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Overview

e The information of spectral constraint and the struc-
trual constraint may not be obtained precisely in prac-
tice.

e [t may occur in practice that one of the two constraints
should be enforced more critically than the other.

¢ Without the physical realizability, the physical sys-
tem simply cannot be built. So structrual constraint
is emphasized.

e [t may occur that one constraint could be more relaxed
than the other.

¢ For complex system there is no accurate way to mea-
sure the spectrum or to obtain the entire informa-
tion. Physical uncertainty can be tolerated up to a
certain degree.

e When the two constraints cannot be settled simultane-
ously, the IEP could be formulated in a least squares
setting.



Formulation 251

Formulation

e All IEP’s discussed so far have a natural generalization
to least squares formulation.

e Depends upon which constraint is to be enforced, there
are two ways to formulate the least squares IEP.
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Least Squares Approximating the Spectrum

e (Glven:

o Symmetric matrices A(d) € R™*"

o Real numbers AJ, -+ J
om < n,
e Solve:
min F(d, o) = Ao (d) — AD)?,
deR! o < ) ;< Z< ) z>

= [[As(d) — ALl

¢ 0 = a permutation;
o A = diag(A], ..., A%).
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Least Squares Approximating the Structure

o Let
o Af = diag(\}, ..., \").
o D,_p, = {diag matrices} C R=m)x(n=m),
o O(n) = {orthogonal matrices} C R"*"

e Define:

F::{Q[AO:’L AnO_m]QT\QEO() Ao € D, m}

e Given:

¢ Symmetric matrices A(d) R~
¢ Real numbers SN il
om < n,

® Solve:

dist(A(d),T) = min ||A(d) — B
deR! Bel
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Main Theorem

e At a global minimizer, LSIEP1 and LSIEP2 are equiv-
alent.

¢ Both problems have the same objective values.

. A _A>|< 2 — : A _B 2.
win [|A,(d) = A [lp = min | A(d) — Bl

o If di, o solve LSIEP1 and dy, B solve LSIEP2.
then
> dy = do,

> B = Q(d) [A* A(()

dy) ] Q<d1)T'
Qe = [ 0L
diag[ »(d1), Az(dy)] has same ordering as diag[A*,, Az(dy

g :=A{1,...,n} —o.
o If so

2 )2
min || A(d) — B} =Y A - X[
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One Particular Case

e Consider the special case where

1
A(d) == Ay + Z d;A; € A(d) (affine subspace)

i=1
e Lift & Project:
1. Find

7% = argmin || A(d™) — B||p  (Lift)
Bell
by the Wielandt-Hoffman Theorem!
2. Find
d*Y = argmin | Z%) — A(d)||r (Project)

deR!

by solving a linear system.

e The topology of I' is not clear. But Step 1 can be
accomplished by considering a “substructure”.

M= Q| oy | @1@ €O

which 1s known.
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Geometric Sketch

lift project - .
A(d ® )

= < | project

A \J
A(d (k+2) )

)
A(d (k+1) )

Figure 1: Geometry of life and projection.

e This a descent method!

|20 — A" D)||p < (|20 — AdS D)5

< (12" — A@d™)|r
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e Given d\.
e Fork=10,12,..

1. Compute Q(d*)) and A(d™).
2. Find 0 = {01, ..., 00 }. Form Az
3. (lift) Form

2 = Q(dM)diag(A*, As(d™))Q(d™))".

4. (Project) Compute d**1 from

[
Z < A, A]‘ > dl(lﬁ_l) =< Z(k) — Ay, Aj >

1=1

5. stop if [|[d**HD) — d)|| < €



