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Overview

• The information of spectral constraint and the struc-
trual constraint may not be obtained precisely in prac-
tice.

• It may occur in practice that one of the two constraints
should be enforced more critically than the other.

¦ Without the physical realizability, the physical sys-
tem simply cannot be built. So structrual constraint
is emphasized.

• It may occur that one constraint could be more relaxed
than the other.

¦ For complex system there is no accurate way to mea-
sure the spectrum or to obtain the entire informa-
tion. Physical uncertainty can be tolerated up to a
certain degree.

• When the two constraints cannot be settled simultane-
ously, the IEP could be formulated in a least squares
setting.
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Formulation

• All IEP’s discussed so far have a natural generalization
to least squares formulation.

• Depends upon which constraint is to be enforced, there
are two ways to formulate the least squares IEP.
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Least Squares Approximating the Spectrum

• Given:

¦ Symmetric matrices A(d) ∈ Rn×n,

¦ Real numbers λ∗
1, · · · , λ∗

m,

¦ m ≤ n,

• Solve:

min
d∈Rl,σ

F (d, σ) =

m∑
i=1

(λσi
(d) − λ∗

i )
2,

= ‖Λσ(d) − Λ∗
m‖2

F .

¦ σ := a permutation;

¦ Λ∗
m := diag(λ∗

1, ..., λ
∗
m).
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Least Squares Approximating the Structure

• Let

¦ Λ∗
m := diag(λ∗

1, ..., λ
∗
m).

¦ Dn−m := {diag matrices} ⊆ R(n−m)×(n−m).

¦ O(n) := {orthogonal matrices} ⊆ Rn×n

• Define:

Γ :=

{
Q

[
Λ∗

m 0
0 Λn−m

]
QT | Q ∈ O(n), Λn−m ∈ Dn−m

}
.

• Given:

¦ Symmetric matrices A(d) ∈ Rn×n,

¦ Real numbers λ∗
1, · · · , λ∗

m,

¦ m ≤ n,

• Solve:

dist(A(d), Γ) = min
d∈Rl,B∈Γ

‖A(d) − B‖2
F .
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Main Theorem

• At a global minimizer, LSIEP1 and LSIEP2 are equiv-
alent.

¦ Both problems have the same objective values.

min
d,σ

‖Λσ(d) − Λ∗
m‖2

F = min
d,B

‖A(d) − B‖2
F .

¦ If d1, σ solve LSIEP1 and d2, B solve LSIEP2,
then

. d1 = d2,

. B = Q(d1)

[
Λ∗

m 0
0 Λσ(d1)

]
Q(d1)

T .

· Q(d1)
TA(d1)Q(d1) =

[
Λσ(d1) 0

0 Λσ(d1)

]
.

· diag[Λσ(d1), Λσ(d1)] has same ordering as diag[Λ∗
m, Λσ(d1)

· σ := {1, ..., n} − σ.

¦ If so

min
d,B

‖A(d) − B‖2
F =

m∑
i=0

|λσi
− λ∗

i |2.
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One Particular Case

• Consider the special case where

A(d) := A0 +

l∑
i=1

diAi ∈ A(d) (affine subspace)

• Lift & Project:

1. Find

Z(k) := arg min
B∈Γ

‖A(d(k)) − B‖F (Lift)

by the Wielandt-Hoffman Theorem!

2. Find

d(k+1) := arg min
d∈Rl

‖Z(k) −A(d)‖F (Project)

by solving a linear system.

• The topology of Γ is not clear. But Step 1 can be
accomplished by considering a “substructure”.

Mk :=

{
Q

[
Λ∗

m 0
0 Λσ(d(k))

]
QT | Q ∈ O(n)

}

which is known.
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Geometric Sketch
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Figure 1: Geometry of life and projection.

• This a descent method!

‖Z(k+1) − A(d(k+1))‖F ≤ ‖Z(k) − A(d(k+1))‖F

≤ ‖Z(k) − A(d(k))‖F
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Algorithm

• Given d(0).

• For k = 0,1,2,...

1. Compute Q(d(k)) and Λ(d(k)).

2. Find σ = {σ1, ..., σm}. Form Λσ

3. (lift) Form

Z(k) = Q(d(k))diag(Λ∗, Λσ(d(k)))Q(d(k))T .

4. (Project) Compute d(k+1) from

l∑
i=1

< Ai, Aj > d
(k+1)
i =< Z(k) − A0, Aj > .

5. stop if ‖d(k+1) − d(k)‖ < ε


