Chapter 4

Structured Inverse Eigenvalue
Problems

e Jacobi Inverse Eigenvalue Problems

e Toeplitz Inverse Eigenvalue Problem

e Nonnegative Inverse Eigenvalue Problem

e Stochastic Inverse Eigenvalue Problem

e Unitary Inverse Eigenvalue Problem

e Inverse Figenvalue Problem with Prescribed Entries
e Inverse Singular Value Problems

e [nverse Singular/Figenvalue Problem
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Structured Inverse Eigenvalue Problems

Jacobi Inverse Eigenvalue Problems

e Overview.

e Subvariations.

e [ixistence Theory.
e Sensitivity Issues.

e Numerical Methods.



Jacobi Inverse Eigenvalue Problems

Overview

99

e Jacobi structure, i.e.,

_al b1 0
bl a9 bQ
0 bQ as

0

appears in many areas of applications.

0

0

0
an-1 bp—1
bn—l A,

¢ Oscillatory mass-spring systems.

¢ Composite pendulum.

¢ Sturm-Liouville problems.

b; > 0,

e Jacobi IEP often can be solved by direct methods in

finitely many steps.

e For symmetric tridiagonal matrices, there are 2n + 1
unknown entries to be determined. Thus there is in

need of 2n + 1 pieces of information.

e For convenience, denote the leading principal submatrix

of M by M.
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Subvariations

e (SIEP6a) [11, 98, 153, 164, 175, 193, 197]:

o (Glven

> Real scalars {\; }/_, and {pf, ..., 151}
> Interlacing property:
A< <ALy, i=1,...,n—1,
¢ Find a Jacobi matrix J such that
o(J) = N
O(‘]) — {:LL; <o 7”2—1}'
e (SIEP2) 10, 98, 193].
¢ Given

> Real scalars {\; }7_;,

¢ Find a persymmetric Jacobi matrix J such that

o(J) = { Nt
a; = Ap4+1—i
bz’ — bn+2—z’~
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e (SIEP6b) [239]:

o (Given

> Complex and distinct scalars {Af,... ;A5 } and

{/ffv T 7:“571—2} = (C?
> Closed with complex conjugation.

¢ Find tridiagonal symmetric matrices C' and K for
the A-matrix Q(\) = N*I + A\C + K so that

0(@) - {va 7>\§n}7
0(Q) = {u1,- - Han_a}-

> Arising from damped oscillatory systems.

> Open Question: A practical solution requires ad-
ditional conditions, i.e., positive diagonal entries,
negative off-diagonal entries, and are weakly di-
agonally dominant.
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o (SIEPT) [10, 11, 129:

o Given
> Real scalars {7} and {u], ..., 01},
> Satisfy the interlacing property;,
> A positive number (3,

¢ Find a periodic Jacobi matrix J of the form

_a1 b1 bn
b1 a9 bg 0
J — O b2 as ) 0
Ap—1 bn—l
_bn bn—l Ap |
such that
o(J) = { A ti=r

) — {/fl(w" nu:;—l}a
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o (SIEPS) [0]:
¢ Given

> Real scalars {\; }_; and {u], ..., 0}
> Satisfy the interlacing property

>\*<IU/Z§)\Z—|—17 iZl,...,n,

with A} | = oo,

o Find Jacobi matrices J and J so that

o(J) = { ALtz

( 2 — {lula"' 7:“2;}7
—J # 0, only at the (n,n) position.
o (SIEPY);
o Given
> Distinct real scalars {A],... , A5},

> A Jacobl matrix .J,, € R"*".

o Find a Jacobi matrix Js, € R***?" g0 that

0<J2n) — {X{? ) ;n}v
Jop(1:n,1:n) = J,.
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Physical Interpretations

Figure 1: Mass-spring system

e Consider a serially linked mass-spring system with n
particles.

& m; = mass of the ¢-th particle.
o k; = spring constant of the ¢-th spring.
o u;(t) = displacement of the i-th particle at time ¢.

e Fiquation of motion:

d*u

m1—1 = —kyuyp + k‘Q(UQ — U1>,
%lt

d U;

m; p = —ki(u; — wi—1) + kig1 (i — wy),
1=2,...,n—1,

d*u,,

my, Y —Fkp (U — Up_1).

dt
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e In matrix form:

ou=|up,...,up".
o M = diag(myq, ... ,my,).
¢ K is the Jacobi matrix given by

I —<k1—|-]€2> ko 0 ...0 0
ko —(kﬁ‘kg) ks 0
K- O ks —<k3+/€4) | 0
0 k.,
0 by —kn |

e Fundamental solutions are of the form u(t) = e“'x.

o Natural frequency/mode equation is governed by

Kx = —w’Mx.
o Define J = M Y2KM~! and A = —w?. Then
JX = \X.

e Knowing m; and kj, we can predict the natural fre-
quencies and modes of the system.

¢ The inverse problem means that we would like to

calculate values such as ——#l and —=24L— from
my \/mz'mi—H
the spectral data.
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e SIEPGa <= Identifying the system from its spectrum
and the spectrum of the reduced system where the last
mass is held to have no motion.

e SIEP2 <= Identitying the system from its spectrum if
the system is symmetric with respect to its center.

e SIEP6Gb <= Identifying the damped system, including
its damper configurations, from its spectrum and the
spectrum of the reduced system where the last mass is

held immboile.S

e SIEP7 < Same as SIEPGa except that my and ms
are connected by another spring mechanism to form a
loop.

e SIEP8 <= Identifying the system from its spectrum
and the spectrum of the new system whereas only the
last spring constant is changed.

e SIEPY9 < Identifying the system from its spectrum
and physical paramters m;, k; of the first half particles.

e Sometimes it is impossible to gather the entire spectrum
information. Partial information of some eigenvalues
and some eigenvectors can also be used to determine a
Jacobi matrix. See Chapter 6.
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Existence Theory

e Very rich and nearly complete theory available.

e Strictly interlacing property, i.e.,

*

A<y < ANy, t=1,...,n—1,

is a necessary condition unless some subdiagonal (su-
perdiagona) entries are zero.

¢ Jacobi matrices are assumed to have positive b; for
alle=1,... ,n—1.

¢ Figenvalues of a Jacobi matrix are necessarily real
and distinct.

o Eigenvalues of J necessarily separate those of J.
e Most existence proofs are based on the recurrence rela-

tionship between characteristic polynomials for Jacobi
matrices.
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e Assume that the given eigenvalues satisfy the strictly
interlacing property. Then
¢ The SIEPGa has a unique solution 175/,
¢ The SIEPS has a unique solution.

o If {\;}}_, are distinct. Then the SIEP2 has a unique
solution.

e Over the complex field C,

¢ If the given eigenvalues are distinct, then the SIEP6b

is solvable and has at most 2"(2n — 3)!/(n — 2)!
different solutions 289/

¢ If some eigenvalues are common, then there are in-
finitely many solutions for the SIEPG6D.
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e Assume that {uj,...,u’ ;} are distinct. Then the
SIEP7 is solvable if and only if

1T 1 — Ml = 28010+ (—1)"7+Y),
k=1

forall j=1,... ,n—1 3060,
¢ No uniqueness can be assumed.

¢ The eigenvalues of a periodic Jacobi matrix are not
necessarily distinct.

o The eigenvalues of J need not separate those of a
periodic Jacobi matrix J.

e Assume that {A},... A} } are distinct.
¢ Define
1 L. 1 | R
T
Ak:det( )tl . .: . €1 {nel >\kz+1 . .: . )\2n >
] AL el le )\27}:11 D ]

¢ Then the SIEP9 has a unique solution if and only if
Ak > ()
forall k =1,...,2n [360].
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Sensitivity Issues

e The function F': R*"~!1 — R?"~! where
Flay,... ,a,,b, ... ,by1)=(c(J),0(J]))
is differentiable, if b; > 0.
e The solution J to the SIEP6a depends continuously on
the given data {A\;}7_; and {uf, ..., p_1} [195].
e Let J and J be solutions to the SIEP6a with data
AT < p] <A< ...<py 1 <A\,
No< i< No<...<ji_ <X\

Then there exists a constant K such that

n n—1 1/2
J—JIF<K<ZAE‘—W”ZI#Z‘—&?F) .
1=1 1=1

¢ K depends on the separation of the given data mea-
sured by

d = max{\}, Ay} —min{ A}, A},
min g { [ NS — g [N — 23]}

d o
ominge{ AT = AL [ — gl I = AL TG — gl )
2d '

€) —
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Numerical Methods

e LLanczos method.

o Given any matrix A, if QT AQ = H where Q is
orthogonal and H is upper Hessenberg with positive
subdiagonal entries, then () and H are completely
determined by A and the first column of ().

o In our application, J = QT AQ in symmetric diago-
nal.

1. a1 = ql Aqy.
2. b1 = ||[Aq1 — a1q1]|.
3.q2 = (Aq1 — a1q1)/b1.
4. Fore=2,... ,n—1,
(a) a; :== q! Aq;.
(b) b; = HAQz — a;q; — bi—lqi—lH-
(¢) giv1 = (Aq; — a;q; — bi—1di—1)/b;.
5. an = ql Aqy.
e Orthogonal reduction method.

¢ Orthogonal tridiagonalization of a bordered diago-
nal matrix.
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Lanczos Method (for SIEP6a)

e Basic facts:

¢ Given any symmetric matrix A with orthonormal
eigenpairs (\;, X;), then
n
adj(\il — A) = | [\ = A)xix]
k=1
ki
o Evaluate the above equation at the (1,1) position
for each x; to obtain

2 Zi(& — /Me)

Tl = T .
IO A

e For SIEPGa,
¢ The first column of () for J can be expressed from
the spectral data, i.e., g1 = x1;.
¢ The Lanczos algorithm kicks in.

¢ Need reorthogonalization along the way:.
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Orthogonal Reduction Method (for SIEP6a)

e Construct a bordered diagonal matrix A of the form

a P Bpa
A | O Mik. 0

Gur 0
with specified eigenvalues o(A) = { A\ }_;.

¢ o 1s trivially determined.

n n—1
L * *
1=1 1=1



114 Structured Inverse Figenvalue Problems

¢ Border elements (3; can be calculated:

_Hk:1(ﬁ% — )
n—l * * :
k:l(ﬁ% - Nk)
ki

e Derive orthogonal matrix () efficiently so that

1 of 1 of a bel
007|410 0) = (e "7 ] =
o by = ||B]].
o Q' diag(yy, . ..y 1)Q = J.
o The first column of @ is given by 3/b;.

¢ The Lanczos method can be employed.

[? =

e One may also explore the bordered diagonal structure
by using Householder transformation, Givens rotations,
the Rutishauser method, and so on |[411].
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Toeplitz Inverse Eigenvalue Problem

e Overview
e bixistence Theory

e Numerical Methods
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Overview

e Symmetric Toeplitz Matrix T'(r) = t;; = 7,_j|+1, 1-€.,

™ T9 oo Tp—1 Ty

T2 1 T'n—2 Th-1
T(r):= :

T'n—1 1 T2

_Tn T'n—1 (&) 1 _

e [s a special case of centrosymmetric matrices
C(n) = {M|M=M" M ==MZ}.
o = = [§;;] = unit perdiagonal matrix,
Eij = Oin—j+1-

> Symmetric vector, if Zv = v.
> Skew-symmetric vector, if Zv = —v.

e (TolEP) Find r € R" such that T'(r) has a prescribed
set of real numbers {\;}7_, as its spectrum.
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Spectral Properties of Centrosymmetric Matrices

Ot
Ut

e Any M € C(n) can be decomposed as follows |

n even odd
s A x CT
M [C’:A:] el q 2'=
B C =x =ZA=
7= I 0 —=
V2K = 0v2 0
B I 0 =
_ A—=C 0 0
KMKT [A_O“C A+OTO] 0 q V2l
- 0 V2rA+Z=C

oA C, = e Rl2x3]
oz € Rz

o q € R.

o A=A"
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e Orthonormal eigenvectors Q = K'Z M can be split
into two groups based on diagonal block Z.

Z1 0
2-[%2]
¢ /1 = Eigenvectors of A — =C.
. 2xt —
o o = HKigenvectors of [ \/%x A\/—IijC] or A+=C.
e Figenvectors of M enjoy special parity properties:
[ 7, ] .
o K1 ()1 = |5] skew-symmetric eigenvectors =
“Odd” eigenvalues.
o K1 g = | 5| symmetric eigenvectors = “Even”
2
eigenvalues.

e Open Question: For an TolEP to be solvable, each
given eigenvalue must carry a specific parity. Can this
parity be arbitrarily assigned?
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A 3 x 3 Example

o M € C(3):
_mu 12 m13_
M = X Moy X
X X X

o trace(M) = 0 = Three free parameters in C(3).
e [sospectral subset Me(Aq, Ao, A3):
Ao 1 ()‘02 B )‘03>2

7012 a2 _
(M1 1 )+ 5" T 7
miz — mi1 — )\01-

o 0 = A permutation of integers {1, 2, 3}.
o M = Three ellipses.

¢ One circumscribes the other two.
e Check # of myo-intercepts =

4, if distinct eigenvalues:

7 of solutions = { 2. if multiplicity 2.
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distinct eigenvalues symmetric eigenvalues
1 1
0.5 0.5
0 0
-0.5 -0.5
-1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
near eigenvalues multiple eigenvalues
1 1
0.5 0.5
0 0
-0.5 -0.5
-1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 2: Plots of mq; versus myy for M¢ in C(3).

e Fach ellipse = One parity assignment among eigenval-
ues.

e Wrong assignment = No Toeplitz.

e Magnitude of eigenvalues = Solvability:.

e Ordered eigenvalues alternate in parity = Safeguard.
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Inverse Problem for Centrosymmetric Matrices

e Close form solution:

o Given arbitrary
> Diagonal matrix A := diag{{\; }}_;},
> Orthogonal matrix Z; € Rl21x12],
> Orthogonal matrix Z, € R/z!*I31,

¢ Then the matrix

T
Z1 0 Z1 0
. T | 41 1
M=K [OZJA[OZJ K.

> Is centrosymmetric.

> {2}, ... T%J} = Odd eigenvalues of M.

> {X[%Hlv“' :
> M may not be Toeplitz.

A} = Even eigenvalues of M.

e Open Question: Search for a Toeplitz matrix on the
isospectral surface Mc({ A7 }7_,):

Me = {M € C(n)| eigenvalues = A\],... , A"}
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Existence

e Solvability has been a challenge.

¢ n equations in n unknowns.
¢ n > 5 is analytically intractable.

¢ Symmetric Toeplitz matrices can have arbitrary real
spectra |220].
> Thus far, it is a nonconstructive proof by topo-
logical degree argument.
> Open Question: Any algebraic proof of existence?

¢ Eigenvalues cannot have arbitrary parity:.
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Idea in Landau’s Proof

o A matrix T'(cq, ... , ) is reqularif every principal sub-
matrix T'(cq, ... ,cx), 1 < k <n has the properties:
¢ Distinct eigenvalues.
¢ Alternate parity with the largest one having even
parity.
e Assume the given eigenvalues \; < ... < A, are cen-
tered, i.e., Y " A = 0.
¢ Suffices to solve the TolEP for matrices of the form
T(0,1,t3,... ,t,).
¢ Necessarily A < 0.

e Consider the map

¢(t37 I 7tn> — <y27 I 7yn—1)

A
Oyi:—)\—i,ZIZ,...ﬂ’L—l.

o o(T(0,1,t5,. .. ,t)) = {A, ..o A ).
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e The range of ¢ is the simplex

—1<yp<...<y,
A = e U .
{(w’ Yol Yo+ ..+ Ypo+ 2y, 1 < 1}

e Landau’s approach:

¢ The set F of regular Toeplitz matrices of the form
T(0,1,t3,...,t,) is not empty.

o The map ¢ restricted to those (t3,... ,t,) € R"?
such that T'(0,1,t3,... ,t,) € F is a surjective map
onto A.

o Any y1 < ... <y, can be shifted and scaled to a
unique point in A.
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Numerical Methods

e Mostly done in S(n).
o Laurie’s Algorithm [227]
o Trench’s Algorithm 337
¢ Continuous method

e The calculation could be limited to the smaller space

C(n).
o Cayley Transform 119

¢ Newton’s Refinement to Centrosymmetric Structure
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Continuous Method
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Refined Newton to Centrosymmetric Structure

e A tangent step

e Lift by approximation
e Lift by global ordering
e Lift by local ordering
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A Classical Newton Method

e A function:

f:R— R.

e The scheme:
P = ) — (f/a) 7 (o),

e The intercept:

o £t = The z-intercept of the tangent line of the
graph of f from (z), f(x)).

e The lifting:

o (x| f(2"+1))) = The natural “lift” of the inter-
cept along the y-axis to the the graph of f.
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An Analogy of the Newton Method

e Think of
o Me(A) = The graph of f.
o T (n) := {Toeplitz matrices} = The z-axis.
o Limit the iteration to C(n).

e Manifold M¢(A):

¢ Parametrization:

M = QAQ',

Q=K'2Z
n

n
Z € O([5]) xo(351).
2 2
¢ Tangent vector:

Ty(Me) = SM — MS,

5 o1 0 o7

S = Q [ 0 32] Q.
> Sy = skew-symmetric in R1z/*13)]
Sy = skew-symmetric in RI21*/3]
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A Tangent Step

e Given M) € M¢(A) (Parity fived),
o Find S and r®*+Y for
MW 4 SWAr0) — pp W) — p(pl)y,
e LFquivalently:
A4+ SWA_ASW) — Q(V)TT(T(VH))Q(V)
= ZW g KT 70,
¢ Spectral decomposition:

Q@TM(V)Q@ _ A,
Q¥ = KTzW).

e Key observation:

Tl(z/—H) 0

v+1 T
KT<T( i )>K = 0 T2(u+1)

= The system is split in half.
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Find the Intercept

e The right-hand side of the system is linear in r®+1.

e Diagonal elements in the system =- A linear system for
"+ without reference to S®):

JWpt) — )
ON = [P1,. .., Py, Y, - .w(%ﬂT (Fized parity).

’

(ZINEEN 2., i1 < < |2

']g) = 3 |
(2B 2 ), it 5] < i <.
>
2 = KT(e)) K"
= KT
0 Ey

> (Z ,(CV))*Z' = the i"" column of the matrix Z,iy).

e Only length of & 5 in all vector-matrix-vector multipli-
cations.
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Compute SV)

e Once T(r"*Y) is determined, off-diagonal elments in
the system = S®):

v v+1 v
_(ZEn )

s, Uo1<i<j<|=],
Z(V))T-T(VH)(Z(V)) | n
S(V)z:( 2 /¥ 2 2 *],1§Z<]S 7.
¢ Eigenvalues within each parity group must be dis-
tinct.

O M, ..., A\, need not be totally distinct.
e In case of multiple eigenvalues

¢ Basis of eigenspace splits as evenly as possible be-
tween symmetric and skew-symmetric eigenvectors
113].

¢ Multiplicity of each eigenvalue < 2 can be formu-
lated.



Toeplitz Inverse Eigenvalue Problems 133

Find the Lift

e Coordinate-free lift (Friedland, '87; Chu, '92):

T T

MO .= W) g )T pp) W) g W)

¢ Lift by approximation:

() g\ !
) .— _
R (150 (1-50)

e In calculation, only need

Zw+1) . Z) pw)

¢ All matrices involved are 2-block diagonal.
e Quadratic convergence.
e Multiplicity > 2 = No S™) = No lift.
o Can we by-pass S) to perform a lift?
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Lift by Global Ordering

e [dea:

o Look for matrix M¥*Y € M, that is nearest to
T(T(V+1)>.

M

lift by global ordering

(v+1) W)

(n)

(v+1)

Figure 3: Geometry of Lift by Global Ordering.
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e Answer: Wielandt-Hoffman theorem.

v is casy:

K(1V—|—1) O
0 A(V+1)

¢ Spectral decomposition of T(r(

—w+1) L

7V KT g TZV Y =

o Rearrange {Aq,... , A\, } in the same ordering as in
ngrl) nd A(VH) to obtain /N\gyﬂ) and /N\gyﬂ).
¢ Define:
/~\§1/+1) 0
0 Agy—f-l)

7(y+1)T

v+1)

M .= gT7 K.

e New starting point:

/N\gz/Jrl) 0
A (v+1
0 AVt
v+1)

A=At =

)

ZW = 7(

e Significance:

¢ Parity assignment may be changed.
o No SW is needed.

¢ Multiple eigenvalues with same parity can be han-
dled.
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Lift by Local Ordering

e Would like to avoid computing S as well as parity
switching?”

e [dea:

o A\ is kept fixed.

¢ Reorganize columns of 7&”“) and 7;V+1)

e Calculation:

. (1) v+l . .
¢ Elements in Aﬁ”* ), Aé”* ! are in the same ordering

as those in A1 and As.

e New starting point:

ZW+) .= The reorganized AR

e Global ordering = Local ordering, when reaching con-
vergence.
e Quadratic convergence:

o Order of convergence = (order projection)™(order
tangent step). (Traub)
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Numerical Experiment

e Fixample 1: Wrong parity

e Example 2: Quadratic convergence
e [ixample 3: Multiplicity = 2

e Fixample 4: Multiplicity = 3

e Eixample 5: High order case
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Example 1: Wrong Parity

e Test data (Wrong parity):

A= —2.4128 x 1010(E)
—2.6407 x 107Y(E) » Wrong parity
A3 = 2.6769 x 10M°(0)

>
NG
|

Lift by Local Ordering Lift by Approximation

2 2
1 1
#7K
0 0
-1 -1
-2 -2
-2 -1 0 1 2 -2 -1 0 1 2
Lift by Global Ordering Orbit Change due to Global Ordering
2
4+
1r 1 2
of 1 01
_2 4
_l b 4 .
-4
2 2 0\_—//2
2 0 1 2 -2 -2 0

Figure 4: Behaviors of Algorithms When Starting with the Wrong Orbit.
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e Lift by approximation = Staying on the wrong orbit.
e Local ordering = Wrong orbit, clustering.

e Global ordering = Change orbit, convergence.
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Example 2: Quadratic Convergence

e Limit point *) may be away from original r(#), even
if 7(0) a (#),

e Limit points may be different among methods, even
with the same starting (%),

e Bigenvalues of T(r™) = those of T'(r?), but parity
may change in the global ordering case.
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Case (a) Case (b) Case (c)

r#) 0 0 0
-2.0413%x1073 | -9.2349%x 107! | -3.3671x107!

1.6065x 1070 | -7.0499x1072 | 4.1523x107!

Original Value | 8.4765x107'| 1.4789x10~' | 1.5578x10%"
2.6810x1071 | -5.5709%x 107" | -2.4443x 1070

r0 0 0 0
-2.8351x107! | -1.8024x10%° | 6.3658%x107!

9.3953x1071 | 7.3881x107%| 4.0318x107!

Initial Value 8.2068x1071| 1.5694x10~!| 1.0901x10*Y
1.0634x 1010 | -5.2451x 107! | -3.2628 x 1010

r) 2.0426x10710 | 2.2204%x 10716 | 7.4940x 1010
-2.0413x1073 | -9.2349%x 107! | -3.5391x 107!

1.6065x 1070 | -7.0499x1072 | 4.3645%x107!

Local Ordering | 8.4765x1071| 1.4789x10!| 1.5244x10™"Y
2.6810x107! | -5.5709%x 107! | -2.4655x 1070

r) 8.6831x 10716 0|4.7184x10716
-2.0413%x107% | -9.2349x107! | -3.3671x 107!

1.6065x 10T | -7.0499x 1072 | 4.1523x107!

Approximation | 8.4765x1071| 1.4789x10~!'| 1.5578x10*Y
2.6810x1071 | -5.5709%x 107! | -2.4443x107°

r®) 2.4113x1070 [ -1.1102%x 10716 | 6.1062x 10716
-9.3778%x1072 | -9.2646x107! | 3.5391x107!

1.5174x 10" | -6.1419x107% | 4.3645%x107!

Global Ordering | 9.9597x107! | 1.3518x107! | -1.5244x10™Y
5.7042x1071 | -5.4694x 107! | -2.4655x 1019

Table 1: Initial and Final Values of r®) for Example 2.

141
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Iterations | Local Ordering | Approximation | Global Ordering
0 1.3847x 100 | 1.3847x10™ 1.2194x10™°
1 7.1545%x107 1 7.1545x107 1 4.2739x1071
2 2.1982x107% | 6.3866x10* 1.4179%x102
3 5.1223x107° 2.0606x 1074 4.3624x107°
4 4.4931x10710 7.1037x107? 4.7985x10710
5 1.4729%x 1071 | 2.9671x1071° 1.7659x10~1

Table 2: Errors of Eigenvalues for Case (a) in Example 2.
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Example 3: Multiplicity = 2

e Test data (Random number):

—5.8942 x 1071 (E)
—1.8565 x 1071 (O)
{ —1.8565 x 1071 (E)
3.7508 x 1071 (0O)
5.8564 x 1071 (E)

e Parity unknown.
¢ Assume the possibly safest assignment.
e Multiply eigenvalues split between parities.

e Quadratic convergence.
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Figure 5: Number of Iteration versus Logarithmic Scale of Errors in Example 3.
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Example 4: Multiplicity = 3

e Test data:

—8.4328 x 1071 (E)
—1.2863 x 1071 (O)
—1.2863 x 107" (B)
—1.2863 x 1071 (O)

1.2292 x 100 (E)

e Lift by approximation fails.
e Methods by local and global ordering converge to

[.2204x10719,4.2222x107", 1.2863x10™", 4.2222x10~", 1.2863x10 "]

with error history

2.0327 x 101"
4.0355 x 1072
1.3903 x 1074
3.5477 x 107Y
7.8896 x 10710,
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Example 5: n = 20

e Test data:

—1.0242x10t —9.6736x1010 —5.5608%x101° —2.2651x1070
5.5692x10~1  2.1786x10M  3.3867x10T°%  4.0016x101°
6.3594x1070  8.7090x101°

—1.0416x10Tt —9.4352x1010 —4.7955x1019 —7.7180x10~!
6.3996x10"1  2.6374x1010  4.4879x1010  4.7572x1010
6.2222x10T0  9.2230x101°

¢ Not the safest possible parity assignment, first ten
odd, last ten even.

e Method of approximation fails after 100 iterations.

e Method of global ordering performs best.
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Conclusion

e Solving the TolEP within the subspace C(n) is possible.

& Problem size and cost are halved.

¢ Multiple eigenvalue case can be handled.
e Coordinate-free Newton-like methods are available.
¢ Quadratic convergence is observed.

e Parity assignment of eigenvalues plays an important
role in whether an TolEP is solvable.

e Both local and global ordering, based on the Wielandt-
Hoffman theorem, permit a new way of lifting.

¢ Higher multiplicity eigenvalue case can now be han-

dled.
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Nonnegative Inverse Eigenvalue
Problem

e Overview
e Some Existence Results
e Symmetric Nonnegative Inverse Eigenvalue Problem

e Numerical methods
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Overview

e Many discussions in the literature on the subject 20.
30, 45, 130, 140, 143, 245, 262, 109, 318|.

e Most discussions center around establishing a sufficient
or necessary condition to qualify whether a given set of
values is the spectrum of a nonnegative matrix.

e Open Question: Which sets of n real numbers occur as
the spectrum of a nonnegative matrix?

e Open Question: Which sets of n real numbers occur as
the spectrum of a symmetric nonnegative matrix?

e Open Question: Very few numerical algorithms.
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Some Existence Results

e Suppose { A} }}_; are eigenvalues of an n X n nonnega-
tive matrix. The the moments

n

sp=) (A

i=1
must satisty

sy < n™ te.

for all k,m =1,2,... [245].

e The set {\;}}_; C C is the nonzero spectrum of a
strictly positive matrix of size m > n if and only if |15
O N7 > |Af| forall i > 1,
osp>0forall k=1,2,..., and
o The polynomial []'_,(¢ — A\f) has real coefficients.
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Symmetric Nonnegative Inverse Eigenvalue

Problem

e There exist real numbers {A;}7_, that occur as the
spectrum of a nonnegative n X n matrix, but do not
occur as the spectrum of a symmetric nonnegative n xn
matrix |212].

e The symmetric nonnegative inverse eigenvalue problem
can be formulated as a constrained optimization prob-
lem of minimizing the objective function

F(Q.R) = 3lQ"AQ ~ Ro R|],
subject to
(@, R) € O(n) x S(n).

e For nonsymmetric nonnegative inverse eigenvalue prob-
lems, see the discussion for the stochastic inverse eigen-
value problems.
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Numerical Method

e A dynamical system resulting from projected gradient
flow can be formulated as |71/:

dX
— = | X, |X,Y
@ XX Y
— =4Y o (X =Y.
o X(t) = Q(t)T AQ(t) is an isospectral matrix.

o Y (1)

trix.

R(t) o R(t) is a symmetric nonnegative ma-
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Stochastic Inverse Eigenvalue Problem

e General View

e Karpelevic’'s Theorem

e Relationship to Nonnegative Matrices
e Basic Formulation

e Steepest Descent Flow

e ASVD Flow

e Convergence

e Numerical Experiment

e Conclusion
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General View

e Construct a stochastic matrix with prescribed spec-
trum.
& Stochastic structure.
¢ No strings of symmetry:.

¢ Eigenvalues can appear in complex conjugate pairs.
e A hard problem 215, 262].

¢ The set ©,, of points in the complex plane that are
eigenvalues of stochastic n xXn matrices is completely
characterized.

¢ The Karpelevic theorem characterizes only one com-
plex value a time and does not provide further in-
sights into when two or more points in ©,, are eigen-
values of the same stochastic matrix.
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Karpelevi¢’s Theorem

e A number A is an eigenvalue for a stochastic matrix if
and only if it belongs to a region ©,,.

¢ Region is symmetric about the real axis.
o The points on the unit circles are given by €7/
where a and b range over all integers such that 0 <

a<b<n.

¢ The boundary of ©,, consists of curvilinear arcs con-
necting these points in circular order. These arcs
are characterized by specific parametric equations

NN =1) = (1=1),
(A=) = 1=\,
where 0 <t < 1,and b, d, p, g, r are natural integers

determined certain specific rules (explicitly given in
215, 262]).

e The region ©4 is shown in Figure 7.
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Figure 7: ©4 by the Karpelevi¢c Theorem.
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Relation to Nonnegative Matrices

e A complex nonzero number « is an eigenvalue of a non-
negative matrix with a positive maximal eigenvalue r if
and only if a//r is an eigenvalue of a stochastic matrix.

e Key transformation:

o Suppose A is a nonnegative matrix with positive
maximal eigenvalue r and a positive maximal eigen-
vector x.

o Then D~ 'r~1AD is a stochastic matrix where D =
diag{zy,... ,z,}.

e The nonnegative inverse eigenvalue probelm (NIEP)
has been discussed earlier.

¢ Some necessary and a few sufficient conditions for
the NIEP are available [30].

¢ A continuous method for the symmetric NIEP can
be formulated |74/,

¢ Open Question: Need a numerical algorithm for gen-
eral NIEP.
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Basic Formulation

e Notation:

M(A) == {PAP'|P € R is nonsingular}
m(R"Y) .= {BoB|B € R""}

¢ A = real-valued matrix carrying the spectrum infor-
mation.

¢ o = Hadamard product.

e [dea:

o Find the intersection of M(A) and w(R"+).

¢ The intersection, if exists, results in a nonnegative
matrix isospectral to A.

¢ Reduce the nonnegative matrix, if its maximal eigen-
vector is positive, to a stochastic matrix by diagonal
similarity transformation.
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Reformulation

1
Minimize F(P,R) := §||PJP_1 — Ro R|?
Subject to P € Gl(n), R € gl(n)

e P and R are used as coordinates to maneuver elements
in M(A) and w(R') to reduce the objective value.

e Feasible domains are open sets.

e A minimum may not exist.
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Gradient of F

e Inner product in the product topology:
<(X17 Yi)? (X27 }/2>> = <X17 X2> + <}/17 }/2>

e With respect to the product topology:
VF(P,R) =
(AP, R)M(P)" — M(P)"A(P, R)) P,
—2A(P,R)o R).
¢ Abbreviation:
M(P) = PJP™!
A(P,R) := M(P)— RoR.
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Steepest Descent Flow

e Steepest descent flow:

P

O~ M(P)Y . AP.R)PT
dR

— = 2A(P :

dt ( 7R) O R

e Advantages:
o No longer need the projection of VIF(P, R) as does
in the symmetric case.

o The zero structure in the original matrix R(0) is pre-
served throughout the integration — may be used
to explore the possibility of constructing a Markov
chain with prescribed linkages and spectrum.

e Disadvantage:

o The solution flow P(t) is susceptible to becoming
unbounded — a possible frailty.

o The involvement of P~1 is somewhat worrisome.
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ASVD flow

e An analytic singular value decomposition of the path
of matrices P(t) is an analytic path of factorizations

P(t)=X1)St)Y(t)"

where X (t) and Y () are orthogonal and S(t) is diag-
onal.

e An ASVD exists if P(t) is analytic 18, 345].

e The fact that P(t) defined by the differential system
is analytic follows from the Cauchy-Kovalevskaya theo-
rem since the coefficients of the vector field are analytic.
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New Coordinate System

e The two matrices P and R are used, respectively, as
coordinates to describe the isospectral matrices and
nonnegative matrices.

¢ May have used more dimensions of variables than
necessary — does no harm.

o When flows P(t) and R(t) are introduced, in a sense
a flow in M(A) and a flow in w(R'}) are also intro-
duced.

e The motion of the coordinate P is further described
by three other variables X, S, and Y according to the
ASVD.

e To produce the steepest descent flow, a coordinate sys-
tem (X (t),S(¢),Y (), R(t)) is eventually imposed on
matrices in M(A) x m(R7).
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Calculating the ASVD

165

e Differentiate P(t) = X (¢)S(¢t)Y (t)!: (Wright '92):

P=XSYT -+ xsy? + xsy”
pa . S
XTpy = XZX,S+S+SYWY

o Z, W are skew-symmetric matrices.
e Define Q .= X' PY.
o @ is known since P is already specified.

o The inverse of P(t) is calculated from

P l=_vys1tx"T,

o The diagonal entries of S = diag{si,...,s,} pro-
vide us with information about the proximity of P(t)

to singularity:.
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e Flow for S(t):

e Obtain W (t) and Z(t):
djk = ZjkSk T SjWjk,
—qkj = ZjkS; -+ SEW;k-
o If 7 # S?, then

 SkQjk T Sjqkj

ik = 53 — 3? ’
Sidjk + Skqk;j
Wi = jQ;l;: - qum
] k
for all 3 > k.
e Flow for X(¢) and Y (¢):
dX
— = XZ.
e
— =YW
dt

e The flow is now ready to be integrated by any IVP
solvers.
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Convergence

e The approach fails only when:
o P(t) becomes singular in finite time — requires a
restart.
o F(P(t), R(t)) converges to a nonzero constant — a
LS local solution is found.

e Gradient flows enjoy global convergence:
o G(t) .= F(P(t), R(t)) enjoys the property:
dG

=L = —IVE(P@), R <0

along any solution curve (P(t), R(t)).

o Suppose P(t) remains nonsingular. Then G(t) con-
verges.
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Numerical Experiment

e Integrator: MATLAB ODE SUITE
¢ odell3 = ABM, PECE, non-stiff system.

¢ odelbs = Klopfenstein-Shampine, quasi-
constant step size, stiff system.
e Stopping criteria:
o ABSERR = RELERR = 10 *2.

o [|A(P, R)|| <1072 = a stochastic matrix has been
found.

o Relative improvement of A(P, R) between two con-
secutive output points < 107" = a LS solution is
found.
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Example 1

e Spectrum:

{1.0000, —0.2403, 0.1186 & 0.18057, —0.1018}

e Initial values:

[ 0.2002 0.4213 0.9229 0.7243 0.4548
0.6964 0.0752 0.9361 0.2235 0.0981
Py = | 0.7538 0.3620 0.2157 0.5272 0.2637
0.4366 0.3220 0.8688 0.1729 0.8697
0.8897 0.1436 0.7097 0.5343 0.7837

R, = 83281

e Limit point:

[ 0.1679 0.0522 0.4721 0.0000 0.3078

0.1436 0.1779 0.4186 0.1901 0.0698
B =1 0.0000 0.1377 0.5291 0.3034 0.0299
0.0560 0.4690 0.2404 0.0038 0.2309
| 0.1931 0.1011 0.5339 0.1553 0.0165 |
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Figure 8: A log-log plot of F\(P(t), R(t)) versus ¢ for Example 1.
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e Both solvers work reasonably.
¢ odelbs advances with larger step sizes at the cost
of solving implicit algebraic equations.
¢ Jacobians are calculated by finite difference. Func-

tion calls could be reduced by fewer output points.

e Different initial values lead to different stochastic ma-
trices.
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Example 2

e Spectrum:

{1.0000, —0.2608, 0.5046, 0.6438, —0.4483}

e Looking for a Markov chain with ring linkage, i.e., each
state is linked at most to its two immediate neighbors.
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e Initial values:

[ (0.1825 0.7922 0.2567 0.9260 0.9063

0.1967 0.5737 0.7206 0.5153 0.0186
Py = | 0.5281 0.2994 0.9550 0.6994 0.1383
0.7948 0.6379 0.5787 0.1005 0.9024
| 0.5094 0.8956 0.3954 0.6125 0.4410

11001
11100
Ry =09210 {01110
00111
10011

e Limit point:

[ 0.0000 0.3094 0 0 0.6906 |
0.0040 0.5063 0.4896 0 0

D=10 0.0000 0.5134 0.4866 0

0 0 0.7733 0.2246 0.0021

| 0.4149 0 0 0.3900 0.1951 |
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Example 3

e Spectrum

{1.0000, —0.2403, 0.3090 & 0.50004, —0.1018}

e [nitial values: same as Example 1 (or modify Rj).

e Slow convergence:

0.3818
0.5082
0.0000
0.0266
0.5416

0.3237
0.4742
0

0.0066
0.5441

0.0000
0.3314
0.0000
0.7634
0.0524

0

0.3184
0.0000
0.7536
0.0429

0.4568
0.0871
0.5288
0.0292
0.3835

0.4684
0.1303
0.5231
0.0372
0.3959

0.0000
0.0049
0.4712
0.0310
0.0196

0

0.0007
0.4769
0.0958
0.0022

0.1614 |
0.0684
0.0000
0.1498
0.0029 |

0.2079 |
0.0764
0

0.1068
0.0149 |
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Conclusion

e The theory of solvability on the StIEP or the NIEP is
yet to be developed.

e An ODE approach capable of solving the StIEP or the
NIEP numerically, if the prescribed spectrum is feasi-
ble, is proposed.

e The method is easy to implement by existing ODE
solvers.

e The method can also be used to approximate least
squares solutions or linearly structured matrices.
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Figure 9: A comparison of steps taken by odel113 and odel5s for Example 1.
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Figure 10: A log-log plot of F/(P(t), R(t)) versus t for Example 3.
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Unitary Inverse Eigenvalue Problem

e Overview
e Formulation

e [xistence Theory
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Overview

e Figenvalue of unitary matrices are on the unit circle.
e Suffices to concentrate on unitary Hessenberg matrices.

e Any upper Hessenberg unitary matrix H with positive
subdiagonal entries can uniquely expressed as the prod-
uct

~

H = Gi(m) - .. Guea(Nn—1)Gn(in),
onp € Cwith |ng| < 1for 1 <k <nand|n,| =1
o Each Gi(n), k=1,... ,n—11s a Givens rotation,
-

-] P8
]n—k:+1 ]

with Ck = \/1 — |77k|2-
o Gp(n,) = diag|l,—1, =1y

e Flach upper Hessenbergunitary matrix is determined by
2n — 1 real parameters.

o {nr 17—, are called the Schur parameters.
OH=Hm,... ).
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Formulation

e The Schur parametrization of an upper Hesserberg uni-
tary matrix requies 2n — 1 pieces of information.

¢ The complementary parameters {Qﬁ}z;i are the sub-
diagonal elements of H and cannot be independently
given.

e Upper Hessenberg unitary matrices with positive sub-
diagonal entries are related to orthogonal polynomials
on the unit circle.

¢ Jacobi matrices are related to orthogonal polynomi-
als on an interval.

¢ There should considerably similarity between uni-
tary inverse eigenvalue problems the Jacobi inverse
cigenvalue problems.

e Need a concept for modified principal submatrices of

H.



180 Structured Inverse Figenvalue Problems

Existence Theory

e Analogue of SIEPS:

o (Given

> Two sets {7 }7_; and {u; }7_, strictly interlaced
on the unit circle,

o Then there exist a unique H = H(ny,... ,n,) and
a unique a € C of unit modulus such that

> o(H) = { N}z
> o(H(am, ... ,an.)) = {piti
e Analogue of SIEPGa |1/:

o (Glven

> Two sets {\;}¢_, and {u}}7—, strictly interlaced
on the unit circle,

o Then there exist a unique H = H(ny, ... ,n,) such
that

(H(m, . ,nn_g, pn_1>) = {p}7—! with
Tn—1H07n
1+ fiomn—17n

Pn—1 =
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Inverse Eigenvalue Problems with
Prescribed Entries

e Overview
e Prescribed Entries Along the Diagonal
e Prescribed Entries at Arbitrary Location

e Numerical Methods
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Overview

e The PEIEP is a special kind of matrix completion prob-
lem [217]:
¢ Given
> A certain subset K = {(i, ji }¥_, of pairs of sub-
scripts,
> A certain set of values {aq,... ,a;} C F,
> Another set of n values {\;}}_;,
¢ Find a matrix X € F"*" such that
> o(X) = {A\ it
DXZ-t,jt:at for t = 1, ,]-C.
e Positions that do not belong to K are free, whose n?—k
entries are to be determined.

¢ Jacobi structure is a special case.
¢ Sometimes only need to fill /T positions with pre-
scribed values, but not in any specific order.

e What is the minimal /maximal count of k for the prob-
lem to make sense?



Inverse Eigenvalue Problems with Prescribed Entries 183

Prescribed Entries along the Diagonal

e Schur-Horn Theorem (on Hermitain matrices).
e Mirsky Theorem (on general matrices).
e Sing-Thompson Theorem (on singular values).

e de Oliveira Theorem (on general diagonals).
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Schur-Horn Theorem

e Concerns with the relationship between diagonal entries
and eigenvalues of a Hermitian matrix.

e The vector a € R" is said to majorize A € R" if,
assuming the ordering

ajl S §ajn,

Ay < oo < Ay

the following relationships hold:

k k
E Am; < g a;, fork=1,...n,
i=1 i=1
n n
i=1 i=1

e A Hermitian matrix H with eigenvalues A and diagonal
entries a exists if and only if a majorizes .

e The proof for the sufficient part is the hard part.

o (SHIEP) Construct such a Hermitian matrix with
given diagonals a and eigenvalues A, if a majorizes
A 78, 379].

)
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Mirsky Theorem

e [s there any similar connection between eigenvalues and
diagonal entries of a general matrix?

e A matrix with eigenvalues A1, ..., A, and main diago-
nal elements aq, ... ,a, exists if and only if

n n
E a; = E )\Z'.
1=1 1=1

¢ Not an interesting inverse eigenvalue problems.
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Sing-Thompson Theorem

e Concerns with the relationship singular values and di-
agonal entries of a general matrix.

e Given vectors d, s € R",

& Assume

51 = S92

|di| > |dy

N

> |
> . |dy).

¢ A real matrix with singular values s and main diag-
onal entries d (possibly in different order) exists if
and only if

k

k
Z\dﬂ < ZSZ', fork=1,... ,n,
i=1

1=1

n—1 n—1
(Zcm) —|d,| < (Zsz) — 5.
i=1 =1

e (STISVP) Construct such a square matrix with given
diagonals and singular values |71].
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de Oliveira Theorem

e Corresponding to a given permutation p, the set D =
{(i, p(i))}7 is called a p-diagonal.

o Let p = p1...ps be the representation of p as the
product of disjoint cycles py.
e A generalizaton of the Mirsky Theorem [105, 106, 107]:

¢ Given
> Arbitrary {A\;}_; C F,
> Arbitrary numbers {a1,... ,a,} C F,

> Suppose that at least one of the cycles p1, ..., ps
has length > 2.

¢ Then there exists a matrix X € F"*" such that
> o(X) = { N\ i
> X, ) =a;fort=1,...n.
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Prescribed Entries at Arbitrary Locations

e London-Minc Theorem 246, 105]:

¢ Given
> Arbitrary {A\;}}_, C F,
> Arbitrary values aq, ... ,a,_1,
> Arbitrary but distinct positions { (i, j;) Y=,
¢ There exists a matrix X € F"*" such that
> o (X) = { N\ i
> X, 5, =afort=1,... ,n—1
e Can matrices have arbitrary n—1 prescribed entries and
prescribed characteristic polynomials? (See [116, 217].)

e Open Question: How many more entries of a matrix
can be specified with prescribed eigenvalues?
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Cardinality and Locations

e Specific locations:
¢ Both the SHIEP and the STISVP have n prescribed
entries that are located at the diagonal.

> Certain inequalities involving the prescribed eigen-
values and diagonal entries must be satisfied.

o The AIEP has n? — n prescribed entries that are
located at the off-diagonal.

> The AIEP is always solvable over an algebraically
closed field and there at most n! solutions.

e Arbitrary locations with || =n 217]:

& Suppose that
> F' is algebraically closed.
> The Mirsky condition is satisfied, if I = {(i,7)}!";.
> a; = \; for some 7, it K ={(¢,7:)}}-, and a; =0
for all j; # 1.

¢ Then the PEIPE is solvable via rational algorithm
over F.
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e Arbitrary location with || =2n — 3 [191:

& Suppose that
> F' is algebraically closed.
> The Mirsky condition is satisfied, if O {(,4)}};.
> a; = \; for some 7, if K D {(¢,7:)}7-, and a; = 0
for all 7, # 1.
¢ Then the PEIEP is solvable in F.
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Numerical Methods

e Projected gradient method can be applied |78].

e An induction proof can be implemented as a recursive
algorithm, provided the computer permits a subpro-
gram to invoke itself recursively.

¢ Fast recursive algorithms have been proposed for in-
verse problem associated with the SHIEP and the
STISVP Theorem.

¢ Details are similar to discussion for the inverse sin-
gular/eigenvalue problem.

e Open Question: Has not seen the numerical implemen-
tation of either the de Oliveira Theorem or the London-
Minc Theorem, though this could be done in finitely
many steps.

e Open Question: Need an algorithm to implement the
Hershkowitz results.
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Inverse Singular Value Problems

e [EP versus ISVP.

e Fixistence Question.

e A Continuous Approach.

e An Iterative Method for IEP.

e An Iterative Approach for ISVP.
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[EP versus ISVP

e [nverse Figenvalue Problem (IEP):

o (Glven

> Symmetric matrices Ay, Aq,..., A, € R™":
> Real numbers A7 > ... > A7,

¢ Find
> Values of ¢ := (c1,...,c,)t € R"
> Figenvalues of the matrix

A(C) = A+ A +...+cA,

are precisely AJ,... , A7,
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e Inverse Singular Value Problem ISVP:

¢ Given
> General matrices By, By,...,B, € R™", m >
n;
> Nonnegative real numbers o] > ... > o7,
¢ Find
> Values of ¢ := (c1,...,c,)t € R"

> Singular values of the matrix

B(C) =DBy+cBi1+...+¢,B,

*

are precisely o7, ..., 0.
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Existence Question

e Not always does the IEP have a solution.
e [nverse Toeplitz Eigenvalue Problem (ITEP)
o A special case of the (IEP) where Ay = 0 and A, =
(AY) with
a0 _ J LAl = gl =k =1
Yo 0, otherwise.

¢ Symmetric Toeplitz matrices can have arbitrary real
spectra |220].

e Not aware of any result concerning the existence ques-
tion for ISVP.
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Notation

e O(n) := All orthogonal matrices in R"*";

e > = (Y;;) ;== A "diagonal” matrix in R"™*"
S of, f1<i=75<mn;
Y10, otherwise.
e M,/(X) = {USVI|IU € O(m),V € O(n)}
¢ Contains all matrices in R™*" whose singular values
are precisely oy, ... , 0.
e B:={B(c)lc € R"}.

e Solving the ISVP = Finding an intersection of the two
sets My(X) and B.
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A Continuous Approach

e Assume
<><BZ',B]'> :5ij for 1 SZS] STL
o (By,By) =0for1 <k <n.

e The projection of X onto the linear subspace spanned
by By,...,By:

n

e The distance from X to the affine subspace B:
dist(X, B) = [[X — (By + P(X))|.

e Define, for any U € R"™™ and V € R"™", a residual
matrix:

R(U,V):=UxV! — (By+ P(UZV!)).
e Consider the optimization problem:
1
Minimize  F(U, V) == S| R(U, V)|I?
Subject to (U, V) € O(m) x O(n).
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Compute the Projected Gradient

e [robenius inner product on R"™ "™ x R™*™:

<<A1, Bl), (AQ, B2>> = <A1, A2> + <Bl, B2>

e The gradient VF' may be interpreted as the pair of
matrices:

VEWU, V)= (RUV)VE RUV)UY).
e Tangent space can be split:

Ty (O(m) x O(n)) = TyO(m) x TyO(n).
e Projection is easy because:

R = TVO(n) D TVO(n)L
= VS(n)t ®VS(n)
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e Project the gradient VF (U, V') onto the tangent space
Twv)(O(m) x O(n)):

g(U, V) =
(R(U, VIVSTUT —USVTR(U, V)T .

2 Y
RUWVIUSVT —VSTUTR(U, V)V>

2

e Descent vector field:
d(U, V)
dt

defines a steepest descent flow on the manifold O(m) x
O(n) for the objective function F (U, V).

— _g<U7 V)
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The Differential Equation on Mg(3)

e Define
X(t)=UbH)xv ().
e X (t) satisfies the differential system:

dX _ X'(By+ P(X)) = (By+ P(X))' X
d 2
t _X(By+ P(X)) = (By+ P(X)) X

; .

e X (t) moves on the iso-singular-value surface M(¥) in
the steepest descent direction to minimize dist(X (t), B).

e This is a continuous method for the ISVP.
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Remarks

e No assumption on the multiplicity of singular values is
needed.

e Any tangent vector T(X) to M4(¥) at a point X €
M (X)) about which a local chart can be defined must
be of the form

T(X)=XK - HX

for some skew symmetric matrices H € R™" and
K e R™",
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An Iterative Approach for ISVP

e An analogous Newton iteration for PIEP has been dis-
cussed.

e Assume

¢ Matrices By, By, ... , B, are arbitrary.

o All singular values o7, ... , 0} are positive and dis-
tinct.

e Given X 6./\/1( )

o There exist UY) € O(m) and V") € O(n) such
that

U xyw) — oy,
o Seek a B-intercept B(c"*1)) of a line that is tangent
) at

to the manifold M (%) at X ).

a
o Lift the matrix B(c"*Y) € B to a point X+ €
M ().
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Find the Intercept

e [Find

& Skew-symmetric matrices H®) € R™ and K) €
R™" and

o A vector ¢V*tY € R,

such that
xW 4 xW ) _ g xW) — B(c(”“))
e Fquivalently,
» 4 NKY - FOY = g By @)
¢ Underdetermined skew-symmetric matrices:

Y — g gye).
K — yol oy

e Can determine ¢V, H®) and K™ separately.
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e Totally m(Tg_l) + + n unknowns — the vector

¢ and the skew matrices HY) and K®).

n(n—1)

e Only mn equations.
e Observe: P[Z-(j”), n+1<i#j<m,

(m—n)(m—n—1)
2

o Locate at the lower right corner of H®).

&> unknowns.

¢ Are not bound to any equations at all.

o Set
- (y) L . .
Hz.j =0forn+1<1#7j5<m.
e Denote
W = g0’ B+ @
Then
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Determine ¢#+1)

eftorl <i:=75<n,
JW ) — px (V)

¢ Know quantities:

Jﬁty) = ugy)TBtvg’/), for 1 <s,t < n,

o = (oF,... 05,

p) = ug”)TBovgy), for 1 <s < n.
ul") = column vectors of UV,
") = column vectors of V).

v+1)

e The vector ! 1s obtained.

o (VD) = W),



206 Structured Inverse Figenvalue Problems

Determine H") and K

eforn+1<i:<mand1<j<n,

(v)
g _ g _ Wi
1) 77 CT;

e for 1 <1<y <n,

W = kY - 1Yy,

1 1)
() _ W) W)
Wit = 257 — Hy i

= _ijf(z'(}/) + [:]@'(JI'/)ZZ'Z'-
Solving for H g) and K Zg-m =

w117 (V) w117 (W)
oW "+o; Wi,

qaY=—_gt = |
;T (077 = (072
w117 (V) s117 (V)

g0 - g = 9 ol
N e 1k

e The intercept is now completely found.
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Find the Lift-Up

e Define orthogonal matrices

e Define the lifted matrix on M (2):
xwt) . pTxWag
e Observe
Y (D) o RT(eH(V)B<C(V+1)>€—K<V)>S
and

RTe gWw)

e_K(V)S

Q

I,
Iy,

Q

if || ™ and || K")|| are small.
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e [or computation,

¢ Only need orthogonal matrices

U(V+1) — RTU(V)
vy = gty W),

& Does not need to form X ¥V explicitly.
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Quadratic Convergence

e Measure the discrepancy between (UW), V")) € Rm>*mx
R™™ in the induced Frobenius norm.

e Observe:

O Suppose:
> The ISVP has an exact solution at ¢*.
> SVD of B(c*) = Usv?e,
¢ Define error matrix::
E:=(E,E)={U-UV-V).
o UUT = e and VVT = eX | then

vuT = (B, +U)UT
= I, + EU"
= =1,+H+O(H|?.

and a similar expression for V'V’
¢ Thus,

|(H, K)|| = O(|[E])-
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e At the v-th stage, define

A

EW .= (EY EYy = (0w -0, v — V).

e How far is U(”)TB(C*)V(”) away from 37
o Write

— (gt U(u>)g<v<v>T€Ki )
with
HY — gwWH»y»!
KW — vy geye’
¢ Then
6Hiy) = Wy’
eK“EV) = YWyt
& S0

1(H, K= O(1E])).

x

¢ Norm invariance under orthogonal transformations
=

1(HY, K)[| = o(|E]).
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e Rewrite

U BV =5 + SKV — VS £ O(|EV|?).

e Compare:
U (B(c*)— B+ ) v )
= DKW — KW) — (AW — H¥")x
+ O(1BM|?)

e Diagonal elements =
JW (e = ) = O(| BV ).
¢ Thus
e — ]| = O EY[]P).
e Off-diagonal elements =

|HY) — HY|| = O(||EY| ),
(v (v V)12
1KY — KW = O(||EY| ).

¢ Therefore,

e Together,
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e Observe:
EXHY = gt _ = RTY®) — =1y )
HW)
= {-T50)- - HY o)
Hw) Hw)
1+ 50| 1+ T

_ [Hw —HY ¢ o(||HY HW|]

S

HIHON)] (7 + =)o
& It 1s clear now that
v+1
1EV V) = 0| EY|)?).
(V+1)

e A similar argument works for Ej

e We have proved that
|EVHV]| = O(| V[
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Multiple Singular Values

e Previous definition in finding the B-intercept of a tan-
gent line of M(22) allows

¢ No zero singular values.

¢ No multiple singular values.
e Now assuime

¢ All singular values are positive.

¢ Only the first singular value o7 is multiple, with
multiplicity p.
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e Observe:

¢ All formulas work, except

> For 1 <14 < 7 < p, only know
(v) (v) _

> No values for H Z-(]-V) and K Z-(jy) can be determined.

> Additional ¢ = 22 equations for the vector

2
v+1)

cl arise.

e Multiple singular values gives rise to an overdetermined

system for e+,

o Tangent lines from M (¥) may not intercept the
affine subspace B at all.

o The ISVP needs to be modified.
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Modified ISVP

e Given
o k . * x *
o Positivevaluesoy] = ... =0, > 0,1 > ... >0, ,
e [ind
¢ Real values of ¢q, ... , ¢,

¢ The n—q largest singular values of the matrix matrix

B(c) are 07,... 0,
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Find the Intercept

e Use the equation
54 SKWY - g0 = g0 gy
to find the B-intercept where

¢ The diagonal matrix

AN

. . >I< * N AN
Y= diagloy, .. 0p 4 On—qils -+ >0n}

¢ Additional singular values o,_q41,... ,0, are free
parameters.
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The Algorithm

Given U™ € O(m) and V¥ € O(n),

(v+1)

e Solve for ¢ from the system of equations:

o T T
Z (ugy) Bkv(y)) c,(fH — oF — Bov-(y)

1 ) 1 7 )
k=1

fori=1,... ,n—gq
n

T
Z (u§”>TBkv§”) + u§”> Bkvgy)) c,iwl) =
k=1

T
—ug”)TBovgy) — uﬁ”) Bovéy),
for 1 <s<t<p.

(v) b

e Define g, by
) o, if 1<k<n—gq;
o, = T
" u,(:) B(C(VH))UJ(:), ifn—qg<k<n
e Once ¢V is determined, calculate W®),
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e Define skew symmetric matrices K*) and H®):

o For 1 < < 7 < p, the equation to be satisfied is
W — R0 _ g

i i hij ij 7
> Many ways to define NZ%V) and [ Z-S-V).
DSeth(g)EOforlgi<j§p.

o KW is defined by

~ (V)W) | A W) (V)
oW vew . .
(V). A@Q ijy if1<i<j<n; p<j:
ij o (UZ‘ )‘(Uj )

0, if1<i<j<p

o H™) is defined by

( w)
_&(Zi)v 1f1§1<]§p7
)
S0 ) T ifn+1<i<m; 1<j<n;
0=y
s LWy ) o ‘
Qwﬁhé@;J,ﬁ1§1<J§anw;
i J
0, ifn+1<1#7<m.

\

e Once H™ and K are determined, proceed the lifting
in the same way as for the ISVP.
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Remarks

e No longer on a fixed manifold M, (%) since 3. is changed
per step.

e The algorithm for multiple singular value case con-
verges quadratically.
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Zero Singular Value

e Zero singular value = rank deficiency:.

e Finding a lower rank matrix in a generic affine subspace
B is intuitively a more difficult problem.

e More likely the ISVP does not have a solution.

e Consider the simplest case where oy > ... > o | >
o, = 0.
o Except for Hy, (and Hy,), i = n+1,...,m, all
other quantities including ¢+ are well-defined.

¢ It is necessary that
V[/Z-(:):Ofori:nJrl,... , M.

¢ If the necessary condition fails, then no tangent line
of M(X) from the current iterate X ) will intersect
the affine subspace B.
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Example of the Continuous Approach

e Integrator — Subroutine ODE (Shampine et al, '75).
o ABSERR and RELERR = 102

¢ Output values examined at interval of 10.

e T'wo consecutive output points differ by less than 10~
= Convergence.

e Stable equilibrium point is not necessarily a solution to

the ISVP.

e Change to different initial value X (0) if necessary.
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Example of the Iterative Approach

e Fasy implementation by MATLAB.

¢ Consider the case when m =5 and n = 4.
¢ Randomly generated basis matrices by the Gaussian
distribution.

e Numerical experiment meant solely to examine the be-
havior of quadratic convergence.
o Randomly generate a vector ¢ € R*.

o Singular values of B(c*) used as the prescribed sin-
gular values.

o Perturb each entry of ¢ by a uniform distribution
between —1 and 1.

¢ Use the perturbed vector as the initial guess.
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Observations

e The limit point ¢* is not necessary the same as the
original vector ¢ .

e Singular values of B(c*) do agree with those of B(c").

e Differences between singular values of B(c*)) and B(c*)
are measured in the 2-norm.

e (Quadratic convergence is observed.
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Example of Multiple Singular Values

e Construction of an example is not trivial.

& Same basis matrices as before.
¢ Assume p = 2.
o Prescribed singular values o* = (5,5, 2).

o Initial guess of ¢?) is searched by trials
e The order of singular values could be altered.

¢ The value 5 is no longer the largest singular value.

o Unless the initial guess ¢ is close enough to an
exact solution ¢*, no reason to expect that the algo-
rithm will preserve the ordering.

¢ Once convergence occurs, then o* must be part of
the singular values of the final matrix.

e At the initial stage the convergence is slow, but even-
tually the rate is picked up and becomes quadratic.



Inverse Singular/Eigenvalue Problem 225

Inverse Singualar/Eigenvalue Problem

e Overview
e A Recursive Algorithm
e 'The Matrix Structure

e Numerical Experiment
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Overview

e The Schur-Horn Theorem gives the connection between
diagonal entries and eigenvalues of a Hermitian matrix.

e The Mirsky Theorem gives a connection between diag-
onal entries and eigenvalues of a general matrix.

e The Sing-Thompson Theorem gives the connection be-
tween diagonal entries and singular values of a general
matrix.

e What is the connection between singular values and
eigenvalues of a matrix?

o singular value = |eigenvalue|, if Hermitian matrices.

¢ How about general matrices?

e Can we create matrices with prescribed singular values
and eigenvalues?

¢ Desirable for test matrices.
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Weyl-Horn Theorem

e Given vectors A € C" and a € R",

¢ Assume
Al = = [l
1 Ei. . Eja%.
¢ Then a matrix with eigenvalues A1, ..., A, and sin-
cular values aq, ... , a,, exists if and only if

k k

]i[‘Aﬂ f; I];Qj, }%::1,...,n-—:h
g=1 g=1

TTN = 1]

g=1 g=1

> If |A,| > 0, then log o majorizes log | A|.

e How to solve the inverse singular eigenvalue problem
numerically?
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A Recursive Algorithm

e The Building Block — 2 x 2 Case
e The Original Proof by Induction
e An Innocent Mistake

e A Recursive Clause in Programming
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The 2 x 2 Case

e The Weyl-Horn Condition:

{ A1
RS1IRY]

U
{ as < Ao < M| <oy

‘)\1|2 -+ ‘)\2|2 S CY% + CY%.

a,
109,

A

e The building block — A triangular matrix

A
=15 4
has singular value {a, as} if and only if

p=Ja? +ad— 2 - 2

o A is complex-valued when eigenvalues are complex.

¢ A stable way of computing p:

0, i |(041—042) — (M=l < e
\/\ (a1 —a)?—(|A\1|—|N2])?],  otherwise.
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Ideas in Horn’s Proof

e Reduce the original inverse problem to two problems of
smaller sizes.

e Problems of smaller sizes are guaranteed to be solvable
by the induction hypothesis.

e The subproblems are affized together by working on a
suitable 2 x 2 corner.

e The 2 x 2 problem has an explicit solution.
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Key to the Algorithmic Success

e The eigenvalues and singular values of each of the two
subproblems can be derived explicitly.

e Fach of the two subproblems can further be down-sized.

e The original problem is divided into subproblems of size
2x2orlx1.

e The smaller problems can be conquered to build up the
original size.

e In an environment that allows a subprogram to in-
voke itself recursively, only one-step of the divide-and-
conquer procedure will be enough.

e Very similar to the radix-2 FFT = fast algorithm.
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Outline of Proof

e Suppose o; > 0 foralle =1,...,n. So A\; # 0 for all
1.

¢ The case of zero singular values can be handled in a
similar way.

e Define

01 aq,
o; = Ji_l‘i‘—a, fori=2,... ., n—1.
o Assume o ;= minj<;<,_1 0; occurs at the index 7.
1<i<n—1 Uy

e Define

‘AlAn’
—

e The following three sets of inequalities are true. The
numbers satisty the Weyl-Horn conditions.

p =

‘)\1‘ Z P\n‘a
o = p.

o > ol > = N
a1 Z 9 Z Z Oéj.
Ajetl = 0 = ] =0
Qjy1 = ... = Qp_1 = Q.
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e By induction hypothesis,

233

o There exist unitary matrices Uy, V; € C7*7 and
triangular matrices A; such that

Ui

o There exist unitary matrices Uy, Vi € C"=)x(n=J)

X1 0 ... 0
0 9 0
0 0 ... Oéj

Vii= A1 =

and triangular matrix A such that

Us

_Oéj_|_1 0...0
0 Q42 0

Vy =Ay=

)‘j—l—l X .

0" Ajio

. X X




234 Structured Inverse Figenvalue Problems

e Horn’s claim: The block matrix
&)
O A

can be permuted to the triangular matrix

Xy X ... X X

0 X

)\jX

0 0 o 0
0 0 00 p| x x X
)\j_|_1 X
O

0 0 An—1

e The 2 X 2 corner can now be glued together by
o 0 . AL
o[ Vi == |5 4,
e How to do the permutation, or is it a mistake?

¢ It takes more than permutation to rearrange the di-
agonals of a triangular matrix.
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A MATLAB Program

235

function [Al=svd_eig(alpha,lambda);
n = length(alpha);

if n == % The 1 by 1 case
A = [lambda(1)];
elseif n == % The 2 by 2 case
(U,V,A] = two_by_two(alpha,lambda) ;
else % Check zero singular values

tol = n*alpha(l)*eps;
k = sum(alpha > tol); m = sum(abs(lambda) > tol);
if k ==n % Nonzero singular values
j =1; s = alpha(l); temp = s;
for i = 2:n-1
temp = tempxalpha(i)/abs(lambda(i));
if temp < s, j = 1; s = temp; end
end
rho = abs(lambda(l)*lambda(n))/s;
[U0,V0,A0] = two_by_two([s;rho], [lambda(l) ;lambda(n)]);
oo oo To oo To oo o o Too o foTo fo o To o To fo o To oo fo o To o o fo o To o To foTo Fo o To o Jo Fo o To o Jo fo o To o Jo Fo o To o To Fo o To o o fo o To o o fo o
[A1] = svd_eig(alpha(1:j), [s;lambda(2:j)]); % RECURSIVE Y%
[A2] = svd_eig(alpha(j+1:n), [lambda(j+1:n-1);rho]); % CALLING %
oo oo 1o oo To o To oo To o To o To Jo o To o To To o Fo o o FoJo Fo o To foJo Fo o To o To Fo o To o Jo Fo o Fo oo Fo o To oo Fo o To o Jo Fo o Fo o o fo o Fo o o fo o
A = [Al,zeros(j,n-j);zeros(n-j,j),A2];
Temp = A;
A(1,:)=U0(1,1)*Temp (1, :)+U0(1,2)*Temp(n,:);
A(n,:)=00(2,1)*Temp(1,:)+U0(2,2)*Temp(n, :);
Temp = A;
A(C:,1)=V0(1,1)*Temp(:,1)+V0(1,2)*Temp(:,n);
A(:,n)=V0(2,1)*Temp(:,1)+V0(2,2)*Temp(:,n);
else % Zero singular values
beta = prod(abs(lambda(l:m)))/prod(alpha(l:m-1));
[U3,V3,A3] = svd_eig([alpha(1l:m-1);beta],lambda(l:m));
A = zeros(n); A(1:m,1:m) = V3’*A3%V3;
for i = m+1:k, A(i,i+1) = alpha(i); end
A(m,m+1) = sqrt(abs(alpha(m)~2-beta”2));
end
end
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Matrix Structure

e A Modified Proof
e A Symbolic Example
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Correct the “Mistake”

e Horn'’s requirement:
¢ Both intermediate matrices A; and Ay are upper
triangular matrices.
¢ Diagonal entries are arranged in a certain order.

> Valid from the Schur decomposition theorem.

> More than permutation, not easy for computa-
tion.

> To rearrange diagonal entries via unitary similar-
ity transformations while maintaining the upper
triangular structure is expensive.

e Our contribution:

¢ The triangular structure is entirely unnecessary:.

¢ The matrix A produced from our algorithm is gen-
erally not triangular,

¢ Do not need to rearrange the diagonal entries

¢ Modify the first and the last rows and columns of

the block diagonal matrix A O ] . as 1f nothing
O A

happened, is enough.
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e Algorithm:

o Denote Uy = [ug s and Vi = [vg s].
¢ Then

” 0 u &10 ... 0
0,11 0,12
0 I, 0 ][Ul()] Qa2 0 [
OUQ :
up21 0 up 22 0
7%
1s the desired matrix.
e A has the structure
Al ® . R &K % %
&) )\2 X 0 0
)\j—l X
A | ® x. XA
x 0 . 0 0 )‘j-l—l X
S 0 X )\j+2
O
i 0 * ... *x * & R

Vit0

0 Vy

|

Structured Inverse Eigenvalue Problems

vo11 0 012
071,10

vo21 0 vp 29

*x

& &K *

An

¢ X = unchanged, original entries from A; or As.

¢ ® = entries of Ay or Ay that are modified by scalar

multiplications.

¢ x = possible new entries that were originally zero.

:



Inverse Singular/Eigenvalue Problem 239

A Variation of Horn’s Proof

e Does the algorithm really works?

o Clearly, A has singular values {aq, ..., a,}.
o Need to show that A has eigenvalues {\1,... , \,}.

e What has been changed?

(P1) Diagonal entries of A; and Ay are in fixed orders,
o, A2, ..., Ajand Aji1,..., Ay—1, p, respectively.

(P2) Each A, is similar through permutations, which need
not to be known, to a lower triangular matrix whose
diagonal entries constitute the same set as the diag-
onal entries of A;. (Thus, each A; has precisely its
own diagonal entries as its eigenvalues.)

(P3) The first row and the last row have the same zero
pattern except that the lower-left corner is always
7€10.

(P4) The first column and the last column have the same
zero pattern except that the lower-left corner is al-
ways zero.

e Use graph theory to show that the affixed matrix A has
exactly the same properties.
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A Symbolic Example

e Dividing process:

{Al A2 Az AL Ay Ag

a1 Qg (3 Oy4 5 O

. Al A
=54 {015
01 A2 A3 Ag As P1
a1 Qg i3 QU Qs 875
. o1 A
=24 {0; pi

T2 A2 A3 Ay 2

1 9 3 g4 O
. A
et b o h

03 )\4 ,03
a3 4 O
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e Conquering process:

¥ © % x © 2
® o X X < *

c oo <

[3p]

S

X © O
R Lo o X %

<o R® R oo

0

i

cocoo &
X © X X £ o
coco Joo
co £ X oo
X foo X o
5O X X oo
L !

J1=29

[ o1 ]

I 1
* O ® Q<
coco Jo
oo 2L X o

x 0 0 0

o X X &

<f

o o <

O

5]

o <

X

a

Lo oo

o O O O

Jo =2

|

*
0 p3

A4

|

09 X
0 Ao
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Numerical Experiment

e The divide-and-conquer feature brings on fast compu-
tation.

e The overall cost is estimated at the order of O(n?).

e A numerical simulation:
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Rosser Test

e Rosser matrix R:

[ 611 196 —-192 407 -8 =52 —49 29
196 899 113 -192 71 —43 -8 —44
=192 113 899 196 61 49 8 52
n— 407 —-192 196 611 8 44 59 =23
-8 =Tl 61 8 411 =599 208 208
—-52  —43 49 44 =599 411 208 208
—49 -8 8 59 208 208 99 -911
29 —44 52 =23 208 208 911 99 |

¢ Has one double eigenvalue, three nearly equal eigen-
values, one zero eigenvalue, two dominant eigenval-
ues of opposite sign and one small nonzero eigen-

value.
¢ The computed eigenvalues and singular values of R
are
[ —1.020049018429997¢4+03 | [ 1.020049018429997¢+03
1.020049018429997e+03 1.020049018429996¢e+03
1.020000000000000e+03 1.020000000000000e+03
- 1.019901951359278e+03 e 1.019901951359279e+03

1.000000000000001e+03
9.999999999999998¢+02
9.804864072152601e—02

4.851119506099622¢—13

1.000000000000000e+03
9.999999999999998¢e+02
9.804864072162672¢—02

| 1.054603342667098¢—14
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e Using the above A and «,

¢ A nonsymmetric matrix is produced:

[ 1.0200e+03 0 0 0 0 0 0 0
0 —1.0200e+03 0 0 0 0 0 0
0 0 1.0200e+03 0 0 0 0 0
0 0 0 1.0199e+03 0 0 1.4668¢—09 0
0 0 0 0 1.0000e+03 0 0 0
0 0 0 0 0 1.0000e4+03 0 0
0 0 0 —1.5257e-05 0 0 9.8049¢—02 0
i 0 0 0 0 0 0 1.4045¢—070 |

¢ The re-computed eigenvalues and singular values of

A are
[ —1.020049018429997e4+03 | [ 1.020049018429997e+03 |

1.020049018429997¢4+03 1.020049018429997¢+03
1.020000000000000e-+03 1.020000000000000e+03

S 1.019901951359278¢-+03 A 1.019901951359279¢+03
1.000000000000001e+03 | 1.000000000000001e+03
9.999999999999998¢+02 9.999999999999998¢+02
9.80486407215721e—02 9.804864072162672e—02

0 0

¢ The re-computed eigenvalues and singular values agree
with those of R up to the machine accuracy.
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Wilkinson Test

e Wilkinson’s matrices:

¢ All are symmetric and tridiagonal.

¢ Have nearly, but not exactly, equal eigenvalue pairs.
e Using these data:

¢ Discrepancy in eigenvalues and singular values be-
tween our constructed matrices and Wilkinson’s ma-
trices.

¢ Matrices constructed are nearly but not symmetric.
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Conclusion

e Weyl-Horn Theorem completely characterizes the rela-
tionship between eigenvalues and singular values of a
general matrix.

e The original proof has been modified.

e With the aid of programming languages that allow a
subprogram to invoke itself recursively, an induction
proof can be implemented as a recursive algorithm.

e The resulting algorithm is fast. The cost of construction
is approximately O(n?).

e The matrix being constructed usually is not symmet-
ric and is complex-valued, if complex eigenvalues are
present.

e Numerical experiment on some very challenging prob-
lems suggests that our method is quite robust.
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. Minimal Sigular Value
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Figure 11: History of the smallest singular value for Example 3.
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Figure 12: log-log plot of computational flops versus problem sizes



248 Structured Inverse Figenvalue Problems

Discrepancy in Eigenvalues and Singular Values
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Figure 13: Ly norm of discrepancy in eigenvalues and singular values.
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Figure 14: 3-D mesh representation of 21 x 21 matrices



