can be said if m > n?
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Multiple Eigenvalue

e Consider the LiPIEP associated with
o Matrices A; € R™" +=0,1,... ,m, and
o k real eigenvalue {A],... , AL},
> A has multiplicity r; > 0.
>ri+...+7rr=n.
e Let r = max{ry,...,r;} = maximal multiplicity.

e 310, 332 The LiPIEP is unsolvable almost everywhere
ifn—m+r(r—1)>1

o If n = m, then the LiPIEP is unsolvalbe almost
everywhere if and only if > 1.
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Sensitivity Analysis

e The solution to an IEP is generally not unique.
e The IEP is generally ill-posed.

¢ Even if a solution depends continuously upon the
problem data, the numerical solution could differ by
a great deal with small perturbation.
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Forward Problem for General A(c)

e Assume

o A(c) € C™" is analytic in ¢ € C™ over a neighbor-
hood of 0.

o Ao is a simple eigenvalue of A(0).

o xo and y( are the right and left unit eigenvector,
respectively, of A(0) corresponding to Ay.

e Then
o There exists an analytic function A(¢) in a neighbor-
hood N of 0 € C™ such that
> A\(c) is a simple eigenvalue of A(c).
> A(0) = Ag.
o There exist analytic functions x(¢) and y(c¢) in N
such that

> x(c) is a right eigenvector corresponding to A(c).
> y(c) is a left eigenvector corresponding to A(c).

> x(0) = x¢, y(0) = yo.

e Furthermore,

(5) =¥ (557)
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[nverse Problem for Linear Symmetric A(c)
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e Assume all matrices are symmetric and the LiPIEP

= Ag+ Y A
i=1
is solvable.
e Assume A( ) = Q(c)diag{\;}1_,Q(c)" and define
[qZCTA]qZ ]7 1,7 =1,. n,
T
[Q1 & Aoch aanOQn< )] :

6= [IN = Mloo + > 14 = Aill2
i=0
is sufficiently small, then

o The PIEP associated with A;, i = 0,... .n and

{\1,..., A} is solvable.

¢ There is a solution ¢ near to c,

[A* = bl 17(€)loo

el

e =2l e (M ~ Mot Ao = Aollo | 3 lAz’Ai|2>+o<52>.
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Numerical Methods

e Direct methods.
¢ Lanczos method.
e [terative methods.

o Newton’s method.

¢ Orthogonal reduction method.
e Continuous Methods.

¢ Homotopy method.
¢ Projected gradient method.

o ASVD flow method.
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Direct Method
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e Solution can be found in finite number of steps.

e Formulation exists for IEP with Jacobi structure.

e Will be discussed in Chapter 4.
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[terative Methods

e Netwon’s method.

¢ Applicable to real symmetric LiPIEP.

¢ Fast, but only local convergence.

¢ Multiple eigenvalue case needs to be handled more
carefully.

e Orthogonal reduction method.

o Employs QR-like decomposition.

¢ Can handle multiple eigenvalues easily.
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Newton’s Method (for real symmetric LiPTEP)

e Assume:

o All matrices in
Alc) = Ay + Z c; A
i=1

are real and symmetric.

o All eigenvalues A7, ..., A are distinct.
e Consider:
¢ The affine subspace
A= {A(c)|c € R"}.
¢ The isospectral surface
M.(A) = {QAQTIQ € O(n)}
where
N :=diag{\,... ;A\ }.

e Any tangent vector T(X) to M (A) at a point X €
M (A) must be of the form

T(X)=XK - KX

for some skew-symmetric matrix K € R™*".
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A Classical Newton Method

e A function f: R — R.
e The scheme:

p0 = o) — () ()

e The intercept:

o The new iterate (1) = The a-intercept of the tan-
gent line of the graph of f from (z"), f(z™))).
e The lifting:
o (x| f(x*T1)) = The natural "1ift” of the inter-

cept along the y-axis to the graph of f from which
the next tangent line will begin.
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An Analogy of the Newton Method

e Think of:

o The surface M.(A) as playing the role of the graph
of f.

¢ The affine subspace A as playing the role of the a-
axis.

e Given X € M, (),
o There exist a Q) € O(n) such that

OV XMW — .

o The matrix X + XMW K — KX with any skew-
symmetric matrix K represents a tangent vector to
M. (A\) emanating from X ),

e Seek an A-intercept A(c"*1) of such a vector with the
affine subspace A.

e Lift up the point A(c**V) € A to a point X¥*1) ¢
M (N).
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Find the Intercept

e F'ind a skew-symmetric matrix i () and a vector ¢ +1)

such that
xW L xW ) _ ) x W) — A(c(”H)).

e Equivalently, find K such that

A+ AR — KWA = Q0T A+,

T

o KW .= QW KWQW is skew-symmetric.

e Can find ¢ and K separately.
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e Diagonal elements in the system =

JW) 1) — A+ _ pv)
& Known quantities:

T
J,L-g-y) = qu) quz(-y), fori,7=1,...,n

A= (5L a0
T
) = qu) Aoq(y), fore=1,....,n

qu) = the 7-th column of the matrix Q(V).

v+1)

e The vector ¢! can be solved.

e Off-diagonal elements in the system together with cv+1)

= K™ (and, hence, K™)):

— L forl1<i<j<n.

T
) q” A" )q)”
g A=\
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Find the Litt-up

e No obvious coordinate axis to follow.
e Solving the IEP = Finding M.(A) () A.

e Suppose all the iterations are taking place near a point
of intersection. Then

X(V—I—l) ~ A(C(V—H)) .

e Also should have
A(C(y+1)> ~ €_K<V)X(V)€K(V>.

e Replace et v by the Cayley transform:

KW KW) ,
Ri=(I+=-)I - = )L ek,

e Define
XD .= RTXWR € M.(A).

e The next iteration is ready to begin.
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Remarks

e Note that
(D) o RTGK(V)A(C(V+1))€—K(V)R ~ A<C(u+1)>

represents a lifting of the matrix A(c"*V) from the
affine subspace A to the surface M, (A).

e The above offers a geometrical interpretation of Method
[1T developed by Friedland el al [1415].

e (Quadratic convergence even for multiple eigenvalues
case.
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Continuous Methods

e Homotopy method.
¢ Homotopy theory for some AIEP’s can be estab-

lished.

> Open Question: Describe a homotopy for general
PIEP.

¢ Provides both an existence proof and a numerical
method.

¢ See discussion in AIEP.
e Projection gradient method.

¢ General, least squares setting.

¢ Can be generalized to SIEP with any linear struc-
ture.

¢ The method enjoys the globally descent property;,
but slow.

e ASVD flow method.

¢ Provides stable coordinate transformations for non-
symmetric matrices.

o Will be discissed in SIEP for stochastic structure.
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Projected Gradient Method (for SIEP)

e The idea works for general symmetric A(c) so long
as the projection P(X) of a matrix X to A can be
calculated.

e The idea applies to SIEP and is described in that set-
ting.
e [dea:

o X € M.(A) satisfies the spectral constraint.
o P(X) € V has the desirable structure in V.
¢ Minimize the undesirable part || X — P(X)]|.

e Working with the parameter () is easier:

1

Minimize F(Q) := 5 (Q"AQ — P(Q"AQ),

Q"AQ - P(QTAQ))
Subject to QTQ = I
o (A, B) = trace(AB?) is the Frobenius inner prod-
uct.



76 Parameterized Inverse Eigenvalue Problems

Feasible Set O(n) & Gradient of F

e The set O(n) is a regular surface.

e The tangent space of O(n) at any orthogonal matrix @)
is given by

To0(n) = QK(n)
where

K(n) = {All skew-symmetric matrices}.

e The normal space of O(n) at any orthogonal matrix @)
is given by

NoO(n) = QS(n).

e The Fréchet Derivative of F' at a general matrix A act-
ing on B:

F'(A)B = 2(AA(ATAA — P(ATAA)), B).
e The gradient of F' at a general matrix A:

VF(A) =20 A(ATAA — P(ATAA)).
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The Projected Gradient

e A splitting of R™*™:
R"™" = TpO(n) + NoO(n)
= QK(n)+Q5(n).

e A unique orthogonal splitting of X € R"*":
1 1
X=qQ {;@Tx - XTQ)} + QULQX + XT@)} |
e The projection of VF'(Q) into the tangent space:

1@ = Q{5Q'VFQ) - VFQIQ)|
- QIPQ"AQ).Q"AQ)
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An Isospectral Descent Flow

e A descent flow on the manifold O(n):

™ QIQ"AQ. PQTAQ)]

e A descent flow on the manifold M (A):

dX_dQT N
= =AQ+QTA

= [X X, ]i(X)l]
k(X)

Q

e The entire concept can be obtained by utilizing the
Riemannian geometry on the Lie group O(n).
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Additive Inverse Eigenvalue Problems

e Subvariations.
e Solvability Issues.
e Sensitivity Issues.

e Numerical Methods.

e Applications.
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Subvariations

e Generic form:

o (Given

> A fixed matrix A and a class of matrices N in
:E‘TLX’I’L7
> A subset 2 C F,
¢ Find

> X € N such that (A + X) C €.
e Some special cases:

o (AIEPT) Aisreal, X is real diagonal, and F is real.

o (AIEP2) A is real symmetric, X is real diagonal,
and F is real.

o (AIEP3) A is complex general, X is complex diag-
onal, and F is complex.

¢ Open Question: A = 0, X has prescribed entries at
specific location.
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Solvability Issues

o If X =diag(cy,... ,c,), then consider

T
A+ X =A+ ; C; 6\;?" .
This is a special PIEP.
e Complex solvability |2, 63, 138]:
o For any specified {\;}7_, € C, the AIEP3 is solv-
able.

o There are at most n! solutions.

o For almost all {A\;}7_,, there are exactly n! solu-
tions.
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e Real solvability

& Some sufficient conditions:
> If d(\*) > 4m(A), then AIEP1 is solvable |101].

>IF d(A) > 2v3(m(Ao A)Y? then AIEP2 is
solvable [170].

¢ Some necessary conditions:

> If AIEP1 is solvable, then
Z()\;k - )\j)Q > QTLZ Qi Qg
i#] i#]
e Unsolvability:

¢ Both AIEP1 and AIEP2 are unsolvable almost ev-
erywhere if an multiple eigenvalue is present |332].
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Sensitivity Issues (for AIEP2)

e Suppose that the AIEP2 is solvable.
e Assume
o AX) =A+X =Q(X)TAQ(X),
> Define
J(X) = [g( X)),
b(X) = [q1(X) Agi(X), ..., gu(X)" Agu( X))
o J(X) is nonsingular,
¢ The perturbation
5= (I = Alloo + [[A = All2
is small enough.
e Then
¢ The AIEP2 associatgd with A and ) is solvable.

¢ There is a solution X near to X, i.e.,

1X - Xl IV = Mt A= Al
< Koo J (X +0(67).
X (X)) [ — bll (&)
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Numerical Methods

e Most methods for symmetric or Hermitian problem de-
pend heavily on the fact that the eigenvalues are real
and can be totally ordered.

¢ Can consider each eigenvalue \; as piecewise differ-
ential function A;(X).

¢ Newton'’s iteration for AIEP2 is easy to formulate.

e For general matrices where eigenvalues are complex,
tracking each eigenvalue requires some kind of matching
mechanism.

¢ Homotopy method naturally track each individual
eigenvalue curves as are predetermined by initial val-
ues.

¢ Homotopy method for AIEP3 gives rise to both an
existence proof and a numerical method for finding
all solutions.
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Newton’s Method (for ATEP2)
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o At the v-th iterate, assume Z") € M, (A),

20 — W' AQW)
AXWY = A4+ X0

v :V v VT 1% g
b = |q Aqﬁ),...,quq()} .

e Solve JW X W) = \* — p() for X1,
e Define skew-symmetric matrix

o .
g AXU)g |

K0 = QW)
A=\

e Update the lift,
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Homotopy Method (for ATEP3)
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Multiplicative Inverse Eigenvalue
Problems
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e Subvariations.

e Solvability Issues.

e Sensitivity Issues.

e Numerical Methods.

e Applications.
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Subvariations

e Generic form:

o (Given

> A fixed matrix A and a class of matrices N in
:E‘TLX’I’L7
> A subset 2 C F,
¢ Find

> X € N such that (X A) C Q.
e Some special cases:

o (MIEP1) Aisreal, X is real diagonal, and F is real.

o (MIEP2) A is real, symmetric, and positive definite,
X is nonnegative diagonal, and F is real.

o (MIEP3) A is complex general, X is complex diag-
onal, and F is complex.

o (MIEP4) A is complex Hermitian, F is real, want
o(XTAX Y = {1, [120].
o (MIEP5) Preconditioning applications.
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Solvability Issues

T then

)

o If X = diag(cy,...,c,) and A = [al,... al]
write

n

XA = g C; eiaz-T.
. N
1=1 A;

This is a special PIEP.

e Complex solvability |[137]:

o Assume that

> All principal minors of A are distinct from zero,
¢ Then

> For any specified {\;}7_, € C, the MIEP3 is
solvable.
> There are at most n! solutions.
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e Real solvability:

o Some sufficient conditions:

> Suppose

- The diagonals of A are normalized to 1, i.e.,
Qg = 1.
-m(A) < 1.
- d()) > T,
> Then the MIEP1 is solvable.
¢ Some necessary conditions:

> If MIEP1 is solvable, then

DY

i=1 i=1
det(A)Ha:i = H)\;‘

i=1 i=1
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Optimal Conditioning by Diagonal Matrices

e [riedland’s result on MIEP1 suggests that a general
complex matrix A can be perfectly conditioned.

¢ Lacks an efficient algorithm to implement the result.

e Open question: Want to know the optimal precondi-
tioner of a given sparsity pattern [165].
& Suppose

> A is symmetric and positive definite.

> A has property A, ie., A can be symmetrically
permuted into

D B
BT D,
where Dy and Dy are diagonal.
> D = diag(A).
o Then [134]
K(D7V2AD™Y?) = min k(DAD).

D>0,D=diagonal
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Sensitivity Issues (for MIEP2)

e Suppose that the MIEP2 is solvable.

e MIEP2 is equivalent to the symmetrized problem:
X_l/QA(X)Xl/Z _ x 124512
e Define
X2AX1? = UX)TAU(X),
W(X) = (X))
e Assume
o W(X) is nonsingular,
¢ The perturbation
5= [IX* = Alloo + [ A = All5
is small enough.

e Then
o The MIEP2 associatNed with A and )\ is solvable.

¢ There is a solution X near to X, i.e.,

IX = Xl _ A (I = Al i 2
< I + 1A= Allz | +0(57).
1X o Al [[A*]oc
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Numerical Methods

e For preconditioning purpose, no need to solve the MIEP
precisely.

¢ There are many techniques for picking up a precon-
ditioner.
¢ Will not be discussed in this note.

e The MIEP is a linear, but not symmetric PIEP even if
A is symmetric.

¢ The numerical methods for symmmtric PIEP need
to be modified.

o It A is a Jacobi matrix, the problem can be solved
by direct methods. Will be discussed in Chapter 4.
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Reformulate MIEP1 as Nonlinear Equations

e Formulate MIEP1 as solving f(X) = 0 for some non-
linear function f : R" — R".

e Different ways to formulate f(X):
o fi(X) :=det(XA— \1).
o filX) = N(XA) — AL
o fi( X) = an(XA—=NT), where o, (M) = the small-
est singular values of M.
e Assume that \; # 0 and, therefore, Y = X! exists.
o gi(Y) :==det(A — \Y).
o gi(Y) = N(AY) = AL
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Newton’s Method (for MIEP2)
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e Reformulate the MIEP2 as solving equations
MN(AY)=AT=0, i=1,...n
to maintain symmetry.
o At the v-th stage 213,

¢ Solve the generalized eigenvalue problem

(A - )\(V)Y(”)) x¥) = 0.

T
> Normalize X(V) so that X(V> y W )X(V) =1.

> Denote QW) = [x}"),...x] = [¢.)].

o Define (the Jacobian matrix of \(A,Y"))

(YY)
o Solve J(YWNdW) = N — \W),
o Update Y+ .= Y) 1 diag(d™)).



96

Parameterized Inverse Eigenvalue Problems

Numerical Experience

e Open Question: Given the standard Jacobi matrix A

with nonzero row entries [—1, 2, —1], what is the set of
all reachable spectra of X A via a nonnegative diagonal
matrix X7

Open Question: In structure design, often we are only
interested in a few low order natrual frequencies. In-
deed, for large structures, it is impractical to calcu-
late all of the frequencies and modes. How should one
solve the problem if only a few low order frequencies
are given’

The above Newton method is only a locally convergent
method. It appears that in the case of divergence, the
Jacobian matrix J becomes highly ill-conditioned and
nearly singular.

To effectively develop an algorithm for controlling the
vibration of a string with a specified set of natural fre-
quencies, for example, we need to have another mech-
anism that can somehow provide a good initial guess
before the Newton’s method can be employed.



