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Overview

• The structural constraint is regulated by a set of pa-
rameters.

• Most discussion concentrates on linear dependence of
the problem on the parameters.
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Generic Form

• Given

¦ A family of matrices A(c) ∈ M with parameters
c ∈ Fm,

¦ A set of scalars Ω ⊂ F,

• Find

¦ Values of parameter c such that

σ(A(c)) ⊂ Ω.

. M = One particular class of submatrices in Fn×n.

. F = One particular field of scalars.

• Remark:

¦ Degree of free parameters m needs not be the same
as the size n of the matrix.

¦ Commonly used Ω:

. Ω = {λ∗
k}n

k=1.

. Ω = left-half complex plan.

¦ Depending upon how A(c) is defined, the PIEP can
appear in very different form.



54 Parameterized Inverse Eigenvalue Problems

Variations

• Linear dependence on parameters (LiPIEP):

A(c) = A0 +

m∑
i=1

ciAi.

¦ Ai ∈ R(n), F = R.

¦ Ai ∈ S(n), F = R.

• (AIEP) A(c) = A(X) = A0 + X , X ∈ N .

¦ N = Some special class of submatrices.

¦ X can be expressed in terms of linear combinations
of basis {Ai} of N .

• (MIEP) A(c) = A(X) = XA0, X ∈ N .

¦ XA0 can still be expressed as a linear combination
of some Ai, i = 1, . . . , m.

¦ If X = diag{c1, . . . , cn}, write A0 = [aT
1 , . . . , aT

n ]T

in rows. Then

XA0 =

n∑
i=1

ci eia
T
i︸︷︷︸

Ai

.

• (Generalized Pole Assignment Problem)
A(c) = A(K1, . . . , Kq) = A0 +

∑q
i=1 BiKiCi.
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General Results

• Lot of attention has been paid to the theory and nu-
merical method of the LiPIEP.

¦ Finding a solution over real field is more complicated
and difficult than over complex field.

• Whatever is known about LiPIEP applies to AIEP and
MIEP.

• Pole assignment problem itself stands alone as an im-
portant application for decades.

¦ Has been extensively studied already.

¦ Many theoretical results and numerical techniques
are available.

¦ Approaches include skills from linear system theory,
combinatorics, complex analysis to algebraic geom-
etry.

¦ Will not be discussed in this note.
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Existence Theory for Linear PIEP

• Most discussions concentrate on the LiPIEP.

A(c) = A0 +

m∑
i=1

ciAi.

• Complex solvability is generally expected by solving
polynomial systems.

• Presence of multiple eigenvalues in real case makes a
big difference.
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Complex Solvability

• Given n complex numbers {λ∗
k}n

k=1,

¦ For almost all Ai ∈ Cn×n, there exists c ∈ Cn

such that A(c) = A0 +
∑n

k=1 ckAk has eigenvalues
{λ∗

k}n
k=1.

¦ There are at most n! distinct solutions.
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Real Solvability (n = m)

• Notation and Definitions:

Ak :=
[
a

(k)
ij

]
, k = 0, 1, . . . , n,

E :=
[
a

(k)
ii

]
, i, k = 1, . . . , n,

S :=

m∑
i=1

|Ak|,

π(M) := ‖M − diag(M)‖∞,

d(λ) := min
i6=j

|λi − λj|
• Normalize the diagonals of Aj:

¦ Assume E−1 = [`ij] exists and c̃ := Ec.

¦ Rewrite

A(c) = A0 +

n∑
k=1

ckAk = A0 +

n∑
k=1

 n∑
j=1

`kjc̃j

 Ak

= A0 +

n∑
j=1

c̃j

(
n∑

k=1

`kjAk

)
︸ ︷︷ ︸

Ãj

.

diag(Ãj) = ej, j = 1, . . . n.
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• [34] Sufficient condition:

¦ Given

. n real numbers λ∗ = {λ∗
k}n

k=1, and

. n + 1 real n × n matrices Ai, i = 0, 1, . . . , n,

¦ Assume

. diag(Ak) = ek, k = 1, . . . , n,

. π(S) < 1,

. The gap d(λ∗) is sufficiently large, i.e.,

d(λ∗) ≥ 4
π(S)‖diag(λ∗) − diag(A0)‖∞ + π(A0)

1 − π(S)
.

¦ Then the LiPIEP (with m = n) has a real solution
c ∈ Rn.

¦ Idea of proof:

. Prove that Gerschgorin circles of A(c) are dis-
joint.

. Use Brouser fixed-point theorem to find a fixed
point for the map T (c) = λ∗ + c − λ(A(c)).

• Open Question: What can be said if m > n?
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Multiple Eigenvalue

• Consider the LiPIEP associated with

¦ Matrices Ai ∈ Rn×n, i = 0, 1, . . . , m, and

¦ k real eigenvalue {λ∗
1, . . . , λ∗

k},
. λ∗

i has multiplicity ri ≥ 0.

. r1 + . . . + rk = n.

• Let r = max{r1, . . . , rk} = maximal multiplicity.

• [310, 332] The LiPIEP is unsolvable almost everywhere
if n − m + r(r − 1) > 1.

¦ If n = m, then the LiPIEP is unsolvalbe almost
everywhere if and only if r > 1.
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Sensitivity Analysis

• The solution to an IEP is generally not unique.

• The IEP is generally ill-posed.

¦ Even if a solution depends continuously upon the
problem data, the numerical solution could differ by
a great deal with small perturbation.
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Forward Problem for General A(c)

• Assume

¦ A(c) ∈ Cn×n is analytic in c ∈ Cm over a neighbor-
hood of 0.

¦ λ0 is a simple eigenvalue of A(0).

¦ x0 and y0 are the right and left unit eigenvector,
respectively, of A(0) corresponding to λ0.

• Then

¦ There exists an analytic function λ(c) in a neighbor-
hood N of 0 ∈ Cm such that

. λ(c) is a simple eigenvalue of A(c).

. λ(0) = λ0.

¦ There exist analytic functions x(c) and y(c) in N
such that

. x(c) is a right eigenvector corresponding to λ(c).

. y(c) is a left eigenvector corresponding to λ(c).

. x(0) = x0, y(0) = y0.

• Furthermore,(
∂λ(c)

∂ci

)
c=0

= yT
0

(
∂A(c)

∂c

)
c=0

x0.
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Inverse Problem for Linear Symmetric A(c)

• Assume all matrices are symmetric and the LiPIEP

A(c) = A0 +

n∑
i=1

ciAi

is solvable.

• Assume A(c) = Q(c)diag{λ∗
k}n

k=1Q(c)T and define

J(c) =
[
qi(c)

TAjqi(c)
]
, i, j = 1, . . . , n,

b =
[
q1(c)

TA0q1(c), . . . ,qT
nA0qn(c)

]T
.

• [360] If

δ = ‖λ∗ − λ̃‖∞ +

n∑
i=0

‖Ai − Ãi‖2

is sufficiently small, then

¦ The PIEP associated with Ãi, i = 0, . . . , n and
{λ̃1, . . . , λ̃n} is solvable.

¦ There is a solution c̃ near to c,

‖c − c̃‖∞
‖c‖∞ ≤ κ∞(J(c))

(
‖λ∗ − λ̃‖∞+‖A0 − Ã0‖2

‖λ∗ − b‖∞ +

∑n
i=1 ‖Ai − Ãi‖2

‖J(c)‖∞

)
+O(δ2).
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Numerical Methods

• Direct methods.

¦ Lanczos method.

• Iterative methods.

¦ Newton’s method.

¦ Orthogonal reduction method.

• Continuous Methods.

¦ Homotopy method.

¦ Projected gradient method.

¦ ASVD flow method.
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Direct Method

• Solution can be found in finite number of steps.

• Formulation exists for IEP with Jacobi structure.

• Will be discussed in Chapter 4.
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Iterative Methods

• Netwon’s method.

¦ Applicable to real symmetric LiPIEP.

¦ Fast, but only local convergence.

¦ Multiple eigenvalue case needs to be handled more
carefully.

• Orthogonal reduction method.

¦ Employs QR-like decomposition.

¦ Can handle multiple eigenvalues easily.
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Newton’s Method (for real symmetric LiPIEP)

• Assume:

¦ All matrices in

A(c) = A0 +

n∑
i=1

ciAi

are real and symmetric.

¦ All eigenvalues λ∗
1, . . . , λ∗

n are distinct.

• Consider:

¦ The affine subspace

A := {A(c)|c ∈ Rn}.
¦ The isospectral surface

Me(Λ) := {QΛQT |Q ∈ O(n)}
where

Λ := diag{λ∗
1, . . . , λ∗

n}.
• Any tangent vector T (X) to Me(Λ) at a point X ∈
Me(Λ) must be of the form

T (X) = XK − KX

for some skew-symmetric matrix K ∈ Rn×n.
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A Classical Newton Method

• A function f : R −→ R.

• The scheme:

x(ν+1) = x(ν) − (f ′(x(ν)))−1f(x(ν))

• The intercept:

¦ The new iterate x(ν+1) = The x-intercept of the tan-
gent line of the graph of f from (x(ν), f(x(ν))).

• The lifting:

¦ (x(ν+1), f(x(ν+1))) = The natural ”lift” of the inter-
cept along the y-axis to the graph of f from which
the next tangent line will begin.
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An Analogy of the Newton Method

• Think of:

¦ The surface Me(Λ) as playing the role of the graph
of f .

¦ The affine subspace A as playing the role of the x-
axis.

• Given X(ν) ∈ Me(Λ),

¦ There exist a Q(ν) ∈ O(n) such that

Q(ν)TX(ν)Q(ν) = Λ.

¦ The matrix X(ν) + X(ν)K −KX(ν) with any skew-
symmetric matrix K represents a tangent vector to
Me(Λ) emanating from X(ν).

• Seek an A-intercept A(c(ν+1)) of such a vector with the
affine subspace A.

• Lift up the point A(c(ν+1)) ∈ A to a point X(ν+1) ∈
Me(Λ).
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Find the Intercept

• Find a skew-symmetric matrix K(ν) and a vector c(ν+1)

such that

X(ν) + X(ν)K(ν) − K(ν)X(ν) = A(c(ν+1)).

• Equivalently, find K̃(ν) such that

Λ + ΛK̃(ν) − K̃(ν)Λ = Q(ν)TA(c(ν+1))Q(ν).

¦ K̃(ν) := Q(ν)TK(ν)Q(ν) is skew-symmetric.

• Can find c(ν) and K(ν) separately.
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• Diagonal elements in the system ⇒
J (ν)c(ν+1) = λ∗ − b(ν).

¦ Known quantities:

J
(ν)
ij := q

(ν)
i

T
Ajq

(ν)
i , for i, j = 1, . . . , n

λ∗ := (λ∗
1, . . . , λ∗

n)
T

b
(ν)
i := q

(ν)
i

T
A0q

(ν)
i , for i = 1, . . . , n

q
(ν)
i = the i-th column of the matrix Q(ν).

• The vector c(ν+1) can be solved.

• Off-diagonal elements in the system together with c(ν+1)

⇒ K̃(ν) (and, hence, K(ν)):

K̃
(ν)
ij =

q
(ν)
i

T
A(c(ν+1))q

(ν)
j

λ∗
i − λ∗

j

, for 1 ≤ i < j ≤ n.
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Find the Lift-up

• No obvious coordinate axis to follow.

• Solving the IEP ≡ Finding Me(Λ)
⋂A.

• Suppose all the iterations are taking place near a point
of intersection. Then

X(ν+1) ≈ A(c(ν+1)).

• Also should have

A(c(ν+1)) ≈ e−K(ν)
X(ν)eK(ν)

.

• Replace eK(ν)
by the Cayley transform:

R := (I +
K(ν)

2
)(I − K(ν)

2
)−1 ≈ eK(ν)

.

• Define

X(ν+1) := RTX(ν)R ∈ Me(Λ).

• The next iteration is ready to begin.
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Remarks

• Note that

X(ν+1) ≈ RTeK(ν)
A(c(ν+1))e−K(ν)

R ≈ A(c(ν+1))

represents a lifting of the matrix A(c(ν+1)) from the
affine subspace A to the surface Me(Λ).

• The above offers a geometrical interpretation of Method
III developed by Friedland el al [145].

• Quadratic convergence even for multiple eigenvalues
case.
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Continuous Methods

• Homotopy method.

¦ Homotopy theory for some AIEP’s can be estab-
lished.

. Open Question: Describe a homotopy for general
PIEP.

¦ Provides both an existence proof and a numerical
method.

¦ See discussion in AIEP.

• Projection gradient method.

¦ General, least squares setting.

¦ Can be generalized to SIEP with any linear struc-
ture.

¦ The method enjoys the globally descent property,
but slow.

• ASVD flow method.

¦ Provides stable coordinate transformations for non-
symmetric matrices.

¦ Will be discissed in SIEP for stochastic structure.
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Projected Gradient Method (for SIEP)

• The idea works for general symmetric A(c) so long
as the projection P (X) of a matrix X to A can be
calculated.

• The idea applies to SIEP and is described in that set-
ting.

• Idea:

¦ X ∈ Me(Λ) satisfies the spectral constraint.

¦ P (X) ∈ V has the desirable structure in V .

¦ Minimize the undesirable part ‖X − P (X)‖.
• Working with the parameter Q is easier:

Minimize F (Q) :=
1

2

〈
QTΛQ − P (QTΛQ),

QTΛQ − P (QTΛQ)
〉

Subject to QTQ = I

¦ 〈A, B〉 = trace(ABT ) is the Frobenius inner prod-
uct.
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Feasible Set O(n) & Gradient of F

• The set O(n) is a regular surface.

• The tangent space of O(n) at any orthogonal matrix Q
is given by

TQO(n) = QK(n)

where

K(n) = {All skew-symmetric matrices}.
• The normal space of O(n) at any orthogonal matrix Q

is given by

NQO(n) = QS(n).

• The Fréchet Derivative of F at a general matrix A act-
ing on B:

F ′(A)B = 2〈ΛA(ATΛA − P (ATΛA)), B〉.
• The gradient of F at a general matrix A:

∇F (A) = 2ΛA(ATΛA − P (ATΛA)).
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The Projected Gradient

• A splitting of Rn×n:

Rn×n = TQO(n) + NQO(n)

= QK(n) + QS(n).

• A unique orthogonal splitting of X ∈ Rn×n:

X = Q

{
1

2
(QTX − XTQ)} + Q{1

2
(QTX + XTQ)

}
.

• The projection of ∇F (Q) into the tangent space:

g(Q) = Q

{
1

2
(QT∇F (Q) −∇F (Q)TQ)

}
= Q[P (QTΛQ), QTΛQ].
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An Isospectral Descent Flow

• A descent flow on the manifold O(n):

dQ

dt
= Q[QTΛQ, P (QTΛQ)].

• A descent flow on the manifold M(Λ):

dX

dt
=

dQT

dt
ΛQ + QTΛ

dQ

dt
= [X, [X,P (X)]︸ ︷︷ ︸

k(X)

].

• The entire concept can be obtained by utilizing the
Riemannian geometry on the Lie group O(n).



Additive Inverse Eigenvalue Problems 79

Additive Inverse Eigenvalue Problems

• Subvariations.

• Solvability Issues.

• Sensitivity Issues.

• Numerical Methods.

• Applications.
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Subvariations

• Generic form:

¦ Given

. A fixed matrix A and a class of matrices N in
Fn×n,

. A subset Ω ⊂ F,

¦ Find

. X ∈ N such that σ(A + X) ⊂ Ω.

• Some special cases:

¦ (AIEP1) A is real, X is real diagonal, and F is real.

¦ (AIEP2) A is real symmetric, X is real diagonal,
and F is real.

¦ (AIEP3) A is complex general, X is complex diag-
onal, and F is complex.

¦ Open Question: A = 0, X has prescribed entries at
specific location.
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Solvability Issues

• If X = diag(c1, . . . , cn), then consider

A + X = A +

n∑
i=1

ci eie
T
i︸︷︷︸

Ai

.

This is a special PIEP.

• Complex solvability [2, 63, 138]:

¦ For any specified {λ∗
k}n

k=1 ∈ C, the AIEP3 is solv-
able.

¦ There are at most n! solutions.

¦ For almost all {λ∗
k}n

k=1, there are exactly n! solu-
tions.
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• Real solvability

¦ Some sufficient conditions:

. If d(λ∗) > 4π(A), then AIEP1 is solvable [101].

. If d(λ∗) > 2
√

3 (π(A ◦ A))1/2, then AIEP2 is
solvable [170].

¦ Some necessary conditions:

. If AIEP1 is solvable, then∑
i6=j

(λ∗
i − λ∗

j)
2 ≥ 2n

∑
i6=j

aijaji.

• Unsolvability:

¦ Both AIEP1 and AIEP2 are unsolvable almost ev-
erywhere if an multiple eigenvalue is present [332].
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Sensitivity Issues (for AIEP2)

• Suppose that the AIEP2 is solvable.

• Assume

¦ A(X) := A + X = Q(X)TΛQ(X),

. Define

J(X) := [q2
ji(X)],

b(X) := [q1(X)TAq1(X), . . . , qn(X)TAqn(X)]T .

¦ J(X) is nonsingular,

¦ The perturbation

δ = ‖λ∗ − λ̃‖∞ + ‖A − Ã‖2

is small enough.

• Then

¦ The AIEP2 associated with Ã and λ̃ is solvable.

¦ There is a solution X̃ near to X , i.e.,

‖X − X̃‖∞
‖X‖∞ ≤ κ∞(J(X))

(
‖λ∗ − λ̃‖∞+‖A − Ã‖2

‖λ∗ − b‖∞

)
+O(δ2).
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Numerical Methods

• Most methods for symmetric or Hermitian problem de-
pend heavily on the fact that the eigenvalues are real
and can be totally ordered.

¦ Can consider each eigenvalue λi as piecewise differ-
ential function λi(X).

¦ Newton’s iteration for AIEP2 is easy to formulate.

• For general matrices where eigenvalues are complex,
tracking each eigenvalue requires some kind of matching
mechanism.

¦ Homotopy method naturally track each individual
eigenvalue curves as are predetermined by initial val-
ues.

¦ Homotopy method for AIEP3 gives rise to both an
existence proof and a numerical method for finding
all solutions.
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Newton’s Method (for AIEP2)

• At the ν-th iterate, assume Z(ν) ∈ Me(Λ),

Z(ν) = Q(ν)TΛQ(ν),

A(X(ν)) := A + X(ν),

J (ν) :=
[
q

(ν)
ji

2]
,

b(ν) :=
[
q

(ν)
1

T
Aq

(ν)
1 , . . . , q(ν)

n

T
Aq(ν)

n

]T

.

• Solve J (ν)X(ν+1) = λ∗ − b(ν) for X(ν+1).

• Define skew-symmetric matrix

K(ν) := Q(ν)

q
(ν)
i

T
A(X(ν+1))q

(ν)
j

λ∗
i − λ∗

j

Q(ν)T .

• Update the lift,

R(ν) :=

(
I +

K(ν)

2

) (
I − K(ν)

2

)−1

,

Z(ν+1) := R(ν)TX(ν)R(ν),

Q(ν+1) := R(ν)TQ(ν).
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Homotopy Method (for AIEP3)
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Multiplicative Inverse Eigenvalue
Problems

• Subvariations.

• Solvability Issues.

• Sensitivity Issues.

• Numerical Methods.

• Applications.
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Subvariations

• Generic form:

¦ Given

. A fixed matrix A and a class of matrices N in
Fn×n,

. A subset Ω ⊂ F,

¦ Find

. X ∈ N such that σ(XA) ⊂ Ω.

• Some special cases:

¦ (MIEP1) A is real, X is real diagonal, and F is real.

¦ (MIEP2) A is real, symmetric, and positive definite,
X is nonnegative diagonal, and F is real.

¦ (MIEP3) A is complex general, X is complex diag-
onal, and F is complex.

¦ (MIEP4) A is complex Hermitian, F is real, want
σ(X−1AX−1) = {λ∗

k}n
k=1 [120].

¦ (MIEP5) Preconditioning applications.
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Solvability Issues

• If X = diag(c1, . . . , cn) and A = [aT
1 , . . . , aT

n ]T , then
write

XA =

n∑
i=1

ci eia
T
i︸︷︷︸

Ai

.

This is a special PIEP.

• Complex solvability [137]:

¦ Assume that

. All principal minors of A are distinct from zero,

¦ Then

. For any specified {λ∗
k}n

k=1 ∈ C, the MIEP3 is
solvable.

. There are at most n! solutions.
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• Real solvability:

¦ Some sufficient conditions:

. Suppose

· The diagonals of A are normalized to 1, i.e.,
aii = 1.

· π(A) < 1.

· d(λ) ≥ 4π(A)‖λ∗‖infty

1−π(A) .

. Then the MIEP1 is solvable.

¦ Some necessary conditions:

. If MIEP1 is solvable, then
n∑

i=1

xi =

n∑
i=1

λ∗
i ,

det(A)

n∏
i=1

xi =

n∏
i=1

λ∗
i .
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Optimal Conditioning by Diagonal Matrices

• Friedland’s result on MIEP1 suggests that a general
complex matrix A can be perfectly conditioned.

¦ Lacks an efficient algorithm to implement the result.

• Open question: Want to know the optimal precondi-
tioner of a given sparsity pattern [165].

¦ Suppose

. A is symmetric and positive definite.

. A has property A, i.e., A can be symmetrically
permuted into [

D1 B
BT D2

]
where D1 and D2 are diagonal.

. D = diag(A).

¦ Then [134]

κ(D−1/2AD−1/2) = min
D̂>0,D̂=diagonal

κ(D̂AD̂).
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Sensitivity Issues (for MIEP2)

• Suppose that the MIEP2 is solvable.

• MIEP2 is equivalent to the symmetrized problem:

X−1/2A(X)X1/2 = X1/2AX1/2.

• Define

X1/2AX1/2 = U(X)TΛU(X),

W (X) := [u2
ji(X)].

• Assume

¦ W (X) is nonsingular,

¦ The perturbation

δ = ‖λ∗ − λ̃‖∞ + ‖A − Ã‖2

is small enough.

• Then

¦ The MIEP2 associated with Ã and λ̃ is solvable.
¦ There is a solution X̃ near to X , i.e.,

‖X − X̃‖∞
‖X‖∞ ≤ λ∗

n

λ∗
1
‖W (X)−1‖∞

(
‖λ∗ − λ̃‖∞

‖λ∗|∞ + ‖A − Ã‖2

)
+ O(δ2).
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Numerical Methods

• For preconditioning purpose, no need to solve the MIEP
precisely.

¦ There are many techniques for picking up a precon-
ditioner.

¦ Will not be discussed in this note.

• The MIEP is a linear, but not symmetric PIEP even if
A is symmetric.

¦ The numerical methods for symmmtric PIEP need
to be modified.

¦ If A is a Jacobi matrix, the problem can be solved
by direct methods. Will be discussed in Chapter 4.
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Reformulate MIEP1 as Nonlinear Equations

• Formulate MIEP1 as solving f(X) = 0 for some non-
linear function f : Rn −→ Rn.

• Different ways to formulate f(X):

¦ fi(X) := det(XA − λ∗
i I).

¦ fi(X) := λi(XA) − λ∗
i .

¦ fi(X) := αn(XA−λ∗
i I), where αn(M) = the small-

est singular values of M .

• Assume that λi 6= 0 and, therefore, Y = X−1 exists.

¦ gi(Y ) := det(A − λ∗
i Y ).

¦ gi(Y ) := λi(A, Y ) − λ∗
i .
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Newton’s Method (for MIEP2)

• Reformulate the MIEP2 as solving equations

λi(A, Y ) − λ∗
i = 0, i = 1, . . . n

to maintain symmetry.

• At the ν-th stage [213],

¦ Solve the generalized eigenvalue problem(
A − λ(ν)Y (ν)

)
x(ν) = 0.

. Normalize x
(ν)
i so that x

(ν)
i

T
Y (ν)x

(ν)
i = 1.

. Denote Q(ν) = [x
(ν)
1 , . . .x

(ν)
n ] = [q

(ν)
ij ].

¦ Define (the Jacobian matrix of λ(A, Y ))

J(Y (ν)) := [−λ
(ν)
i q

(ν)
ji ].

¦ Solve J(Y (ν))d(ν) = λ∗ − λ(ν).

¦ Update Y (ν+1) := Y (ν) + diag(d(ν)).
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Numerical Experience

• Open Question: Given the standard Jacobi matrix A
with nonzero row entries [−1, 2,−1], what is the set of
all reachable spectra of XA via a nonnegative diagonal
matrix X?

• Open Question: In structure design, often we are only
interested in a few low order natrual frequencies. In-
deed, for large structures, it is impractical to calcu-
late all of the frequencies and modes. How should one
solve the problem if only a few low order frequencies
are given?

• The above Newton method is only a locally convergent
method. It appears that in the case of divergence, the
Jacobian matrix J becomes highly ill-conditioned and
nearly singular.

• To effectively develop an algorithm for controlling the
vibration of a string with a specified set of natural fre-
quencies, for example, we need to have another mech-
anism that can somehow provide a good initial guess
before the Newton’s method can be employed.


