Chapter 4

Structured Inverse Eigenvalue Problems

- Jacobi Inverse Eigenvalue Problems
- Toeplitz Inverse Eigenvalue Problem
- Nonnegative Inverse Eigenvalue Problem
- Stochastic Inverse Eigenvalue Problem
- Unitary Inverse Eigenvalue Problem
- Inverse Eigenvalue Problem with Prescribed Entries
- Inverse Singular Value Problems
- Inverse Singular/Eigenvalue Problem

Jacobi Inverse Eigenvalue Problems

- Overview.
- Subvariations.
- Existence Theory.
- Sensitivity Issues.
- Numerical Methods.

Overview

• Jacobi structure, i.e.,

$$J = \begin{bmatrix} a_1 & b_1 & 0 & & & 0 \\ b_1 & a_2 & b_2 & & & 0 \\ 0 & b_2 & a_3 & & & 0 \\ \vdots & & & \ddots & & \\ & & & a_{n-1} & b_{n-1} \\ 0 & & & b_{n-1} & a_n \end{bmatrix}, \quad b_i > 0,$$

appears in many areas of applications.

- ♦ Oscillatory mass-spring systems.
- ♦ Composite pendulum.
- ♦ Sturm-Liouville problems.
- Jacobi IEP often can be solved by direct methods in finitely many steps.
- For symmetric tridiagonal matrices, there are 2n + 1 unknown entries to be determined. Thus there is in need of 2n + 1 pieces of information.
- For convenience, denote the leading principal submatrix of M by \bar{M} .

Subvariations

- (SIEP6a) [41, 98, 153, 164, 175, 193, 197]:
 - ♦ Given
 - \triangleright Real scalars $\{\lambda_k^*\}_{k=1}^n$ and $\{\mu_1^*, \ldots, \mu_{n-1}^*\},$
 - ▶ Interlacing property:

$$\lambda_i^* \le \mu_i^* \le \lambda_{i+1}^*, \quad i = 1, \dots, n-1,$$

 \diamond Find a Jacobi matrix J such that

$$\sigma(J) = \{\lambda_k^*\}_{k=1}^n
\sigma(\bar{J}) = \{\mu_1^*, \dots, \mu_{n-1}^*\}.$$

- (SIEP2) [40, 98, 193].
 - ♦ Given
 - \triangleright Real scalars $\{\lambda_k^*\}_{k=1}^n$,
 - \diamond Find a persymmetric Jacobi matrix J such that

$$\sigma(J) = \{\lambda_k^*\}_{k=1}^n$$

$$a_i = a_{n+1-i}$$

$$b_i = b_{n+2-i}.$$

- (SIEP6b) [289]:
 - ♦ Given
 - \triangleright Complex and distinct scalars $\{\lambda_1^*, \ldots, \lambda_{2n}^*\}$ and $\{\mu_1^*, \ldots, \mu_{2n-2}^*\} \in \mathbb{C}$,
 - ▷ Closed with complex conjugation.
 - \diamond Find tridiagonal symmetric matrices C and K for the λ -matrix $Q(\lambda) = \lambda^2 I + \lambda C + K$ so that

$$\sigma(Q) = \{\lambda_1^*, \dots, \lambda_{2n}^*\},
\sigma(\bar{Q}) = \{\mu_1^*, \dots, \mu_{2n-2}^*\}.$$

- ➤ Arising from damped oscillatory systems.
- ▷ Open Question: A practical solution requires additional conditions, i.e., positive diagonal entries, negative off-diagonal entries, and are weakly diagonally dominant.

- (SIEP7) [40, 41, 129]:
 - ♦ Given
 - \triangleright Real scalars $\{\lambda_k^*\}_{k=1}^n$ and $\{\mu_1^*, \ldots, \mu_{n-1}^*\},$
 - Satisfy the interlacing property,
 - \triangleright A positive number β ,
 - \diamond Find a periodic Jacobi matrix J of the form

$$J = \begin{bmatrix} a_1 & b_1 & & & b_n \\ b_1 & a_2 & b_2 & & 0 \\ 0 & b_2 & a_3 & & 0 \\ \vdots & & \ddots & & \\ & & & a_{n-1} & b_{n-1} \\ b_n & & & b_{n-1} & a_n \end{bmatrix}$$

such that

$$\sigma(J) = \{\lambda_k^*\}_{k=1}^n,$$

$$\sigma(\bar{J}) = \{\mu_1^*, \dots, \mu_{n-1}^*\},$$

$$\prod_{1}^{n} b_i = \beta.$$

• (SIEP8) [98]:

♦ Given

 \triangleright Real scalars $\{\lambda_k^*\}_{k=1}^n$ and $\{\mu_1^*,\ldots,\mu_n^*\}$

Satisfy the interlacing property

$$\lambda_i^* \le \mu_i^* \le \lambda_{i+1}^*, \quad i = 1, \dots, n,$$

with
$$\lambda_{n+1}^* = \infty$$
,

 \diamond Find Jacobi matrices J and \tilde{J} so that

$$\sigma(J) = \{\lambda_k^*\}_{k=1}^n,$$

$$\sigma(\tilde{J}) = \{\mu_1^*, \dots, \mu_n^*\},$$

$$J - \tilde{J} \neq 0, \text{ only at the } (n, n) \text{ position.}$$

- (SIEP9):
 - ♦ Given

 \triangleright Distinct real scalars $\{\lambda_1^*, \ldots, \lambda_{2n}^*\},\$

 \triangleright A Jacobi matrix $J_n \in \mathbb{R}^{n \times n}$,

 \diamond Find a Jacobi matrix $J_{2n} \in \mathbb{R}^{2n \times 2n}$ so that

$$\sigma(J_{2n}) = \{\lambda_1^*, \dots, \lambda_{2n}^*\},\ J_{2n}(1:n,1:n) = J_n.$$

Physical Interpretations

Figure 1: Mass-spring system

- \bullet Consider a serially linked mass-spring system with n particles.
 - $\diamond m_i = \text{mass of the } i\text{-th particle.}$
 - $\diamond k_i = \text{spring constant of the } i\text{-th spring.}$
 - $\diamond u_i(t) = \text{displacement of the } i\text{-th particle at time } t.$
- Equation of motion:

$$m_{1}\frac{d^{2}u_{1}}{dt} = -k_{1}u_{1} + k_{2}(u_{2} - u_{1}),$$

$$m_{i}\frac{d^{2}u_{i}}{dt} = -k_{i}(u_{i} - u_{i-1}) + k_{i+1}(u_{i+1} - u_{i}),$$

$$i = 2, \dots, n - 1,$$

$$m_{n}\frac{d^{2}u_{n}}{dt} = -k_{n}(u_{n} - u_{n-1}).$$

• In matrix form:

$$M\frac{d^2\mathbf{u}}{dt} = K\mathbf{u}.$$

- $\diamond \mathbf{u} = [u_1, \dots, u_n]^T.$
- $\diamond M = \operatorname{diag}(m_1, \ldots, m_n).$
- $\diamond K$ is the Jacobi matrix given by

$$K = \begin{bmatrix} -(k_1 + k_2) & k_2 & 0 & \dots & 0 & 0 \\ k_2 & -(k_2 + k_3) & k_3 & & & 0 \\ 0 & k_3 & -(k_3 + k_4) & & & 0 \\ \vdots & & & \ddots & \vdots & \\ 0 & & & & k_n \\ 0 & & & & k_n & -k_n \end{bmatrix}$$

- Fundamental solutions are of the form $\mathbf{u}(t) = e^{i\omega t}\mathbf{x}$.
 - ♦ Natural frequency/mode equation is governed by

$$K\mathbf{x} = -\omega^2 M\mathbf{x}.$$

$$\diamond$$
 Define $J=M^{-1/2}KM^{-1}$ and $\lambda=-\omega^2$. Then
$$J\mathbf{x}=\lambda\mathbf{x}.$$

- Knowing m_i and k_k , we can predict the natural frequencies and modes of the system.
 - \diamond The inverse problem means that we would like to calculate values such as $\frac{-k_i-k_{i+1}}{m_i}$ and $\frac{k_{i+1}}{\sqrt{m_i m_{i+1}}}$ from the spectral data.

- SIEP6a \iff Identifying the system from its spectrum and the spectrum of the reduced system where the last mass is held to have no motion.
- SIEP2 \iff Identifying the system from its spectrum if the system is symmetric with respect to its center.
- SIEP6b \iff Identifying the damped system, including its damper configurations, from its spectrum and the spectrum of the reduced system where the last mass is held immboile.S
- SIEP7 \iff Same as SIEP6a except that m_1 and m_2 are connected by another spring mechanism to form a loop.
- SIEP8 \iff Identifying the system from its spectrum and the spectrum of the new system whereas only the last spring constant is changed.
- SIEP9 \iff Identifying the system from its spectrum and physical paramters m_i , k_i of the first half particles.
- Sometimes it is impossible to gather the entire spectrum information. Partial information of some eigenvalues and some eigenvectors can also be used to determine a Jacobi matrix. See Chapter 6.

Existence Theory

- Very rich and nearly complete theory available.
- Strictly interlacing property, i.e.,

$$\lambda_i^* < \mu_i^* < \lambda_{i+1}^*, \quad i = 1, \dots, n-1,$$

is a necessary condition unless some subdiagonal (superdiagona) entries are zero.

- \diamond Jacobi matrices are assumed to have positive b_i for all $i = 1, \ldots, n-1$.
- ♦ Eigenvalues of a Jacobi matrix are necessarily real and distinct.
- \diamond Eigenvalues of \bar{J} necessarily separate those of J.
- Most existence proofs are based on the recurrence relationship between characteristic polynomials for Jacobi matrices.

- Assume that the given eigenvalues satisfy the strictly interlacing property. Then
 - \diamond The SIEP6a has a unique solution [175].
 - ♦ The SIEP8 has a unique solution.
- If $\{\lambda_k^*\}_{k=1}^n$ are distinct. Then the SIEP2 has a unique solution.
- Over the complex field \mathbb{C} ,
 - \diamond If the given eigenvalues are distinct, then the SIEP6b is solvable and has at most $2^n(2n-3)!/(n-2)!$ different solutions [289].
 - ♦ If some eigenvalues are common, then there are infinitely many solutions for the SIEP6b.

• Assume that $\{\mu_1^*, \ldots, \mu_{n-1}^*\}$ are distinct. Then the SIEP7 is solvable if and only if

$$\prod_{k=1}^{n} |\mu_j^* - \lambda_k^*| \ge 2\beta (1 + (-1)^{n-j+1}),$$

for all $j = 1, \ldots, n - 1$ [360].

- ♦ No uniqueness can be assumed.
- ♦ The eigenvalues of a periodic Jacobi matrix are not necessarily distinct.
- \diamond The eigenvalues of \bar{J} need not separate those of a periodic Jacobi matrix J.
- Assume that $\{\lambda_1^*, \ldots, \lambda_{2n}^*\}$ are distinct.
 - ♦ Define

$$\Delta_{k} = \det\left(\begin{bmatrix} 1 & \dots & 1 & 1 & \dots & 1 \\ \lambda_{1} & \dots & e_{1}^{T} J_{n} e_{1} & \lambda_{k+1} & \dots & \lambda_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \lambda_{1}^{2n-1} & \dots & e_{1}^{T} J_{n}^{2n-1} e_{1} & \lambda_{k+1}^{2n-1} & \dots & \lambda_{2n}^{2n-1} \end{bmatrix}\right)$$

♦ Then the SIEP9 has a unique solution if and only if

$$\Delta_k > 0$$

for all $k = 1, \ldots, 2n$ [360].

Sensitivity Issues

- The function $F: \mathbb{R}^{2n-1} \longrightarrow \mathbb{R}^{2n-1}$ where $F(a_1, \ldots, a_n, b_1, \ldots, b_{n-1}) = (\sigma(J), \sigma(\bar{J}))$ is differentiable, if $b_i > 0$.
- The solution J to the SIEP6a depends continuously on the given data $\{\lambda_k^*\}_{k=1}^n$ and $\{\mu_1^*, \ldots, \mu_{n-1}^*\}$ [195].
- \bullet Let J and \tilde{J} be solutions to the SIEP6a with data

$$\lambda_1^* < \mu_1^* < \lambda_2^* < \dots < \mu_{n-1}^* < \lambda_n^*,$$

 $\tilde{\lambda}_1^* < \tilde{\mu}_1^* < \tilde{\lambda}_2^* < \dots < \tilde{\mu}_{n-1}^* < \tilde{\lambda}_n^*,$

Then there exists a constant K such that

$$||J - \tilde{J}||_F \le K \left(\sum_{i=1}^n |\lambda_i^* - \tilde{\lambda}_i^*|^2 + \sum_{i=1}^{n-1} |\mu_i^* - \tilde{\mu}_i^*|^2 \right)^{1/2}.$$

 \diamond K depends on the separation of the given data measured by

$$d = \max\{\lambda_{n}^{*}, \tilde{\lambda}_{n}^{*}\} - \min\{\lambda_{1}^{*}, \tilde{\lambda}_{1}^{*}\},\$$

$$\epsilon_{0} = \frac{\min_{j,k}\{|\lambda_{j}^{*} - \mu_{k}^{*}|, |\tilde{\lambda}_{j}^{*} - \tilde{\mu}_{j}^{*}|\}}{d},\$$

$$\delta_{0} = \frac{\min_{j \neq k}\{|\lambda_{j}^{*} - \lambda_{k}^{*}|, |\mu_{j}^{*} - \mu_{k}^{*}|, |\tilde{\lambda}_{j}^{*} - \tilde{\lambda}_{k}^{*}|, |\tilde{\mu}_{j}^{*} - \tilde{\mu}_{k}^{*}|, \}}{2d}.$$

Numerical Methods

- Lanczos method.
 - \diamond Given any matrix A, if $Q^TAQ = H$ where Q is orthogonal and H is upper Hessenberg with positive subdiagonal entries, then Q and H are completely determined by A and the first column of Q.
 - \diamond In our application, $J=Q^T\Lambda Q$ in symmetric diagonal.
 - $1. a_1 := \mathbf{q}_1^T A \mathbf{q}_1.$
 - $2. b_1 := \|\Lambda \mathbf{q}_1 a_1 \mathbf{q}_1\|.$
 - 3. $\mathbf{q}_2 = (\Lambda \mathbf{q}_1 a_1 \mathbf{q}_1)/b_1$.
 - 4. For $i = 2, \ldots, n 1$,
 - (a) $a_i := \mathbf{q}_i^T A \mathbf{q}_i$.
 - (b) $b_i := \|\Lambda \mathbf{q}_i a_i \mathbf{q}_i b_{i-1} \mathbf{q}_{i-1}\|.$
 - (c) $q_{i+1} := (\Lambda \mathbf{q}_i a_i \mathbf{q}_i b_{i-1} \mathbf{q}_{i-1})/b_i$.
 - $5. \ a_n := \mathbf{q}_n^T A \mathbf{q}_n.$
- Orthogonal reduction method.
 - Orthogonal tridiagonalization of a bordered diagonal matrix.

Lanczos Method (for SIEP6a)

• Basic facts:

 \diamond Given any symmetric matrix A with orthonormal eigenpairs $(\lambda_i, \mathbf{x}_i)$, then

$$\operatorname{adj}(\lambda_i I - A) = \prod_{\substack{k=1\\k\neq i}}^n (\lambda_i - \lambda_k) \mathbf{x}_i \mathbf{x}_i^T.$$

 \diamond Evaluate the above equation at the (1,1) position for each \mathbf{x}_i to obtain

$$x_{1i}^{2} = \frac{\prod_{k=1}^{n-1} (\lambda_{i} - \mu_{k})}{\prod_{\substack{k=1 \ k \neq i}}^{n} (\lambda_{i} - \lambda_{k})}.$$

- For SIEP6a,
 - \diamond The first column of Q for J can be expressed from the spectral data, i.e., $q_{i1} = x_{1i}$.
 - ♦ The Lanczos algorithm kicks in.
 - ♦ Need reorthogonalization along the way.

Orthogonal Reduction Method (for SIEP6a)

• Construct a bordered diagonal matrix A of the form

$$A = \begin{bmatrix} \alpha & \beta_1 & \dots & \beta_{n-1} \\ \beta_1 & \mu_1^* & & 0 \\ \vdots & & \ddots & \\ \beta_{n-1} & 0 & \dots & \mu_{n-1}^* \end{bmatrix}$$

with specified eigenvalues $\sigma(A) = \{\lambda_k^*\}_{k=1}^n$.

 $\diamond \alpha$ is trivially determined.

$$\alpha = \sum_{i=1}^{n} \lambda_i^* - \sum_{i=1}^{n-1} \mu_i^*.$$

 \diamond Characteristic polynomial of A is known.

$$\det(\lambda I - A) = (\lambda - \alpha) \prod_{k=1}^{n-1} (\lambda - \mu_k^*)$$
$$- \sum_{i=1}^{n-1} \beta_i^2 \left(\prod_{\substack{k=1\\k \neq i}}^{n-1} (\lambda - \mu_k^*) \right).$$

 \diamond Border elements β_i can be calculated:

$$\beta_i^2 = -\frac{\prod_{k=1}^n (\mu_i^* - \lambda_k^*)}{\prod_{\substack{k=1\\k \neq i}}^{n-1} (\mu_i^* - \mu_k^*)}.$$

• Derive orthogonal matrix Q efficiently so that

$$\begin{bmatrix} 1 & \mathbf{0}^T \\ \mathbf{0} & Q^T \end{bmatrix} A \begin{bmatrix} 1 & \mathbf{0}^T \\ 0 & Q \end{bmatrix} = \begin{bmatrix} \alpha & b_1 \mathbf{e}_1^T \\ b_1 \mathbf{e}_1 & \bar{J} \end{bmatrix} = J.$$

- $\diamond b_1 = \|\beta\|.$
- $\diamond Q^T \operatorname{diag}(\mu_1^*, \dots, \mu_{n-1}^*) Q = \bar{J}.$
- \diamond The first column of Q is given by β/b_1 .
- ♦ The Lanczos method can be employed.
- One may also explore the bordered diagonal structure by using Householder transformation, Givens rotations, the Rutishauser method, and so on [41].

Toeplitz Inverse Eigenvalue Problem

- Overview
- Existence Theory
- Numerical Methods

Overview

• Symmetric Toeplitz Matrix $T(r) := t_{ij} = r_{|i-j|+1}$, i.e.,

$$T(r) := \begin{bmatrix} r_1 & r_2 & \dots & r_{n-1} & r_n \\ r_2 & r_1 & & & r_{n-2} & r_{n-1} \\ \vdots & \ddots & \ddots & & \vdots \\ r_{n-1} & & & r_1 & r_2 \\ r_n & r_{n-1} & & & r_2 & r_1 \end{bmatrix}.$$

• Is a special case of centrosymmetric matrices

$$\mathcal{C}(n) := \{ M | M = M^T, M = \Xi M \Xi \}.$$

 $\diamond \Xi = [\xi_{ij}] = \text{unit perdiagonal matrix},$

$$\xi_{ij} = \delta_{i,n-j+1}.$$

- \triangleright Symmetric vector, if $\exists v = v$.
- \triangleright Skew-symmetric vector, if $\exists v = -v$.
- (ToIEP) Find $r \in \mathbb{R}^n$ such that T(r) has a prescribed set of real numbers $\{\lambda_k^*\}_{k=1}^n$ as its spectrum.

Spectral Properties of Centrosymmetric Matrices

• Any $M \in \mathcal{C}(n)$ can be decomposed as follows [55]:

n	even	odd
M	$\left[\begin{array}{cc} A & C^T \\ C & \Xi A \Xi \end{array} \right]$	$\begin{bmatrix} A & x & C^T \\ x^T & q & x^T \Xi \\ C & \Xi x \Xi A \Xi \end{bmatrix}$
$\sqrt{2}K$	$\left[\begin{array}{c}I-\Xi\\I\end{array}\right]$	$\begin{bmatrix} I & 0 & -\Xi \\ 0 & \sqrt{2} & 0 \\ I & 0 & \Xi \end{bmatrix}$
KMK^T	$\begin{bmatrix} A - \Xi C & 0 \\ 0 & A + \Xi C \end{bmatrix}$	$\begin{bmatrix} A - \Xi C & 0 & 0 \\ 0 & q & \sqrt{2}x^T \\ 0 & \sqrt{2}x & A + \Xi C \end{bmatrix}$

$$\diamond A, C, \Xi \in R^{\lfloor \frac{n}{2} \times \frac{n}{2} \rfloor}.$$

$$\diamond x \in R^{\lfloor \frac{n}{2} \rfloor}.$$

$$\diamond q \in R$$
.

$$\diamond A = A^T$$
.

• Orthonormal eigenvectors $Q = K^T Z$ M can be split into two groups based on diagonal block Z.

$$Z = \left[\begin{array}{cc} Z_1 & 0 \\ 0 & Z_2 \end{array} \right].$$

 $\diamond Z_1 := \text{Eigenvectors of } A - \Xi C.$

$$\diamond Z_2 := \text{Eigenvectors of } \left[\begin{array}{cc} q & \sqrt{2}x^T \\ \sqrt{2}x & A + \Xi C \end{array} \right] \text{ or } A + \Xi C.$$

- \bullet Eigenvectors of M enjoy special parity properties:
 - $\diamond K^T \begin{bmatrix} Z_1 \\ 0 \end{bmatrix} = \lfloor \frac{n}{2} \rfloor$ skew-symmetric eigenvectors \Rightarrow "Odd" eigenvalues.
 - $\diamondsuit \ K^T \left[\begin{array}{c} 0 \\ Z_2 \end{array} \right] = \left\lceil \frac{n}{2} \right\rceil \ \text{symmetric eigenvectors} \Rightarrow \text{``Even''}$ eigenvalues.
- Open Question: For an ToIEP to be solvable, each given eigenvalue must carry a specific parity. Can this parity be arbitrarily assigned?

A 3×3 Example

• $M \in \mathcal{C}(3)$:

$$M = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ \times & m_{22} & \times \\ \times & \times & \times \end{bmatrix}.$$

- $\diamond \operatorname{trace}(M) = 0 \Longrightarrow \text{Three free parameters in } \mathcal{C}(3).$
- Isospectral subset $\mathcal{M}_{\mathcal{C}}(\lambda_1, \lambda_2, \lambda_3)$:

$$(m_{11} - \frac{\lambda_{\sigma_1}}{4})^2 + \frac{1}{2}m_{12}^2 = \frac{(\lambda_{\sigma_2} - \lambda_{\sigma_3})^2}{16},$$

$$m_{13} = m_{11} - \lambda_{\sigma_1}.$$

- $\diamond \sigma = A$ permutation of integers $\{1, 2, 3\}$.
- $\mathcal{M}_{\mathcal{C}}$ = Three ellipses.
 - ♦ One circumscribes the other two.
- Check # of m_{12} -intercepts \Rightarrow

of solutions =
$$\begin{cases} 4, & \text{if distinct eigenvalues;} \\ 2, & \text{if multiplicity 2.} \end{cases}$$

Figure 2: Plots of m_{11} versus m_{12} for $\mathcal{M}_{\mathcal{C}}$ in $\mathcal{C}(3)$.

- Each ellipse = One parity assignment among eigenvalues.
- Wrong assignment \Rightarrow No Toeplitz.
- \bullet Magnitude of eigenvalues \Rightarrow Solvability.
- Ordered eigenvalues alternate in parity $\stackrel{?}{\Rightarrow}$ Safeguard.

Inverse Problem for Centrosymmetric Matrices

- Close form solution:
 - ♦ Given arbitrary
 - \triangleright Diagonal matrix $\Lambda := \operatorname{diag}\{\{\lambda_k^*\}_{k=1}^n\},$
 - \triangleright Orthogonal matrix $Z_1 \in R^{\lfloor \frac{n}{2} \rfloor \times \lfloor \frac{n}{2} \rfloor}$,
 - \triangleright Orthogonal matrix $Z_2 \in R^{\lceil \frac{n}{2} \rceil \times \lceil \frac{n}{2} \rceil}$,
 - ♦ Then the matrix

$$M := K^T \begin{bmatrix} Z_1 & 0 \\ 0 & Z_2 \end{bmatrix} \Lambda \begin{bmatrix} Z_1 & 0 \\ 0 & Z_2 \end{bmatrix}^T K.$$

- \triangleright Is centrosymmetric.
- $\triangleright \{\lambda_1^*, \ldots, \lambda_{\lfloor \frac{n}{2} \rfloor}^*\} = \text{Odd eigenvalues of } M.$
- $\triangleright \{\lambda_{\lfloor \frac{n}{2} \rfloor + 1}^*, \ldots, \lambda_n^*\} = \text{Even eigenvalues of } M.$
- $\triangleright M$ may not be Toeplitz.
- Open Question: Search for a Toeplitz matrix on the isospectral surface $\mathcal{M}_{\mathcal{C}}(\{\lambda_k^*\}_{k=1}^n)$:

$$\mathcal{M}_{\mathcal{C}} := \{ M \in \mathcal{C}(n) | \text{ eigenvalues} = \lambda_1^*, \dots, \lambda_n^* \}.$$

Existence

- Solvability has been a challenge.
 - $\diamond n$ equations in n unknowns.
 - $\diamond n \geq 5$ is analytically intractable.
 - ♦ Symmetric Toeplitz matrices can have *arbitrary* real spectra [226].
 - ▶ Thus far, it is a nonconstructive proof by topological degree argument.
 - ▶ Open Question: Any algebraic proof of existence?
 - \diamond Eigenvalues cannot have arbitrary parity.

Idea in Landau's Proof

- A matrix $T(c_1, \ldots, c_n)$ is regular if every principal submatrix $T(c_1, \ldots, c_k)$, $1 \le k \le n$ has the properties:
 - ♦ Distinct eigenvalues.
 - ♦ Alternate parity with the largest one having even parity.
- Assume the given eigenvalues $\lambda_1 \leq \ldots \leq \lambda_n$ are centered, i.e., $\sum_{i=1}^n \lambda_i = 0$.
 - \diamond Suffices to solve the ToIEP for matrices of the form $T(0,1,t_3,\ldots,t_n)$.
 - \diamond Necessarily $\lambda_1 < 0$.
- Consider the map

$$\phi(t_3, \dots, t_n) = (y_2, \dots, y_{n-1})$$

$$\diamond y_i = -\frac{\lambda_i}{\lambda_1}, i = 2, \dots, n-1.$$

$$\diamond \sigma(T(0,1,t_3,\ldots,t_n)) = \{\lambda_1,\ldots,\lambda_n\}.$$

• The range of ϕ is the simplex

$$\Delta := \left\{ (y_2, \dots, y_{n-1}) \middle| \begin{array}{c} -1 \le y_2 \le \dots \le y_{n-1} \\ y_2 + \dots + y_{n-2} + 2y_{n-1} \le 1 \end{array} \right\}.$$

- Landau's approach:
 - \diamond The set \mathcal{F} of regular Toeplitz matrices of the form $T(0, 1, t_3, \ldots, t_n)$ is not empty.
 - \diamond The map ϕ restricted to those $(t_3, \ldots, t_n) \in \mathbb{R}^{n-2}$ such that $T(0, 1, t_3, \ldots, t_n) \in \mathcal{F}$ is a surjective map onto Δ .
 - \diamond Any $y_1 \leq \ldots \leq y_n$ can be *shifted* and *scaled* to a unique point in Δ .

Numerical Methods

- Mostly done in S(n).
 - ♦ Laurie's Algorithm [227]
 - ♦ Trench's Algorithm [337]
 - ♦ Continuous method
- The calculation could be limited to the smaller space C(n).
 - ♦ Cayley Transform [119]
 - ♦ Newton's Refinement to Centrosymmetric Structure

Continuous Method

Refined Newton to Centrosymmetric Structure

- A tangent step
- Lift by approximation
- Lift by global ordering
- Lift by local ordering

A Classical Newton Method

• A function:

$$f: R \longrightarrow R$$
.

• The scheme:

$$x^{(\nu+1)} = x^{(\nu)} - (f'(x^{(\nu)}))^{-1} f(x^{(\nu)}).$$

- The intercept:
 - $\Rightarrow x^{(\nu+1)}$ = The x-intercept of the tangent line of the graph of f from $(x^{(\nu)}, f(x^{(\nu)}))$.
- The lifting:
 - $(x^{(\nu+1)}, f(x^{(\nu+1)})) =$ The natural "lift" of the intercept along the y-axis to the graph of f.

An Analogy of the Newton Method

• Think of

- $\diamond \mathcal{M}_{\mathcal{C}}(\Lambda) = \text{The graph of } f.$
- $\diamond \mathcal{T}(n) := \{\text{Toeplitz matrices}\} = \text{The } x\text{-axis.}$
- \diamond Limit the iteration to $\mathcal{C}(n)$.
- Manifold $\mathcal{M}_{\mathcal{C}}(\Lambda)$:
 - ♦ Parametrization:

$$M = Q\Lambda Q^{T},$$

$$Q = K^{T}Z,$$

$$Z \in \mathcal{O}(\lfloor \frac{n}{2} \rfloor) \times \mathcal{O}(\lceil \frac{n}{2} \rceil).$$

♦ Tangent vector:

$$T_M(\mathcal{M}_{\mathcal{C}}) = \tilde{S}M - M\tilde{S},$$

 $\tilde{S} := Q \begin{bmatrix} S_1 & 0 \\ 0 & S_2 \end{bmatrix} Q^T.$

 $ightharpoonup S_1 = ext{skew-symmetric in } R^{\lfloor \frac{n}{2} \rfloor \times \lfloor \frac{n}{2} \rfloor}.$ $S_2 = ext{skew-symmetric in } R^{\lceil \frac{n}{2} \rceil \times \lceil \frac{n}{2} \rceil}.$

A Tangent Step

- Given $M^{(\nu)} \in \mathcal{M}_{\mathcal{C}}(\Lambda)$ (Parity fixed), \$\iff \text{Find } \tilde{S}^{(\nu)} \text{ and } r^{(\nu+1)} \text{ for} \\ $M^{(\nu)} + \tilde{S}^{(\nu)} M^{(\nu)} - M^{(\nu)} \tilde{S}^{(\nu)} = T(r^{(\nu+1)}).$
- Equivalently:

$$\Lambda + S^{(\nu)} \Lambda - \Lambda S^{(\nu)} = Q^{(\nu)^T} T(r^{(\nu+1)}) Q^{(\nu)}$$

= $Z^{(\nu)^T} K T(r^{(\nu+1)}) K^T Z^{(\nu)}$.

♦ Spectral decomposition:

$$Q^{(\nu)}{}^T M^{(\nu)} Q^{(\nu)} = \Lambda,$$

 $Q^{(\nu)} = K^T Z^{(\nu)}.$

• Key observation:

$$KT(r^{(\nu+1)})K^T = \begin{bmatrix} T_1^{(\nu+1)} & 0\\ 0 & T_2^{(\nu+1)} \end{bmatrix}.$$

 \Rightarrow The system is split in half.

Find the Intercept

- The right-hand side of the system is linear in $r^{(\nu+1)}$.
- Diagonal elements in the system \Rightarrow A linear system for $r^{(\nu+1)}$ without reference to $S^{(\nu)}$:

$$J^{(\nu)}r^{(\nu+1)} = \lambda.$$

$$\diamond \lambda := [\phi_1, \dots, \phi_{\lfloor \frac{n}{2} \rfloor}, \psi_1, \dots \psi_{\lceil \frac{n}{2} \rceil}]^T \ (Fixed \ parity).$$

$$\diamond$$

$$J^{(\nu)}_{ij} := \left\{ \begin{array}{l} (Z_1^{(\nu)})_{*i}^T E_1^{[j]} (Z_1^{(\nu)})_{*i}, \ \text{if} \ 1 \leq i \leq \lfloor \frac{n}{2} \rfloor; \\ (Z_2^{(\nu)})_{*i}^T E_2^{[j]} (Z_2^{(\nu)})_{*i}, \ \text{if} \ \lfloor \frac{n}{2} \rfloor < i \leq n. \end{array} \right.$$

$$\diamond$$

$$\begin{bmatrix} E_1^{[j]} & 0\\ 0 & E_2^{[j]} \end{bmatrix} = KT(e_j)K^T.$$

 $\triangleright (Z_k^{(\nu)})_{*i} := \text{the } i^{th} \text{ column of the matrix } Z_k^{(\nu)}.$

• Only length of $\approx \frac{n}{2}$ in all vector-matrix-vector multiplications.

Compute $S^{(\nu)}$

• Once $T(r^{(\nu+1)})$ is determined, off-diagonal elments in the system $\Rightarrow S^{(\nu)}$:

$$(S_1^{(\nu)})_{ij} = \frac{(Z_1^{(\nu)})_{*i}^T T_1^{(\nu+1)} (Z_1^{(\nu)})_{*j}}{\phi_i - \phi_j}, \ 1 \le i < j \le \lfloor \frac{n}{2} \rfloor,$$

$$(S_2^{(\nu)})_{ij} = \frac{(Z_2^{(\nu)})_{*i}^T T_2^{(\nu+1)} (Z_2^{(\nu)})_{*j}}{\psi_i - \psi_j}, \ 1 \le i < j \le \lceil \frac{n}{2} \rceil.$$

- ♦ Eigenvalues within each parity group must be distinct.
- $\diamond \lambda_1, \ldots, \lambda_n$ need not be totally distinct.
- In case of multiple eigenvalues
 - ♦ Basis of eigenspace splits as evenly as possible between symmetric and skew-symmetric eigenvectors [113].
 - \diamond Multiplicity of each eigenvalue ≤ 2 can be formulated.

Find the Lift

• Coordinate-free lift (Friedland, '87; Chu, '92):

$$M^{(\nu+1)} := Q^{(\nu)} R^{(\nu)T} Q^{(\nu)T} M^{(\nu)} Q^{(\nu)} R^{(\nu)} Q^{(\nu)T}.$$

♦ Lift by approximation:

$$R^{(\nu)} := \left(I + \frac{S^{(\nu)}}{2}\right) \left(I - \frac{S^{(\nu)}}{2}\right)^{-1}.$$

• In calculation, only need

$$Z^{(\nu+1)} := Z^{(\nu)} R^{(\nu)^T}.$$

- ♦ All matrices involved are 2-block diagonal.
- Quadratic convergence.
- Multiplicity $> 2 \Rightarrow \text{No } S^{(\nu)} \Rightarrow \text{No lift.}$
- Can we by-pass $S^{(\nu)}$ to perform a lift?

Lift by Global Ordering

• Idea:

 \diamond Look for matrix $M^{(\nu+1)} \in \mathcal{M}_{\mathcal{C}}$ that is nearest to $T(r^{(\nu+1)})$.

Figure 3: Geometry of Lift by Global Ordering.

- Answer: Wielandt-Hoffman theorem.
 - \diamond Spectral decomposition of $T(r^{(\nu+1)})$ is easy:

$$\overline{Z}^{(\nu+1)} KT(r^{(\nu+1)}) K^T \overline{Z}^{(\nu+1)} = \begin{bmatrix} \overline{\Lambda}_1^{(\nu+1)} & 0 \\ 0 & \overline{\Lambda}_2^{(\nu+1)} \end{bmatrix}.$$

- \diamond Rearrange $\{\lambda_1, \ldots, \lambda_n\}$ in the same ordering as in $\overline{\Lambda}_1^{(\nu+1)}$ and $\overline{\Lambda}_2^{(\nu+1)}$ to obtain $\tilde{\Lambda}_1^{(\nu+1)}$ and $\tilde{\Lambda}_2^{(\nu+1)}$.
- ♦ Define:

$$M^{(\nu+1)} := K^T \overline{Z}^{(\nu+1)} \begin{bmatrix} \tilde{\Lambda}_1^{(\nu+1)} & 0 \\ 0 & \tilde{\Lambda}_2^{(\nu+1)} \end{bmatrix} \overline{Z}^{(\nu+1)^T} K.$$

• New starting point:

$$\Lambda = \Lambda^{(\nu+1)} := \begin{bmatrix} \tilde{\Lambda}_1^{(\nu+1)} & 0\\ 0 & \tilde{\Lambda}_2^{(\nu+1)} \end{bmatrix},$$
$$Z^{(\nu+1)} := \overline{Z}^{(\nu+1)}.$$

- Significance:
 - ♦ Parity assignment may be changed.
 - \diamond No $S^{(\nu)}$ is needed.
 - ♦ Multiple eigenvalues with same parity can be handled.

Lift by Local Ordering

- Would like to avoid computing $S^{(\nu)}$ as well as parity switching?
- Idea:
 - $\diamond \Lambda$ is kept fixed.
 - \diamond Reorganize columns of $\overline{Z}_1^{(\nu+1)}$ and $\overline{Z}_2^{(\nu+1)}$.
- Calculation:
 - \diamond Elements in $\overline{\Lambda}_1^{(\nu+1)}$, $\overline{\Lambda}_2^{(\nu+1)}$ are in the same ordering as those in Λ_1 and Λ_2 .
- New starting point:

$$Z^{(\nu+1)} := \text{The reorganized } \overline{Z}^{(\nu+1)}.$$

- Global ordering = Local ordering, when reaching convergence.
- Quadratic convergence:
 - ♦ Order of convergence = (order projection)*(order tangent step). (Traub)

Numerical Experiment

- Example 1: Wrong parity
- Example 2: Quadratic convergence
- Example 3: Multiplicity = 2
- Example 4: Multiplicity = 3
- Example 5: High order case

Example 1: Wrong Parity

• Test data (Wrong parity):

$$\lambda_{1} = -2.4128 \times 10^{+0}(E)
\lambda_{2} = -2.6407 \times 10^{-1}(E)
\lambda_{3} = 2.6769 \times 10^{+0}(O)$$
Wrong parity

Figure 4: Behaviors of Algorithms When Starting with the Wrong Orbit.

- Lift by approximation \Rightarrow Staying on the *wrong* orbit.
- Local ordering \Rightarrow Wrong orbit, clustering.
- Global ordering \Rightarrow Change orbit, convergence.

Example 2: Quadratic Convergence

- Limit point $r^{(*)}$ may be away from original $r^{(\#)}$, even if $r^{(0)} \approx r^{(\#)}$.
- Limit points may be different among methods, even with the same starting $r^{(0)}$.
- Eigenvalues of $T(r^{(*)})$ = those of $T(r^{\#})$, but parity may change in the global ordering case.

	Case (a)	Case (b)	Case (c)
$r^{(\#)}$	0	0	0
	-2.0413×10^{-3}	-9.2349×10^{-1}	-3.3671×10^{-1}
	$1.6065 \times 10^{+0}$	-7.0499×10^{-2}	4.1523×10^{-1}
Original Value	8.4765×10^{-1}	1.4789×10^{-1}	$1.5578 \times 10^{+0}$
	2.6810×10^{-1}	-5.5709×10^{-1}	$-2.4443\times10^{+0}$
$r^{(0)}$	0	0	0
	-2.8351×10^{-1}	$-1.8024 \times 10^{+0}$	6.3658×10^{-1}
	9.3953×10^{-1}	7.3881×10^{-1}	4.0318×10^{-1}
Initial Value	8.2068×10^{-1}	1.5694×10^{-1}	$1.0901 \times 10^{+0}$
	$1.0634 \times 10^{+0}$	-5.2451×10^{-1}	$-3.2628\times10^{+0}$
$r^{(*)}$	2.0426×10^{-16}	2.2204×10^{-16}	7.4940×10^{-16}
	-2.0413×10^{-3}	-9.2349×10^{-1}	-3.5391×10^{-1}
	$1.6065 \times 10^{+0}$	-7.0499×10^{-2}	4.3645×10^{-1}
Local Ordering	8.4765×10^{-1}	1.4789×10^{-1}	$1.5244 \times 10^{+0}$
	2.6810×10^{-1}	-5.5709×10^{-1}	$-2.4655 \times 10^{+0}$
$r^{(*)}$	8.6831×10^{-16}	0	4.7184×10^{-16}
	-2.0413×10^{-3}	-9.2349×10^{-1}	-3.3671×10^{-1}
	$1.6065 \times 10^{+0}$	-7.0499×10^{-2}	4.1523×10^{-1}
Approximation	8.4765×10^{-1}	1.4789×10^{-1}	$1.5578 \times 10^{+0}$
	2.6810×10^{-1}	-5.5709×10^{-1}	$-2.4443\times10^{+0}$
$r^{(*)}$	2.4113×10^{-16}	-1.1102×10^{-16}	6.1062×10^{-16}
	-9.3778×10^{-2}	-9.2646×10^{-1}	3.5391×10^{-1}
	$1.5174 \times 10^{+0}$	-6.1419×10^{-2}	4.3645×10^{-1}
Global Ordering	9.9597×10^{-1}	1.3518×10^{-1}	$-1.5244 \times 10^{+0}$
	5.7042×10^{-1}	-5.4694×10^{-1}	$-2.4655 \times 10^{+0}$

Table 1: Initial and Final Values of $r^{(\nu)}$ for Example 2.

Iterations	Local Ordering	Approximation	Global Ordering
0	$1.3847 \times 10^{+0}$	$1.3847 \times 10^{+0}$	$1.2194 \times 10^{+0}$
1	7.1545×10^{-1}	7.1545×10^{-1}	4.2739×10^{-1}
2	2.1982×10^{-2}	6.3866×10^{-2}	1.4179×10^{-2}
3	5.1223×10^{-5}	2.0606×10^{-4}	4.3624×10^{-5}
4	4.4931×10^{-10}	7.1037×10^{-9}	4.7985×10^{-10}
5	1.4729×10^{-15}	2.9671×10^{-15}	1.7659×10^{-15}

Table 2: Errors of Eigenvalues for Case (a) in Example 2.

Example 3: Multiplicity = 2

• Test data (Random number):

$$\begin{cases}
-5.8942 \times 10^{-1} & (E) \\
-1.8565 \times 10^{-1} & (O) \\
-1.8565 \times 10^{-1} & (E) \\
3.7508 \times 10^{-1} & (O) \\
5.8564 \times 10^{-1} & (E)
\end{cases}$$

- Parity unknown.
 - ♦ Assume the possibly safest assignment.
- Multiply eigenvalues split between parities.
- Quadratic convergence.

Figure 5: Number of Iteration versus Logarithmic Scale of Errors in Example 3.

Example 4: Multiplicity = 3

• Test data:

$$\begin{cases}
-8.4328 \times 10^{-1} & (E) \\
-1.2863 \times 10^{-1} & (O) \\
-1.2863 \times 10^{-1} & (E) \\
-1.2863 \times 10^{-1} & (O) \\
1.2292 \times 10^{+0} & (E)
\end{cases}$$

- Lift by approximation fails.
- Methods by local and global ordering converge to $[.2204\times10^{-16}, 4.2222\times10^{-1}, 1.2863\times10^{-1}, 4.2222\times10^{-1}, 1.2863\times10^{-1}]$

with error history

$$2.0327 \times 10^{+0}$$
 4.0355×10^{-2}
 1.3903×10^{-4}
 3.5477×10^{-9}
 7.8896×10^{-16} .

Example 5: n = 20

• Test data:

- ♦ Not the safest possible parity assignment, first ten odd, last ten even.
- Method of approximation fails after 100 iterations.
- Method of global ordering performs best.

Figure 6: Number of Iteration versus Logarithmic Scale of Errors in Example 5.

Conclusion

- Solving the ToIEP within the subspace C(n) is possible.
 - ♦ Problem size and cost are halved.
 - ♦ Multiple eigenvalue case can be handled.
- Coordinate-free Newton-like methods are available.
 - ♦ Quadratic convergence is observed.
- Parity assignment of eigenvalues plays an important role in whether an ToIEP is solvable.
- Both local and global ordering, based on the Wielandt-Hoffman theorem, permit a new way of lifting.
 - ♦ Higher multiplicity eigenvalue case can now be handled.

Nonnegative Inverse Eigenvalue Problem

- Overview
- Some Existence Results
- Symmetric Nonnegative Inverse Eigenvalue Problem
- Numerical methods

Overview

- Many discussions in the literature on the subject [26, 30, 45, 130, 140, 143, 245, 262, 109, 318].
- Most discussions center around establishing a sufficient or necessary condition to qualify whether a given set of values is the spectrum of a nonnegative matrix.
- Open Question: Which sets of n real numbers occur as the spectrum of a nonnegative matrix?
- Open Question: Which sets of n real numbers occur as the spectrum of a symmetric nonnegative matrix?
- Open Question: Very few numerical algorithms.

Some Existence Results

• Suppose $\{\lambda_k^*\}_{k=1}^n$ are eigenvalues of an $n \times n$ nonnegative matrix. The the moments

$$s_k = \sum_{i=1}^n (\lambda_i^*)^k$$

must satisfy

$$s_k^m \le n^{m-1} s_{km}$$

for all $k, m = 1, 2, \dots [245]$.

- The set $\{\lambda_k^*\}_{k=1}^n \subset \mathbb{C}$ is the nonzero spectrum of a strictly positive matrix of size $m \geq n$ if and only if [45]
 - $\diamond \lambda_1^* > |\lambda_i^*|$ for all i > 1,
 - $\diamond s_k > 0$ for all $k = 1, 2, \ldots$, and
 - \diamond The polynomial $\prod_{i=1}^n (t \lambda_i^*)$ has real coefficients.

Symmetric Nonnegative Inverse Eigenvalue Problem

- There exist real numbers $\{\lambda_k^*\}_{k=1}^n$ that occur as the spectrum of a nonnegative $n \times n$ matrix, but do not occur as the spectrum of a symmetric nonnegative $n \times n$ matrix [212].
- The symmetric nonnegative inverse eigenvalue problem can be formulated as a constrained optimization problem of *minimizing* the objective function

$$F(Q, R) := \frac{1}{2} ||Q^T \Lambda Q - R \circ R||^2,$$

subject to

$$(Q,R) \in \mathcal{O}(n) \times \mathcal{S}(n).$$

• For nonsymmetric nonnegative inverse eigenvalue problems, see the discussion for the stochastic inverse eigenvalue problems.

Numerical Method

• A dynamical system resulting from projected gradient flow can be formulated as [74]:

$$\frac{dX}{dt} = [X, [X, Y]],$$

$$\frac{dY}{dt} = 4Y \circ (X - Y).$$

- $\diamond X(t) = Q(t)^T \Lambda Q(t)$ is an isospectral matrix.
- $\diamond Y(t) = R(t) \circ R(t)$ is a symmetric nonnegative matrix.

Stochastic Inverse Eigenvalue Problem

- General View
- Karpelevič's Theorem
- Relationship to Nonnegative Matrices
- Basic Formulation
- Steepest Descent Flow
- ASVD Flow
- Convergence
- Numerical Experiment
- Conclusion

General View

- Construct a stochastic matrix with prescribed spectrum.
 - ♦ Stochastic structure.
 - ♦ No strings of symmetry.
 - ♦ Eigenvalues can appear in complex conjugate pairs.
- A hard problem [215, 262].
 - \diamond The set Θ_n of points in the complex plane that are eigenvalues of stochastic $n \times n$ matrices is completely characterized.
 - \diamond The Karpelevič theorem characterizes only one complex value a time and does not provide further insights into when two or more points in Θ_n are eigenvalues of the same stochastic matrix.

Karpelevič's Theorem

- A number λ is an eigenvalue for a stochastic matrix if and only if it belongs to a region Θ_n .
 - ♦ Region is symmetric about the real axis.
 - \diamond The points on the unit circles are given by $e^{2\pi ia/b}$ where a and b range over all integers such that $0 \le a < b \le n$.
 - \diamond The boundary of Θ_n consists of curvilinear arcs connecting these points in circular order. These arcs are characterized by specific parametric equations

$$\lambda^{q}(\lambda^{p} - t)^{r} = (1 - t)^{r},$$
$$(\lambda^{b} - t)^{d} = (1 - t)^{d}\lambda^{q},$$

where $0 \le t \le 1$, and b, d, p, q, r are natural integers determined certain specific rules (explicitly given in [215, 262]).

• The region Θ_4 is shown in Figure 7.

Figure 7: Θ_4 by the Karpelevič Theorem.

Relation to Nonnegative Matrices

- A complex nonzero number α is an eigenvalue of a nonnegative matrix with a positive maximal eigenvalue r if and only if α/r is an eigenvalue of a stochastic matrix.
- Key transformation:
 - \diamond Suppose A is a nonnegative matrix with positive maximal eigenvalue r and a positive maximal eigenvector x.
 - \diamond Then $D^{-1}r^{-1}AD$ is a stochastic matrix where $D := \operatorname{diag}\{x_1,\ldots,x_n\}$.
- The nonnegative inverse eigenvalue probelm (NIEP) has been discussed earlier.
 - ♦ Some necessary and a few sufficient conditions for the NIEP are available [30].
 - ♦ A continuous method for the symmetric NIEP can be formulated [74].
 - ♦ Open Question: Need a numerical algorithm for general NIEP.

Basic Formulation

• Notation:

$$\mathcal{M}(\Lambda) := \{ P\Lambda P^{-1} | P \in R^{n \times n} \text{ is nonsingular} \}$$

$$\pi(R_+^n) := \{ B \circ B | B \in R^{n \times n} \}$$

- $\wedge \Lambda$ = real-valued matrix carrying the spectrum information.
- $\diamond \circ = \text{Hadamard product.}$

• Idea:

- \diamond Find the intersection of $\mathcal{M}(\Lambda)$ and $\pi(\mathbb{R}^n+)$.
- \diamond The intersection, if exists, results in a nonnegative matrix isospectral to Λ .
- ♦ Reduce the nonnegative matrix, if its maximal eigenvector is positive, to a stochastic matrix by diagonal similarity transformation.

Reformulation

Minimize
$$F(P,R) := \frac{1}{2}||PJP^{-1} - R \circ R||^2$$

Subject to $P \in Gl(n), R \in gl(n)$

- P and R are used as coordinates to maneuver elements in $\mathcal{M}(\Lambda)$ and $\pi(R^n_+)$ to reduce the objective value.
- Feasible domains are open sets.
- A minimum may not exist.

Gradient of F

• Inner product in the product topology:

$$\langle (X_1, Y_1), (X_2, Y_2) \rangle := \langle X_1, X_2 \rangle + \langle Y_1, Y_2 \rangle.$$

• With respect to the product topology:

$$\nabla F(P,R) = ((\Delta(P,R)M(P)^T - M(P)^T \Delta(P,R))P^{-T}, -2\Delta(P,R) \circ R).$$

♦ Abbreviation:

$$M(P) := PJP^{-1}$$

$$\Delta(P,R) := M(P) - R \circ R.$$

Steepest Descent Flow

• Steepest descent flow:

$$\frac{dP}{dt} = [M(P)^T, \Delta(P, R)]P^{-T}$$

$$\frac{dR}{dt} = 2\Delta(P, R) \circ R.$$

- Advantages:
 - \diamond No longer need the projection of $\nabla F(P,R)$ as does in the symmetric case.
 - \diamond The zero structure in the original matrix R(0) is preserved throughout the integration may be used to explore the possibility of constructing a Markov chain with prescribed linkages and spectrum.
- Disadvantage:
 - \diamond The solution flow P(t) is susceptible to becoming unbounded a possible frailty.
 - \diamond The involvement of P^{-1} is somewhat worrisome.

ASVD flow

• An analytic singular value decomposition of the path of matrices P(t) is an analytic path of factorizations

$$P(t) = X(t)S(t)Y(t)^{T}$$

where X(t) and Y(t) are orthogonal and S(t) is diagonal.

- An ASVD exists if P(t) is analytic [48, 345].
- The fact that P(t) defined by the differential system is analytic follows from the Cauchy-Kovalevskaya theorem since the coefficients of the vector field are analytic.

New Coordinate System

- The two matrices P and R are used, respectively, as coordinates to describe the isospectral matrices and nonnegative matrices.
 - ♦ May have used more dimensions of variables than necessary does no harm.
 - \diamond When flows P(t) and R(t) are introduced, in a sense a flow in $\mathcal{M}(\Lambda)$ and a flow in $\pi(R^n_+)$ are also introduced.
- The motion of the coordinate P is further described by three other variables X, S, and Y according to the ASVD.
- To produce the steepest descent flow, a coordinate system (X(t), S(t), Y(t), R(t)) is eventually imposed on matrices in $\mathcal{M}(\Lambda) \times \pi(R^n_+)$.

Calculating the ASVD

• Differentiate $P(t) = X(t)S(t)Y(t)^T$: (Wright '92):

$$\dot{P} = \dot{X}SY^{T} + X\dot{S}Y^{T} + XS\dot{Y}^{T}$$

$$X^{T}\dot{P}Y = \underbrace{X^{T}\dot{X}}_{Z}S + \dot{S} + S\underbrace{\dot{Y}^{T}Y}_{W}$$

- \diamond Z, W are skew-symmetric matrices.
- Define $Q := X^T \dot{P} Y$.
 - $\diamond Q$ is known since \dot{P} is already specified.
 - \diamond The inverse of P(t) is calculated from

$$P^{-1} = Y S^{-1} X^T.$$

 \diamond The diagonal entries of $S = \text{diag}\{s_1, \ldots, s_n\}$ provide us with information about the proximity of P(t) to singularity.

• Flow for S(t):

$$\frac{dS}{dt} = \operatorname{diag}(Q).$$

• Obtain W(t) and Z(t):

$$q_{jk} = z_{jk}s_k + s_j w_{jk},$$

$$-q_{kj} = z_{jk}s_j + s_k w_{jk}.$$

 \diamond If $s_k^2 \neq s_i^2$, then

$$z_{jk} = \frac{s_k q_{jk} + s_j q_{kj}}{s_k^2 - s_j^2},$$

$$w_{jk} = \frac{s_j q_{jk} + s_k q_{kj}}{s_j^2 - s_k^2}$$

for all j > k.

• Flow for X(t) and Y(t):

$$\frac{dX}{dt} = XZ.$$

$$\frac{dY}{dt} = YW.$$

• The flow is now ready to be integrated by any IVP solvers.

Convergence

- The approach fails only when:
 - $\diamond P(t)$ becomes singular in finite time requires a restart.
 - $\Leftrightarrow F(P(t), R(t))$ converges to a nonzero constant a LS local solution is found.
- Gradient flows enjoy global convergence:
 - $\diamond G(t) := F(P(t), R(t))$ enjoys the property:

$$\frac{dG}{dt} = -\|\nabla F(P(t), R(t))\|^2 \le 0$$

along any solution curve (P(t), R(t)).

 \diamond Suppose P(t) remains nonsingular. Then G(t) converges.

Numerical Experiment

- Integrator: MATLAB ODE SUITE
 - \diamond **ode113** = ABM, PECE, non-stiff system.
 - ♦ ode15s = Klopfenstein-Shampine, quasiconstant step size, stiff system.
- Stopping criteria:
 - \diamond ABSERR = RELERR = 10^{-12} .
 - $|\Delta(P,R)| \le 10^{-9} \Rightarrow$ a stochastic matrix has been found.
 - \diamond Relative improvement of $\Delta(P,R)$ between two consecutive output points $\leq 10^{-9} \Rightarrow$ a LS solution is found.

Example 1

• Spectrum:

$$\{1.0000, -0.2403, 0.1186 \pm 0.1805i, -0.1018\}$$

• Initial values:

$$P_0 = \begin{bmatrix} 0.2002 & 0.4213 & 0.9229 & 0.7243 & 0.4548 \\ 0.6964 & 0.0752 & 0.9361 & 0.2235 & 0.0981 \\ 0.7538 & 0.3620 & 0.2157 & 0.5272 & 0.2637 \\ 0.4366 & 0.3220 & 0.8688 & 0.1729 & 0.8697 \\ 0.8897 & 0.1436 & 0.7097 & 0.5343 & 0.7837 \end{bmatrix}$$

$$R_0 = .8328\mathbf{1}$$

• Limit point:

$$B = \begin{bmatrix} 0.1679 & 0.0522 & 0.4721 & 0.0000 & 0.3078 \\ 0.1436 & 0.1779 & 0.4186 & 0.1901 & 0.0698 \\ 0.0000 & 0.1377 & 0.5291 & 0.3034 & 0.0299 \\ 0.0560 & 0.4690 & 0.2404 & 0.0038 & 0.2309 \\ 0.1931 & 0.1011 & 0.5339 & 0.1553 & 0.0165 \end{bmatrix}.$$

Figure 8: A log-log plot of F(P(t), R(t)) versus t for Example 1.

- Both solvers work reasonably.
 - ♦ **ode15s** advances with larger step sizes at the cost of solving implicit algebraic equations.
 - ♦ Jacobians are calculated by finite difference. Function calls could be reduced by fewer output points.
- Different initial values lead to different stochastic matrices.

Example 2

• Spectrum:

$$\{1.0000, -0.2608, 0.5046, 0.6438, -0.4483\}$$

• Looking for a Markov chain with ring linkage, i.e., each state is linked at most to its two immediate neighbors.

• Initial values:

$$P_0 = \begin{bmatrix} 0.1825 & 0.7922 & 0.2567 & 0.9260 & 0.9063 \\ 0.1967 & 0.5737 & 0.7206 & 0.5153 & 0.0186 \\ 0.5281 & 0.2994 & 0.9550 & 0.6994 & 0.1383 \\ 0.7948 & 0.6379 & 0.5787 & 0.1005 & 0.9024 \\ 0.5094 & 0.8956 & 0.3954 & 0.6125 & 0.4410 \end{bmatrix}$$

$$R_0 = 0.9210 \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

• Limit point:

$$D = \begin{bmatrix} 0.0000 & 0.3094 & 0 & 0 & 0.6906 \\ 0.0040 & 0.5063 & 0.4896 & 0 & 0 \\ 0 & 0.0000 & 0.5134 & 0.4866 & 0 \\ 0 & 0 & 0.7733 & 0.2246 & 0.0021 \\ 0.4149 & 0 & 0 & 0.3900 & 0.1951 \end{bmatrix}$$

Example 3

• Spectrum

$$\{1.0000, -0.2403, 0.3090 \pm 0.5000i, -0.1018\}$$

- Initial values: same as Example 1 (or modify R_0).
- Slow convergence:

$$E = \begin{bmatrix} 0.3818 & 0.0000 & 0.4568 & 0.0000 & 0.1614 \\ 0.5082 & 0.3314 & 0.0871 & 0.0049 & 0.0684 \\ 0.0000 & 0.0000 & 0.5288 & 0.4712 & 0.0000 \\ 0.0266 & 0.7634 & 0.0292 & 0.0310 & 0.1498 \\ 0.5416 & 0.0524 & 0.3835 & 0.0196 & 0.0029 \end{bmatrix}$$

$$F = \begin{bmatrix} 0.3237 & 0 & 0.4684 & 0 & 0.2079 \\ 0.4742 & 0.3184 & 0.1303 & 0.0007 & 0.0764 \\ 0 & 0.0000 & 0.5231 & 0.4769 & 0 \\ 0.0066 & 0.7536 & 0.0372 & 0.0958 & 0.1068 \\ 0.5441 & 0.0429 & 0.3959 & 0.0022 & 0.0149 \end{bmatrix}$$

Conclusion

- The theory of solvability on the StIEP or the NIEP is yet to be developed.
- An ODE approach capable of solving the StIEP or the NIEP numerically, if the prescribed spectrum is feasible, is proposed.
- The method is easy to implement by existing ODE solvers.
- The method can also be used to approximate least squares solutions or linearly structured matrices.

Figure 9: A comparison of steps taken by ode113 and ode15s for Example 1.

Figure 10: A log-log plot of F(P(t), R(t)) versus t for Example 3.

Unitary Inverse Eigenvalue Problem

- Overview
- Formulation
- Existence Theory

Overview

- Eigenvalue of unitary matrices are on the unit circle.
- Suffices to concentrate on unitary Hessenberg matrices.
- Any upper Hessenberg unitary matrix H with positive subdiagonal entries can uniquely expressed as the product

$$H = G_1(\eta_1) \dots G_{n-1}(\eta_{n-1}) \tilde{G}_n(\eta_n),$$

- $\diamond \eta_k \in \mathbb{C}$ with $|\eta_k| < 1$ for $1 \le k < n$ and $|\eta_n| = 1$.
- \diamond Each $G_k(\eta_k)$, $k=1,\ldots,n-1$ is a Givens rotation,

$$G_k(\eta_k) = \begin{bmatrix} I_{k-1} & & & & \\ & -\eta_k & \zeta_k & & \\ & \zeta_k & \bar{\eta}_k & & \\ & & I_{n-k+1} \end{bmatrix}$$

with
$$\zeta_k := \sqrt{1 - |\eta_k|^2}$$
.

- $\diamond \tilde{G}_n(\eta_n) = \operatorname{diag}[I_{n-1}, -\eta_n].$
- Each upper Hessenbergunitary matrix is determined by 2n-1 real parameters.
 - $\diamond \{\eta_k\}_{j=1}^n$ are called the Schur parameters.

$$\diamond H = H(\eta_1, \ldots, \eta_n).$$

Formulation

- The Schur parametrization of an upper Hesserberg unitary matrix requies 2n-1 pieces of information.
 - \diamond The complementary parameters $\{\zeta_k\}_{k=1}^{n-1}$ are the subdiagonal elements of H and cannot be independently given.
- Upper Hessenberg unitary matrices with positive subdiagonal entries are related to orthogonal polynomials on the unit circle.
 - ♦ Jacobi matrices are related to orthogonal polynomials on an interval.
 - ♦ There should considerably similarity between unitary inverse eigenvalue problems the Jacobi inverse eigenvalue problems.
- ullet Need a concept for modified principal submatrices of H.

Existence Theory

- Analogue of SIEP8:
 - ♦ Given
 - \triangleright Two sets $\{\lambda_k^*\}_{k=1}^n$ and $\{\mu_k^*\}_{k=1}^n$ strictly interlaced on the unit circle,
 - \diamond Then there exist a unique $H = H(\eta_1, \dots, \eta_n)$ and a unique $\alpha \in \mathbb{C}$ of unit modulus such that

$$\triangleright \sigma(H) = \{\lambda_k^*\}_{k=1}^n.$$

$$\triangleright \sigma(H(\alpha \eta_1, \dots, \alpha \eta_n)) = \{\mu_k^*\}_{k=1}^n.$$

- Analogue of SIEP6a [4]:
 - ♦ Given
 - \triangleright Two sets $\{\lambda_k^*\}_{k=1}^n$ and $\{\mu_k^*\}_{k=0}^{n-1}$ strictly interlaced on the unit circle,
 - \diamond Then there exist a unique $H = H(\eta_1, \ldots, \eta_n)$ such that

Inverse Eigenvalue Problems with Prescribed Entries

- Overview
- Prescribed Entries Along the Diagonal
- Prescribed Entries at Arbitrary Location
- Numerical Methods

Overview

- The PEIEP is a special kind of matrix completion problem [217]:
 - ♦ Given
 - \triangleright A certain subset $\mathcal{K} = \{(i_t, j_t)_{t=1}^k \text{ of pairs of subscripts},$
 - \triangleright A certain set of values $\{a_1, \ldots, a_k\} \subset \mathbf{F}$,
 - \triangleright Another set of n values $\{\lambda_k^*\}_{k=1}^n$,
 - \diamond Find a matrix $X \in \mathbf{F}^{n \times n}$ such that

$$\rhd \sigma(X) = \{\lambda_k^*\}_{k=1}^n.$$

$$\triangleright X_{i_t,j_t} = a_t \text{ for } t = 1,\ldots,k.$$

- Positions that do not belong to \mathcal{K} are free, whose $n^2 k$ entries are to be determined.
 - ♦ Jacobi structure is a special case.
 - \diamond Sometimes only need to fill \mathcal{K} positions with prescribed values, but not in any specific order.
- What is the minimal/maximal count of k for the problem to make sense?

Prescribed Entries along the Diagonal

- Schur-Horn Theorem (on Hermitain matrices).
- Mirsky Theorem (on general matrices).
- Sing-Thompson Theorem (on singular values).
- de Oliveira Theorem (on general diagonals).

Schur-Horn Theorem

- Concerns with the relationship between diagonal entries and eigenvalues of a Hermitian matrix.
- The vector $a \in \mathbb{R}^n$ is said to majorize $\lambda \in \mathbb{R}^n$ if, assuming the ordering

$$a_{j_1} \leq \ldots \leq a_{j_n},$$

 $\lambda_{m_1} \leq \ldots \leq \lambda_{m_n},$

the following relationships hold:

$$\sum_{i=1}^{k} \lambda_{m_i} \leq \sum_{i=1}^{k} a_{j_i}, \quad \text{for } k = 1, \dots n,$$

$$\sum_{i=1}^{n} \lambda_{m_i} = \sum_{i=1}^{n} a_{j_i}.$$

- A Hermitian matrix H with eigenvalues λ and diagonal entries a exists if and only if a majorizes λ .
- The proof for the sufficient part is the hard part.
 - \diamond (SHIEP) Construct such a Hermitian matrix with given diagonals a and eigenvalues λ , if a majorizes λ [78, 379].

Mirsky Theorem

- Is there any similar connection between eigenvalues and diagonal entries of a general matrix?
- A matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ and main diagonal elements a_1, \ldots, a_n exists if and only if

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} \lambda_i.$$

♦ Not an interesting inverse eigenvalue problems.

Sing-Thompson Theorem

- Concerns with the relationship singular values and diagonal entries of a general matrix.
- Given vectors $d, s \in \mathbb{R}^n$,
 - ♦ Assume

$$s_1 \geq s_2 \geq \dots s_n,$$

$$|d_1| \geq |d_2| \geq \dots |d_n|.$$

 \diamond A real matrix with singular values s and main diagonal entries d (possibly in different order) exists if and only if

$$\sum_{i=1}^{k} |d_i| \le \sum_{i=1}^{k} s_i, \quad \text{for } k = 1, \dots, n,$$

$$\left(\sum_{i=1}^{n-1} |d_i|\right) - |d_n| \le \left(\sum_{i=1}^{n-1} s_i\right) - s_n.$$

• (STISVP) Construct such a square matrix with given diagonals and singular values [71].

de Oliveira Theorem

- Corresponding to a given permutation ρ , the set $\mathcal{D} = \{(i, \rho(i))\}_{1}^{n}$ is called a ρ -diagonal.
 - \diamond Let $\rho = \rho_1 \dots \rho_s$ be the representation of ρ as the product of disjoint cycles ρ_k .
- A generalization of the Mirsky Theorem [105, 106, 107]:
 - ♦ Given
 - \triangleright Arbitrary $\{\lambda_k^*\}_{k=1}^n \subset \mathbf{F}$,
 - \triangleright Arbitrary numbers $\{a_1,\ldots,a_n\}\subset \mathbf{F},$
 - \triangleright Suppose that at least one of the cycles ρ_1, \ldots, ρ_s has length > 2.
 - \diamond Then there exists a matrix $X \in \mathbf{F}^{n \times n}$ such that

$$\rhd \sigma(X) = \{\lambda_k^*\}_{k=1}^n.$$

$$\triangleright X_{i,\rho(i)} = a_i \text{ for } i = 1, \dots n.$$

Prescribed Entries at Arbitrary Locations

- London-Minc Theorem [246, 105]:
 - ♦ Given
 - \triangleright Arbitrary $\{\lambda_k^*\}_{k=1}^n \subset \mathbf{F}$,
 - \triangleright Arbitrary values $a_1, \ldots, a_{n-1},$
 - \triangleright Arbitrary but distinct positions $\{(i_t, j_t)\}_{t=1}^{n-1}$,
 - \diamond There exists a matrix $X \in \mathbf{F}^{n \times n}$ such that

$$\triangleright \sigma(X) = \{\lambda_k^*\}_{k=1}^n.$$

$$\triangleright X_{i_t, j_t} = a_t \text{ for } t = 1, \dots, n-1.$$

- Can matrices have arbitrary n-1 prescribed entries and prescribed characteristic polynomials? (See [116, 217].)
- Open Question: How many more entries of a matrix can be specified with prescribed eigenvalues?

Cardinality and Locations

• Specific locations:

- \diamond Both the SHIEP and the STISVP have n prescribed entries that are located at the diagonal.
 - ➤ Certain inequalities involving the prescribed eigenvalues and diagonal entries must be satisfied.
- \diamond The AIEP has n^2-n prescribed entries that are located at the off-diagonal.
 - \triangleright The AIEP is always solvable over an algebraically closed field and there at most n! solutions.
- Arbitrary locations with $|\mathcal{K}| = n$ [217]:
 - ♦ Suppose that
 - ightharpoonup is algebraically closed.
 - \triangleright The Mirsky condition is satisfied, if $\mathcal{K} = \{(i,i)\}_{i=1}^n$.
 - $\triangleright a_i = \lambda_j$ for some j, if $\mathcal{K} = \{(i, j_t)\}_{t=1}^n$ and $a_t = 0$ for all $j_t \neq i$.
 - \diamond Then the PEIPE is solvable via rational algorithm over ${\bf F}$.

- Arbitrary location with $|\mathcal{K}| = 2n 3$ [191]:
 - ♦ Suppose that
 - ightharpoonup is algebraically closed.
 - \triangleright The Mirsky condition is satisfied, if $\mathcal{K} \supseteq \{(i,i)\}_{i=1}^n$.
 - $\triangleright a_i = \lambda_j$ for some j, if $\mathcal{K} \supseteq \{(i, j_t)\}_{t=1}^n$ and $a_t = 0$ for all $j_t \neq i$.
 - \diamond Then the PEIEP is solvable in **F**.

Numerical Methods

- Projected gradient method can be applied [78].
- An induction proof can be implemented as a recursive algorithm, provided the computer permits a subprogram to invoke itself recursively.
 - ♦ Fast recursive algorithms have been proposed for inverse problem associated with the SHIEP and the STISVP Theorem.
 - ♦ Details are similar to discussion for the inverse singular/eigenvalue problem.
- Open Question: Has not seen the numerical implementation of either the de Oliveira Theorem or the London-Minc Theorem, though this could be done in finitely many steps.
- Open Question: Need an algorithm to implement the Hershkowitz results.

Inverse Singular Value Problems

- IEP versus ISVP.
- Existence Question.
- A Continuous Approach.
- An Iterative Method for IEP.
- An Iterative Approach for ISVP.

IEP versus ISVP

- Inverse Eigenvalue Problem (IEP):
 - ♦ Given
 - \triangleright Symmetric matrices $A_0, A_1, \ldots, A_n \in \mathbb{R}^{n \times n}$;
 - \triangleright Real numbers $\lambda_1^* \ge \ldots \ge \lambda_n^*$,
 - ♦ Find
 - \triangleright Values of $c := (c_1, \ldots, c_n)^T \in \mathbb{R}^n$
 - ▷ Eigenvalues of the matrix

$$A(c) := A_0 + c_1 A_1 + \ldots + c_n A_n$$

are precisely $\lambda_1^*, \ldots, \lambda_n^*$.

- Inverse Singular Value Problem ISVP:
 - ♦ Given
 - \triangleright General matrices $B_0, B_1, \ldots, B_n \in \mathbb{R}^{m \times n}, m \ge n;$
 - \triangleright Nonnegative real numbers $\sigma_1^* \ge \ldots \ge \sigma_n^*$,
 - ♦ Find
 - \triangleright Values of $c := (c_1, \ldots, c_n)^T \in \mathbb{R}^n$
 - ▶ Singular values of the matrix

$$B(c) := B_0 + c_1 B_1 + \ldots + c_n B_n$$

are precisely $\sigma_1^*, \ldots, \sigma_n^*$.

Existence Question

- Not always does the IEP have a solution.
- Inverse Toeplitz Eigenvalue Problem (ITEP)
 - \diamond A special case of the (IEP) where $A_0 = 0$ and $A_k := (A_{ij}^{(k)})$ with

$$A_{ij}^{(k)} := \begin{cases} 1, & \text{if } |i-j| = k-1; \\ 0, & \text{otherwise.} \end{cases}$$

- ♦ Symmetric Toeplitz matrices can have *arbitrary* real spectra [226].
- Not aware of any result concerning the existence question for ISVP.

Notation

- $\mathcal{O}(n) := \text{All orthogonal matrices in } R^{n \times n};$
- $\Sigma = (\Sigma_{ij}) := A$ "diagonal" matrix in $R^{m \times n}$

$$\Sigma_{ij} := \begin{cases} \sigma_i^*, & \text{if } 1 \leq i = j \leq n; \\ 0, & \text{otherwise.} \end{cases}$$

- $\mathcal{M}_s(\Sigma) := \{U\Sigma V^T | U \in \mathcal{O}(m), V \in \mathcal{O}(n)\}$
 - \diamond Contains all matrices in $R^{m \times n}$ whose singular values are precisely $\sigma_1^*, \ldots, \sigma_n^*$.
- $\bullet \ \mathcal{B} := \{B(c) | c \in \mathbb{R}^n\}.$
- Solving the ISVP \equiv Finding an intersection of the two sets $\mathcal{M}_s(\Sigma)$ and \mathcal{B} .

A Continuous Approach

Assume

$$\diamond \langle B_i, B_j \rangle = \delta_{ij} \text{ for } 1 \le i \le j \le n.$$

 $\diamond \langle B_0, B_k \rangle = 0 \text{ for } 1 \le k \le n.$

• The projection of X onto the linear subspace spanned by B_1, \ldots, B_n :

$$P(X) = \sum_{k=1}^{n} \langle X, B_k \rangle B_k.$$

• The distance from X to the affine subspace \mathcal{B} :

$$dist(X, \mathcal{B}) = ||X - (B_0 + P(X))||.$$

• Define, for any $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$, a residual matrix:

$$R(U, V) := U\Sigma V^T - (B_0 + P(U\Sigma V^T)).$$

• Consider the optimization problem:

Minimize
$$F(U, V) := \frac{1}{2} ||R(U, V)||^2$$

Subject to $(U, V) \in \mathcal{O}(m) \times \mathcal{O}(n)$.

Compute the Projected Gradient

• Frobenius inner product on $R^{m \times m} \times R^{n \times n}$:

$$\langle (A_1, B_1), (A_2, B_2) \rangle := \langle A_1, A_2 \rangle + \langle B_1, B_2 \rangle.$$

• The gradient ∇F may be interpreted as the pair of matrices:

$$\nabla F(U, V) = (R(U, V)V\Sigma^T, R(U, V)^TU\Sigma).$$

• Tangent space can be split:

$$\mathcal{T}_{(U,V)}(\mathcal{O}(m) \times \mathcal{O}(n)) = \mathcal{T}_U \mathcal{O}(m) \times \mathcal{T}_V \mathcal{O}(n).$$

• Projection is easy because:

$$R^{n \times n} = T_V \mathcal{O}(n) \oplus T_V \mathcal{O}(n)^{\perp}$$
$$= V \mathcal{S}(n)^{\perp} \oplus V \mathcal{S}(n)$$

• Project the gradient $\nabla F(U, V)$ onto the tangent space $\mathcal{T}_{(U,V)}(\mathcal{O}(m) \times \mathcal{O}(n))$:

$$\begin{split} g(U,V) &= \\ \left(\frac{R(U,V)V\Sigma^TU^T - U\Sigma V^TR(U,V)^T}{2}U, \\ \frac{R(U,V)^TU\Sigma V^T - V\Sigma^TU^TR(U,V)}{2}V\right). \end{split}$$

• Descent vector field:

$$\frac{d(U,V)}{dt} = -g(U,V)$$

defines a steepest descent flow on the manifold $\mathcal{O}(m) \times \mathcal{O}(n)$ for the objective function F(U, V).

The Differential Equation on $\mathcal{M}_s(\Sigma)$

• Define

$$X(t) := U(t)\Sigma V(t)^{T}.$$

 \bullet X(t) satisfies the differential system:

$$\frac{dX}{dt} = X \frac{X^{T}(B_0 + P(X)) - (B_0 + P(X))^{T}X}{2} - \frac{X(B_0 + P(X))^{T} - (B_0 + P(X))^{T}X}{2}X.$$

- X(t) moves on the iso-singular-value surface $\mathcal{M}_s(\Sigma)$ in the steepest descent direction to minimize $dist(X(t), \mathcal{B})$.
- This is a continuous method for the ISVP.

Remarks

- No assumption on the multiplicity of singular values is needed.
- Any tangent vector T(X) to $\mathcal{M}_s(\Sigma)$ at a point $X \in \mathcal{M}_s(\Sigma)$ about which a local chart can be defined must be of the form

$$T(X) = XK - HX$$

for some skew symmetric matrices $H \in \mathbb{R}^{m \times m}$ and $K \in \mathbb{R}^{n \times n}$.

An Iterative Approach for ISVP

- An analogous Newton iteration for PIEP has been discussed.
- Assume
 - \diamond Matrices B_0, B_1, \ldots, B_n are arbitrary.
 - \diamond All singular values $\sigma_1^*, \ldots, \sigma_n^*$ are positive and distinct.
- Given $X^{(\nu)} \in \mathcal{M}_s(\Sigma)$
 - \diamond There exist $U^{(\nu)} \in \mathcal{O}(m)$ and $V^{(\nu)} \in \mathcal{O}(n)$ such that

$$U^{(\nu)T}X^{(\nu)}V^{(\nu)} = \Sigma.$$

- \diamond Seek a \mathcal{B} -intercept $B(c^{(\nu+1)})$ of a line that is tangent to the manifold $\mathcal{M}_s(\Sigma)$ at $X^{(\nu)}$.
- \diamond Lift the matrix $B(c^{(\nu+1)}) \in \mathcal{B}$ to a point $X^{(\nu+1)} \in \mathcal{M}_s(\Sigma)$.

Find the Intercept

- Find
 - \diamond Skew-symmetric matrices $H^{(\nu)} \in \mathbb{R}^{m \times m}$ and $K^{(\nu)} \in \mathbb{R}^{n \times n}$, and
 - \diamond A vector $c^{(\nu+1)} \in \mathbb{R}^n$,

such that

$$X^{(\nu)} + X^{(\nu)}K^{(\nu)} - H^{(\nu)}X^{(\nu)} = B(c^{(\nu+1)})$$

• Equivalently,

$$\Sigma + \Sigma \tilde{K}^{(\nu)} - \tilde{H}^{(\nu)} \Sigma = U^{(\nu)}^T B(c^{(\nu+1)}) V^{(\nu)}$$

♦ Underdetermined skew-symmetric matrices:

$$\tilde{H}^{(\nu)} := U^{(\nu)^T} H^{(\nu)} U^{(\nu)},$$

 $\tilde{K}^{(\nu)} := V^{(\nu)^T} K^{(\nu)} V^{(\nu)}.$

• Can determine $c^{(\nu+1)}$, $H^{(\nu)}$ and $K^{(\nu)}$ separately.

- Totally $\frac{m(m-1)}{2} + \frac{n(n-1)}{2} + n$ unknowns the vector $c^{(\nu+1)}$ and the skew matrices $\tilde{H}^{(\nu)}$ and $\tilde{K}^{(\nu)}$.
- Only mn equations.
- Observe: $\tilde{H}_{ij}^{(\nu)}$, $n+1 \le i \ne j \le m$,
 - $\diamondsuit \frac{(m-n)(m-n-1)}{2}$ unknowns.
 - \diamond Locate at the lower right corner of $\tilde{H}^{(\nu)}$.
 - ♦ Are not bound to any equations at all.
 - ♦ Set

$$\tilde{H}_{ij}^{(\nu)} = 0 \text{ for } n+1 \le i \ne j \le m.$$

• Denote

$$W^{(\nu)} := U^{(\nu)^T} B(c^{(\nu+1)}) V^{(\nu)}.$$

Then

$$W_{ij}^{(\nu)} = \Sigma_{ij} + \Sigma_{ii}\tilde{K}_{ij}^{(\nu)} - \tilde{H}_{ij}^{(\nu)}\Sigma_{jj},$$

Determine $c^{(\nu+1)}$

• For $1 \le i = j \le n$, $J^{(\nu)}c^{(\nu+1)} = \sigma^* - b^{(\nu)}$

♦ Know quantities:

$$J_{st}^{(\nu)} := u_s^{(\nu)}{}^T B_t v_s^{(\nu)}, \text{ for } 1 \le s, t \le n,$$

$$\sigma^* := (\sigma_1^*, \dots, \sigma_n^*)^T,$$

$$b_s^{(\nu)} := u_s^{(\nu)}{}^T B_0 v_s^{(\nu)}, \text{ for } 1 \le s \le n.$$

$$u_s^{(\nu)} = \text{column vectors of } U^{(\nu)},$$

$$v_s^{(\nu)} = \text{column vectors of } V^{(\nu)}.$$

- The vector $c^{(\nu+1)}$ is obtained.
- $c^{(\nu+1)} \Rightarrow W^{(\nu)}$.

Determine $H^{(\nu)}$ and $K^{(\nu)}$

• For $n+1 \le i \le m$ and $1 \le j \le n$,

$$\tilde{H}_{ij}^{(\nu)} = -\tilde{H}_{ji}^{(\nu)} = -\frac{W_{ij}^{(\nu)}}{\sigma_j^*}.$$

• For $1 \le i < j \le n$,

$$W_{ij}^{(\nu)} = \Sigma_{ii} \tilde{K}_{ij}^{(\nu)} - \tilde{H}_{ij}^{(\nu)} \Sigma_{jj},$$

$$W_{ji}^{(\nu)} = \Sigma_{jj} \tilde{K}_{ji}^{(\nu)} - \tilde{H}_{ji}^{(\nu)} \Sigma_{ii}$$

$$= -\Sigma_{jj} \tilde{K}_{ij}^{(\nu)} + \tilde{H}_{ij}^{(\nu)} \Sigma_{ii}.$$

Solving for $\tilde{H}_{ij}^{(\nu)}$ and $\tilde{K}_{ij}^{(\nu)} \Rightarrow$

$$\tilde{H}_{ij}^{(\nu)} = -\tilde{H}_{ji}^{(\nu)} = \frac{\sigma_i^* W_{ji}^{(\nu)} + \sigma_j^* W_{ij}^{(\nu)}}{(\sigma_i^*)^2 - (\sigma_j^*)^2},$$

$$\tilde{K}_{ij}^{(\nu)} = -\tilde{K}_{ji}^{(\nu)} = \frac{\sigma_i^* W_{ij}^{(\nu)} + \sigma_j^* W_{ji}^{(\nu)}}{(\sigma_i^*)^2 - (\sigma_j^*)^2}.$$

• The intercept is now completely found.

Find the Lift-Up

• Define orthogonal matrices

$$R := (I + \frac{H^{(\nu)}}{2})(I - \frac{H^{(\nu)}}{2})^{-1},$$

$$S := (I + \frac{K^{(\nu)}}{2})((I - \frac{K^{(\nu)}}{2})^{-1}.$$

• Define the lifted matrix on $\mathcal{M}_s(\Sigma)$:

$$X^{(\nu+1)} := R^T X^{(\nu)} S.$$

• Observe

$$X^{(\nu+1)} \approx R^T(e^{H^{(\nu)}}B(c^{(\nu+1)})e^{-K^{(\nu)}})S$$

and

$$R^T e^{H^{(\nu)}} \approx I_m$$

 $e^{-K^{(\nu)}} S \approx I_n,$

if $||H^{(\nu)}||$ and $||K^{(\nu)}||$ are small.

- For computation,
 - ♦ Only need orthogonal matrices

$$U^{(\nu+1)} := R^T U^{(\nu)} V^{(\nu+1)} := S^T V^{(\nu)}.$$

 \diamond Does not need to form $X^{(\nu+1)}$ explicitly.

Quadratic Convergence

- Measure the discrepancy between $(U^{(\nu)}, V^{(\nu)}) \in \mathbb{R}^{m \times m} \times \mathbb{R}^{n \times n}$ in the induced Frobenius norm.
- Observe:
 - ♦ Suppose:
 - \triangleright The ISVP has an exact solution at c^* .
 - \triangleright SVD of $B(c^*) = \hat{U}\Sigma\hat{V}^T$.
 - ♦ Define error matrix::

$$E := (E_1, E_2) := (U - \hat{U}, V - \hat{V}).$$

$$\diamond$$
 If $U\hat{U}^T = e^H$ and $V\hat{V}^T = e^K$, then

$$U\hat{U}^{T} = (E_{1} + \hat{U})\hat{U}^{T}$$

$$= I_{m} + E_{1}\hat{U}^{T}$$

$$= e^{H} = I_{m} + H + O(||H||^{2}).$$

and a similar expression for $V\hat{V}^T$.

♦ Thus,

$$||(H, K)|| = O(||E||).$$

• At the ν -th stage, define

$$E^{(\nu)} := (E_1^{(\nu)}, E_2^{(\nu)}) = (U^{(\nu)} - \hat{U}, V^{(\nu)} - \hat{V}).$$

- How far is $U^{(\nu)T}B(c^*)V^{(\nu)}$ away from Σ ?
 - ♦ Write

$$U^{(\nu)T}B(c^*)V^{(\nu)} := e^{-\hat{H}^{(\nu)}} \Sigma e^{\hat{K}^{(\nu)}}$$
$$:= (U^{(\nu)T}e^{-H_*^{(\nu)}}U^{(\nu)}) \Sigma (V^{(\nu)T}e^{K_*^{(\nu)}}V^{(\nu)})$$

with

$$H_*^{(\nu)} := U^{(\nu)} \hat{H}^{(\nu)} U^{(\nu)T},$$

$$K_*^{(\nu)} := V^{(\nu)} \hat{K}^{(\nu)} V^{(\nu)T},$$

♦ Then

$$e^{H_*^{(\nu)}} = U^{(\nu)} \hat{U}^T,$$

 $e^{K_*^{(\nu)}} = V^{(\nu)} \hat{V}^T.$

♦ So

$$||(H_*^{(\nu)}, K_*^{(\nu)})|| = O(||E^{(\nu)}||).$$

♦ Norm invariance under orthogonal transformations
 ⇒

$$||(\hat{H}^{(\nu)}, \hat{K}^{(\nu)})|| = O(||E^{(\nu)}||).$$

• Rewrite

$$U^{(\nu)}^T B(c^*) V^{(\nu)} = \Sigma + \Sigma \hat{K}^{(\nu)} - \hat{H}^{(\nu)} \Sigma + O(\|E^{(\nu)}\|^2).$$

• Compare:

$$U^{(\nu)^{T}}(B(c^{*}) - B(c^{(\nu+1)}))V^{(\nu)}$$

$$= \Sigma(\hat{K}^{(\nu)} - \tilde{K}^{(\nu)}) - (\hat{H}^{(\nu)} - \tilde{H}^{(\nu)})\Sigma$$

$$+ O(||E^{(\nu)}||^{2}).$$

• Diagonal elements \Rightarrow

$$J^{(\nu)}(c^* - c^{(\nu+1)}) = O(||E^{(\nu)}||^2).$$

♦ Thus

$$||c^* - c^{(\nu+1)}|| = O(||E^{(\nu)}||^2).$$

• Off-diagonal elements \Rightarrow

$$||\hat{H}^{(\nu)} - \tilde{H}^{(\nu)}|| = O(||E^{(\nu)}||^2), ||\hat{K}^{(\nu)} - \tilde{K}^{(\nu)}|| = O(||E^{(\nu)}||^2).$$

♦ Therefore,

$$||(\tilde{H}^{(\nu)}, \tilde{K}^{(\nu)})|| = O(||E^{(\nu)}||).$$

• Together,

$$||H^{(\nu)} - H_*^{(\nu)}|| = O(||E^{(\nu)}||^2),$$

$$||K^{(\nu)} - K_*^{(\nu)}|| = O(||E^{(\nu)}||^2).$$

• Observe:

$$\begin{split} E_1^{(\nu+1)} &:= U^{(\nu+1)} - \hat{U} = R^T U^{(\nu)} - e^{-H_*^{(\nu)}} U^{(\nu)} \\ &= \left[(I - \frac{H^{(\nu)}}{2}) - (I - H_*^{(\nu)} + O(||H_*^{(\nu)}||^2) \right] \\ &\quad (I + \frac{H^{(\nu)}}{2}) \right] (I + \frac{H^{(\nu)}}{2})^{-1} U^{(\nu)} \\ &= \left[H_*^{(\nu)} - H^{(\nu)} + O(||H_*^{(\nu)}H^{(\nu)}|| + ||H^{(\nu)}||^2) \right] (I + \frac{H^{(\nu)}}{2})^{-1} U^{(\nu)}. \end{split}$$

♦ It is clear now that

$$||E_1^{(\nu+1)}|| = O(||E^{(\nu)}||^2).$$

- A similar argument works for $E_2^{(\nu+1)}$.
- We have proved that

$$||E^{(\nu+1)}|| = O(||E^{(\nu)}||^2).$$

Multiple Singular Values

- Previous definition in finding the \mathcal{B} -intercept of a tangent line of $\mathcal{M}_s(\Sigma)$ allows
 - ♦ No zero singular values.
 - ♦ No multiple singular values.
- Now assume
 - ♦ All singular values are positive.
 - \diamond Only the first singular value σ_1^* is multiple, with multiplicity p.

- Observe:
 - ♦ All formulas work, except
 - \triangleright For $1 \le i < j \le p$, only know

$$W_{ij}^{(\nu)} + W_{ji}^{(\nu)} = 0.$$

- \triangleright No values for $\tilde{H}_{ij}^{(\nu)}$ and $\tilde{K}_{ij}^{(\nu)}$ can be determined.
- \triangleright Additional $q:=\frac{p(p-1)}{2}$ equations for the vector $c^{(\nu+1)}$ arise.
- Multiple singular values gives rise to an overdetermined system for $c^{(\nu+1)}$.
 - \diamond Tangent lines from $\mathcal{M}_s(\Sigma)$ may not intercept the affine subspace \mathcal{B} at all.
 - ♦ The ISVP needs to be modified.

Modified ISVP

- Given
 - \diamond Positive values $\sigma_1^* = \ldots = \sigma_p^* > \sigma_{p+1}^* > \ldots > \sigma_{n-q}^*$,
- Find
 - \diamond Real values of c_1, \ldots, c_n ,
 - \diamond The n-q largest singular values of the matrix matrix B(c) are $\sigma_1^*, \ldots, \sigma_{n-q}^*$.

Find the Intercept

• Use the equation

$$\hat{\Sigma} + \hat{\Sigma}\tilde{K}^{(\nu)} - \tilde{H}^{(\nu)}\hat{\Sigma} = U^{(\nu)T}B(c^{(\nu+1)}V^{(\nu)})$$

to find the \mathcal{B} -intercept where

♦ The diagonal matrix

$$\hat{\Sigma} := diag\{\sigma_1^*, \dots, \sigma_{n-q}^*, \hat{\sigma}_{n-q+1}, \dots, \hat{\sigma}_n\}$$

 \diamond Additional singular values $\hat{\sigma}_{n-q+1}, \ldots, \hat{\sigma}_n$ are free parameters.

The Algorithm

Given $U^{(\nu)} \in \mathcal{O}(m)$ and $V^{(\nu)} \in \mathcal{O}(n)$,

• Solve for $c^{(\nu+1)}$ from the system of equations:

$$\sum_{k=1}^{n} \left(u_i^{(\nu)T} B_k v_i^{(\nu)} \right) c_k^{(\nu+1)} = \sigma_i^* - u_i^{(\nu)T} B_0 v_i^{(\nu)},$$
for $i = 1, \dots, n - q$

$$\sum_{k=1}^{n} \left(u_s^{(\nu)T} B_k v_t^{(\nu)} + u_t^{(\nu)T} B_k v_s^{(\nu)} \right) c_k^{(\nu+1)} =$$

$$-u_s^{(\nu)T} B_0 v_t^{(\nu)} - u_t^{(\nu)T} B_0 v_s^{(\nu)},$$
for $1 \le s < t \le p$.

• Define $\hat{\sigma}_k^{(\nu)}$ by

$$\hat{\sigma}_k^{(\nu)} := \begin{cases} \sigma_k^*, & \text{if } 1 \leq k \leq n - q; \\ u_k^{(\nu)T} B(c^{(\nu+1)}) v_k^{(\nu)}, & \text{if } n - q < k \leq n \end{cases}$$

• Once $c^{(\nu+1)}$ is determined, calculate $W^{(\nu)}$.

- ullet Define skew symmetric matrices $\tilde{K}^{(\nu)}$ and $\tilde{H}^{(\nu)}$:
 - \diamond For $1 \leq i < j \leq p$, the equation to be satisfied is

$$W_{ij}^{(\nu)} = \hat{\sigma}_i^{(\nu)} \tilde{K}_{ij}^{(\nu)} - \tilde{H}_{ij}^{(\nu)} \hat{\sigma}_j^{(\nu)}.$$

 \triangleright Many ways to define $\tilde{K}_{ij}^{(\nu)}$ and $\tilde{H}_{ij}^{(\nu)}$.

$$\triangleright$$
 Set $\tilde{K}_{ij}^{(\nu)} \equiv 0$ for $1 \le i < j \le p$.

 $\diamond \tilde{K}^{(\nu)}$ is defined by

$$\tilde{K}_{ij}^{(\nu)} := \begin{cases} \frac{\hat{\sigma}_{i}^{(\nu)} W_{ij}^{(\nu)} + \hat{\sigma}_{j}^{(\nu)} W_{ji}^{(\nu)}}{(\hat{\sigma}_{i}^{(\nu)})^{2} - (\hat{\sigma}_{j}^{(\nu)})^{2}}, & \text{if } 1 \leq i < j \leq n; \ p < j; \\ 0, & \text{if } 1 \leq i < j \leq p \end{cases}$$

 $\diamond \tilde{H}^{(\nu)}$ is defined by

$$\tilde{H}_{ij}^{(\nu)} := \begin{cases} -\frac{W_{ij}^{(\nu)}}{\hat{\sigma}_{j}^{(\nu)}}, & \text{if } 1 \leq i < j \leq p; \\ -\frac{W_{ij}^{(\nu)}}{\hat{\sigma}_{j}^{(\nu)}}, & \text{if } n+1 \leq i \leq m; \ 1 \leq j \leq n; \\ \frac{\hat{\sigma}_{i}^{(\nu)}W_{ji}^{(\nu)} + \hat{\sigma}_{j}^{(\nu)}W_{ij}^{(\nu)}}{(\hat{\sigma}_{i}^{(\nu)})^{2} - (\hat{\sigma}_{j}^{(\nu)})^{2}}, & \text{if } 1 \leq i < j \leq n; \ p < j; \\ 0, & \text{if } n+1 \leq i \neq j \leq m. \end{cases}$$

• Once $\tilde{H}^{(\nu)}$ and $\tilde{K}^{(\nu)}$ are determined, proceed the lifting in the same way as for the ISVP.

Remarks

- No longer on a fixed manifold $\mathcal{M}_s(\Sigma)$ since $\hat{\Sigma}$ is changed per step.
- The algorithm for multiple singular value case converges quadratically.

Zero Singular Value

- Zero singular value \Rightarrow rank deficiency.
- Finding a lower rank matrix in a generic affine subspace \mathcal{B} is intuitively a more difficult problem.
- More likely the ISVP does not have a solution.
- Consider the simplest case where $\sigma_1^* > \ldots > \sigma_{n-1}^* > \sigma_n^* = 0$.
 - \diamond Except for \tilde{H}_{in} (and \tilde{H}_{ni}), $i = n + 1, \ldots, m$, all other quantities including $c^{(\nu+1)}$ are well-defined.
 - ♦ It is necessary that

$$W_{in}^{(\nu)} = 0 \text{ for } i = n + 1, \dots, m.$$

 \diamond If the necessary condition fails, then no tangent line of $\mathcal{M}_s(\Sigma)$ from the current iterate $X^{(\nu)}$ will intersect the affine subspace \mathcal{B} .

Example of the Continuous Approach

- Integrator Subroutine ODE (Shampine et al, '75).
 - \diamond ABSERR and RELERR = 10^{-12} .
 - ♦ Output values examined at interval of 10.
- Two consecutive output points differ by less than 10^{-10} \Rightarrow Convergence.
- Stable equilibrium point is not necessarily a solution to the ISVP.
- Change to different initial value X(0) if necessary.

Example of the Iterative Approach

- Easy implementation by MATLAB.
 - \diamond Consider the case when m=5 and n=4.
 - ♦ Randomly generated basis matrices by the Gaussian distribution.
- Numerical experiment meant solely to examine the behavior of quadratic convergence.
 - \diamond Randomly generate a vector $c^{\#} \in \mathbb{R}^4$.
 - \diamond Singular values of $B(c^{\#})$ used as the prescribed singular values.
 - \diamond Perturb each entry of $c^{\#}$ by a uniform distribution between -1 and 1.
 - ♦ Use the perturbed vector as the initial guess.

Observations

- The limit point c^* is not necessary the same as the original vector $c^{\#}$.
- Singular values of $B(c^*)$ do agree with those of $B(c^\#)$.
- Differences between singular values of $B(c^{(\nu)})$ and $B(c^*)$ are measured in the 2-norm.
- Quadratic convergence is observed.

Example of Multiple Singular Values

- Construction of an example is not trivial.
 - ♦ Same basis matrices as before.
 - \diamond Assume p=2.
 - \diamond Prescribed singular values $\sigma^* = (5, 5, 2)^T$.
 - \diamond Initial guess of $c^{(0)}$ is searched by trials
- The order of singular values could be altered.
 - ♦ The value 5 is no longer the largest singular value.
 - \diamond Unless the initial guess $c^{(0)}$ is close enough to an exact solution c^* , no reason to expect that the algorithm will preserve the ordering.
 - \diamond Once convergence occurs, then σ^* must be part of the singular values of the final matrix.
- At the initial stage the convergence is slow, but eventually the rate is picked up and becomes quadratic.

Inverse Singualar/Eigenvalue Problem

- Overview
- A Recursive Algorithm
- The Matrix Structure
- Numerical Experiment

Overview

- The Schur-Horn Theorem gives the connection between diagonal entries and eigenvalues of a Hermitian matrix.
- The Mirsky Theorem gives a connection between diagonal entries and eigenvalues of a general matrix.
- The Sing-Thompson Theorem gives the connection between diagonal entries and singular values of a general matrix.
- What is the connection between singular values and eigenvalues of a matrix?
 - ♦ singular value = |eigenvalue|, if Hermitian matrices.
 - ♦ How about general matrices?
- Can we create matrices with prescribed singular values and eigenvalues?
 - ♦ Desirable for test matrices.

Weyl-Horn Theorem

- Given vectors $\lambda \in C^n$ and $\alpha \in \mathbb{R}^n$,
 - ♦ Assume

$$|\lambda_1| \geq \ldots \geq |\lambda_n|,$$

 $\alpha_1 \geq \ldots \geq \alpha_n.$

 \diamond Then a matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ and singular values $\alpha_1, \ldots, \alpha_n$ exists if and only if

$$\prod_{j=1}^{k} |\lambda_j| \leq \prod_{j=1}^{k} \alpha_j, \quad k = 1, \dots, n-1,$$

$$\prod_{j=1}^{n} |\lambda_j| = \prod_{j=1}^{n} \alpha_j.$$

 \triangleright If $|\lambda_n| > 0$, then $\log \alpha$ majorizes $\log |\lambda|$.

• How to solve the inverse singular eigenvalue problem numerically?

A Recursive Algorithm

- \bullet The Building Block 2 × 2 Case
- The Original Proof by Induction
- An Innocent Mistake
- A Recursive Clause in Programming

The 2×2 Case

• The Weyl-Horn Condition:

$$\begin{cases} |\lambda_1| \leq \alpha_1, \\ |\lambda_1| |\lambda_2| = \alpha_1 \alpha_2. \end{cases}$$

$$\downarrow \downarrow$$

$$\begin{cases} \alpha_2 \leq |\lambda_2| \leq |\lambda_1| \leq \alpha_1 \\ |\lambda_1|^2 + |\lambda_2|^2 \leq \alpha_1^2 + \alpha_2^2. \end{cases}$$

• The building block — A triangular matrix

$$A = \left[\begin{array}{cc} \lambda_1 & \mu \\ 0 & \lambda_2 \end{array} \right]$$

has singular value $\{\alpha_1, \alpha_2\}$ if and only if

$$\mu = \sqrt{\alpha_1^2 + \alpha_2^2 - |\lambda_1|^2 - |\lambda_2|^2}.$$

- $\diamond A$ is complex-valued when eigenvalues are complex.
- \diamond A stable way of computing μ :

$$\mu = \begin{cases} 0, & \text{if } |(\alpha_1 - \alpha_2)^2 - (|\lambda_1| - |\lambda_2|)^2| \le \epsilon \\ \sqrt{|(\alpha_1 - \alpha_2)^2 - (|\lambda_1| - |\lambda_2|)^2|}, & \text{otherwise.} \end{cases}$$

Ideas in Horn's Proof

- Reduce the original inverse problem to two problems of smaller sizes.
- Problems of smaller sizes are guaranteed to be solvable by the *induction hypothesis*.
- The subproblems are *affixed* together by working on a suitable 2×2 *corner*.
- The 2×2 problem has an explicit solution.

Key to the Algorithmic Success

- The eigenvalues and singular values of each of the two subproblems can be derived *explicitly*.
- Each of the two subproblems can further be down-sized.
- The original problem is *divided* into subproblems of size 2×2 or 1×1 .
- The smaller problems can be *conquered* to build up the original size.
- In an environment that allows a subprogram to invoke itself recursively, only one-step of the divide-and-conquer procedure will be enough.
- Very similar to the radix-2 FFT \Longrightarrow fast algorithm.

Outline of Proof

- Suppose $\alpha_i > 0$ for all $i = 1, \ldots, n$. So $\lambda_i \neq 0$ for all i.
 - ♦ The case of zero singular values can be handled in a similar way.
- Define

$$\begin{cases} \sigma_1 := \alpha_1, \\ \sigma_i := \sigma_{i-1} \frac{\alpha_i}{|\lambda_i|}, & \text{for } i = 2, \dots, n-1. \end{cases}$$

- \diamond Assume $\sigma := \min_{1 \leq i \leq n-1} \sigma_i$ occurs at the index j.
- Define

$$\rho := \frac{|\lambda_1 \lambda_n|}{\sigma}.$$

• The following three sets of inequalities are true. The numbers satisfy the Weyl-Horn conditions.

$$\begin{cases} |\lambda_{1}| \geq |\lambda_{n}|, \\ \sigma \geq \rho. \end{cases}$$

$$\begin{cases} \sigma \geq |\lambda_{2}| \geq \dots \geq |\lambda_{j}|, \\ \alpha_{1} \geq \alpha_{2} \geq \dots \geq \alpha_{j}. \end{cases}$$

$$\begin{cases} |\lambda_{j+1}| \geq \dots \geq |\lambda_{n-1}| \geq \rho, \\ \alpha_{j+1} \geq \dots \geq \alpha_{n-1} \geq \alpha_{n}. \end{cases}$$

- By induction hypothesis,
 - \diamond There exist unitary matrices $U_1, V_1 \in C^{j \times j}$ and triangular matrices A_1 such that

$$U_{1} \begin{bmatrix} \alpha_{1} & 0 & \dots & 0 \\ 0 & \alpha_{2} & & 0 \\ \vdots & \ddots & & & \\ 0 & 0 & \dots & \alpha_{j} \end{bmatrix} V_{1}^{*} = A_{1} = \begin{bmatrix} \sigma & \times & \times & \dots & \times \\ 0 & \lambda_{2} & & & \times \\ & & \ddots & & & \\ \vdots & & & \ddots & & \\ 0 & 0 & & & \lambda_{j} \end{bmatrix}.$$

 \diamond There exist unitary matrices $U_2, V_2 \in C^{(n-j)\times(n-j)}$, and triangular matrix A_2 such that

$$U_{2} \begin{bmatrix} \alpha_{j+1} & 0 & \dots & 0 \\ 0 & \alpha_{j+2} & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \alpha_{n} \end{bmatrix} V_{2}^{*} = A_{2} = \begin{bmatrix} \lambda_{j+1} \times \dots \times \times \\ 0 & \lambda_{j+2} & \times \\ \vdots & \ddots & \vdots \\ & \lambda_{n-1} \times \\ 0 & 0 & \dots & 0 & \rho \end{bmatrix}.$$

Horn's claim: The block matrix

$$\left[\begin{array}{c} A_1 & \bigcirc \\ \bigcirc & A_2 \end{array}\right]$$

can be *permuted* to the triangular matrix

• The 2×2 corner can now be glued together by

$$U_0 \begin{bmatrix} \sigma & 0 \\ 0 & \rho \end{bmatrix} V_0^* = A_0 = \begin{bmatrix} \lambda_1 & \mu \\ 0 & \lambda_n \end{bmatrix}.$$

- How to do the permutation, or is it a mistake?
 - ♦ It takes more than permutation to rearrange the diagonals of a triangular matrix.

A MATLAB Program

```
function [A]=svd_eig(alpha,lambda);
n = length(alpha);
if n == 1
                                        % The 1 by 1 case
  A = [lambda(1)];
elseif n == 2
                                        % The 2 by 2 case
  [U,V,A] = two_by_two(alpha,lambda);
else
                                        % Check zero singular values
  tol = n*alpha(1)*eps;
  k = sum(alpha > tol); m = sum(abs(lambda) > tol);
  if k == n
                                        % Nonzero singular values
     j = 1; s = alpha(1); temp = s;
     for i = 2:n-1
        temp = temp*alpha(i)/abs(lambda(i));
        if temp < s, j = i; s = temp; end
     end
     rho = abs(lambda(1)*lambda(n))/s;
     [U0,V0,A0] = two_by_two([s;rho],[lambda(1);lambda(n)]);
[A1] = svd_eig(alpha(1:j),[s;lambda(2:j)]);
                                                    % RECURSIVE %
     [A2] = svd_eig(alpha(j+1:n),[lambda(j+1:n-1);rho]); % CALLING %
A = [A1, zeros(j,n-j); zeros(n-j,j), A2];
     Temp = A;
        A(1,:)=UO(1,1)*Temp(1,:)+UO(1,2)*Temp(n,:);
        A(n,:)=U0(2,1)*Temp(1,:)+U0(2,2)*Temp(n,:);
     Temp = A;
        A(:,1)=VO(1,1)*Temp(:,1)+VO(1,2)*Temp(:,n);
        A(:,n)=VO(2,1)*Temp(:,1)+VO(2,2)*Temp(:,n);
  else
                                        % Zero singular values
     beta = prod(abs(lambda(1:m)))/prod(alpha(1:m-1));
     [U3,V3,A3] = svd_eig([alpha(1:m-1);beta],lambda(1:m));
     A = zeros(n); A(1:m,1:m) = V3'*A3*V3;
     for i = m+1:k, A(i,i+1) = alpha(i); end
     A(m,m+1) = sqrt(abs(alpha(m)^2-beta^2));
  end
end
```

Matrix Structure

- A Modified Proof
- A Symbolic Example

Correct the "Mistake"

• Horn's requirement:

- \diamond Both intermediate matrices A_1 and A_2 are upper triangular matrices.
- ♦ Diagonal entries are arranged in a certain order.
 - ▶ Valid from the Schur decomposition theorem.
 - ▶ More than permutation, not easy for computation.
 - ➤ To rearrange diagonal entries via unitary similarity transformations while maintaining the upper triangular structure is expensive.

• Our contribution:

- ♦ The triangular structure is entirely unnecessary.
- \diamond The matrix A produced from our algorithm is generally not triangular.
- ♦ Do not need to rearrange the diagonal entries
- \diamond Modify the first and the last rows and columns of the block diagonal matrix $\begin{bmatrix} A_1 & \bigcirc \\ \bigcirc & A_2 \end{bmatrix}$, as if nothing happened, is enough.

• Algorithm:

- \diamond Denote $U_0 = [u_{0,st}]$ and $V_0 = [v_{0,st}]$.
- ♦ Then

$$\begin{bmatrix} u_{0,11} & 0 & u_{0,12} \\ 0 & I_{n-1} & 0 \\ u_{0,21} & 0 & u_{0,22} \end{bmatrix} \begin{bmatrix} U_1 & 0 \\ 0 & U_2 \end{bmatrix} \begin{bmatrix} \alpha_1 & 0 & \dots & 0 \\ 0 & \alpha_2 & 0 \\ \vdots & \ddots & \vdots \\ 0 & & \alpha_n \end{bmatrix} \begin{bmatrix} V_1^* & 0 \\ 0 & V_2^* \end{bmatrix} \begin{bmatrix} v_{0,11} & 0 & v_{0,12} \\ 0 & I_{n-1} & 0 \\ v_{0,21} & 0 & v_{0,22} \end{bmatrix}^*$$

is the desired matrix.

• A has the structure

- $\diamond \times =$ unchanged, original entries from A_1 or A_2 .
- $\diamond \otimes =$ entries of A_1 or A_2 that are modified by scalar multiplications.
- $\diamond * =$ possible new entries that were originally zero.

A Variation of Horn's Proof

- Does the algorithm really works?
 - \diamond Clearly, A has singular values $\{\alpha_1, \ldots, \alpha_n\}$.
 - \diamond Need to show that A has eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$.
- What has been changed?
- (P1) Diagonal entries of A_1 and A_2 are in fixed orders, $\sigma, \lambda_2, \ldots, \lambda_j$ and $\lambda_{j+1}, \ldots, \lambda_{n-1}, \rho$, respectively.
- (P2) Each A_i is similar through permutations, which need not to be known, to a lower triangular matrix whose diagonal entries constitute the same set as the diagonal entries of A_i . (Thus, each A_i has precisely its own diagonal entries as its eigenvalues.)
- (P3) The first row and the last row have the same zero pattern except that the lower-left corner is always zero.
- (P4) The first column and the last column have the same zero pattern except that the lower-left corner is always zero.
- Use graph theory to show that the affixed matrix A has exactly the same properties.

A Symbolic Example

• Dividing process:

$$\begin{cases} \lambda_1 \ \lambda_2 \ \lambda_3 \ \lambda_4 \ \lambda_5 \ \lambda_6 \\ \alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4 \ \alpha_5 \ \alpha_6 \end{cases}$$

$$j_1 = 5 \quad \psi \quad \begin{cases} \lambda_1 \ \lambda_6 \\ \sigma_1 \ \rho_1 \end{cases}$$

$$\begin{cases} \sigma_1 \ \lambda_2 \ \lambda_3 \ \lambda_4 \ \lambda_5 \\ \alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4 \ \alpha_5 \end{cases} \quad \begin{cases} \rho_1 \\ \alpha_6 \end{cases}$$

$$j_2 = 2 \quad \psi \quad \begin{cases} \sigma_1 \ \lambda_5 \\ \sigma_2 \ \rho_2 \end{cases}$$

$$\begin{cases} \sigma_2 \ \lambda_2 \\ \alpha_1 \ \alpha_2 \end{cases} \quad \begin{cases} \lambda_3 \ \lambda_4 \ \rho_2 \\ \alpha_3 \ \alpha_4 \ \alpha_5 \end{cases}$$

$$j_3 = 1 \quad \psi \quad \begin{cases} \lambda_3 \ \rho_2 \\ \sigma_3 \ \rho_3 \end{cases}$$

$$\begin{cases} \sigma_3 \\ \alpha_3 \end{cases} \quad \begin{cases} \lambda_4 \ \rho_3 \\ \alpha_4 \ \alpha_5 \end{cases}$$

• Conquering process:

Numerical Experiment

- The divide-and-conquer feature brings on fast computation.
- The overall cost is estimated at the order of $O(n^2)$.
- A numerical simulation:

Rosser Test

• Rosser matrix R:

$$R = \begin{bmatrix} 611 & 196 & -192 & 407 & -8 & -52 & -49 & 29 \\ 196 & 899 & 113 & -192 & -71 & -43 & -8 & -44 \\ -192 & 113 & 899 & 196 & 61 & 49 & 8 & 52 \\ 407 & -192 & 196 & 611 & 8 & 44 & 59 & -23 \\ -8 & -71 & 61 & 8 & 411 & -599 & 208 & 208 \\ -52 & -43 & 49 & 44 & -599 & 411 & 208 & 208 \\ -49 & -8 & 8 & 59 & 208 & 208 & 99 & -911 \\ 29 & -44 & 52 & -23 & 208 & 208 & -911 & 99 \end{bmatrix}$$

- ♦ Has one double eigenvalue, three nearly equal eigenvalues, one zero eigenvalue, two dominant eigenvalues of opposite sign and one small nonzero eigenvalue.
- \diamond The *computed* eigenvalues and singular values of R

$$\lambda = \begin{bmatrix} -1.020049018429997e + 03 \\ 1.020049018429997e + 03 \\ 1.0200000000000000e + 03 \\ 1.019901951359278e + 03 \\ 1.0000000000000001e + 03 \\ 9.99999999999998e + 02 \\ 9.804864072152601e - 02 \\ 4.851119506099622e - 13 \end{bmatrix}, \alpha = \begin{bmatrix} 1.020049018429997e + 03 \\ 1.020049018429996e + 03 \\ 1.02000000000000000e + 03 \\ 1.019901951359279e + 03 \\ 1.0000000000000000e + 03 \\ 9.999999999999998e + 02 \\ 9.804864072162672e - 02 \\ 1.054603342667098e - 14 \end{bmatrix}.$$

- Using the above λ and α ,
 - ♦ A nonsymmetric matrix is produced:

1.0200 <i>e</i> +03	0	0	0	0	0	0	0
0	-1.0200e + 03	0	0	0	0	0	0
0	0	$1.0200e\!+\!03$	0	0	0	0	0
0	0	0	1.0199e + 03	0	0	1.4668e-	-090
0	0	0	0	$1.0000e\!+\!03$	0	0	0
0	0	0	0	0	1.0000e + 03	0	0
0	0	0	-1.5257e -05	0	0	9.8049e	-020
0	0	0	0	0	0	1.4045e	-070

 \diamond The re-computed eigenvalues and singular values of A are

$$\hat{\lambda} = \begin{bmatrix} -1.020049018429997e + 03 \\ 1.020049018429997e + 03 \\ 1.020000000000000e + 03 \\ 1.019901951359278e + 03 \\ 1.0000000000000001e + 03 \\ 9.99999999999998e + 02 \\ 9.80486407215721e - 02 \\ 0 \end{bmatrix}, \hat{\alpha} = \begin{bmatrix} 1.020049018429997e + 03 \\ 1.02000000000000000e + 03 \\ 1.019901951359279e + 03 \\ 1.0000000000000001e + 03 \\ 9.99999999999998e + 02 \\ 9.804864072162672e - 02 \\ 0 \end{bmatrix}.$$

 \diamond The re-computed eigenvalues and singular values agree with those of R up to the machine accuracy.

Wilkinson Test

- Wilkinson's matrices:
 - ♦ All are symmetric and tridiagonal.
 - ♦ Have nearly, but not exactly, equal eigenvalue pairs.
- Using these data:
 - ♦ Discrepancy in eigenvalues and singular values between our constructed matrices and Wilkinson's matrices.
 - ♦ Matrices constructed are nearly but not symmetric.

Conclusion

- Weyl-Horn Theorem completely characterizes the relationship between eigenvalues and singular values of a general matrix.
- The original proof has been modified.
- With the aid of programming languages that allow a subprogram to invoke itself recursively, an induction proof can be implemented as a recursive algorithm.
- The resulting algorithm is fast. The cost of construction is approximately $O(n^2)$.
- The matrix being constructed usually is not symmetric and is complex-valued, if complex eigenvalues are present.
- Numerical experiment on some very challenging problems suggests that our method is quite robust.

Figure 11: History of the smallest singular value for Example 3.

Figure 12: log-log plot of computational flops versus problem sizes

Figure 13: L_2 norm of discrepancy in eigenvalues and singular values.

Figure 14: 3-D mesh representation of 21×21 matrices