Chapter 6

Partially Described Inverse Eigenvalue Problems

- Overview
- Generic Form
- PDIEP for Toeplitz Matrices

Overview

- The physical system is too complicated or the size is too large,
 - ♦ No reasonable analytical tools are available to evaluate the entire spectral information.
 - Through vibration tests where the excitation and the response of the structure at selected points are measured experimentally, there are identification techniques to extract a portion of eigenpair information from the measurements.
- It is unwise to use experimental values of high natural frequencies to reconstruct a model because a discrete model with n degrees of freedom can provide accurate values for only about $\frac{n}{3}$ natural frequencies.
- Eigenpair information sometimes provides additional intrinsic relationships. A few eigenpairs can determine much of the desirable reconstruction.

Generic Form

• Given

- \diamond Vectors $\{\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(k)}\} \subset \mathbb{F}^n$,
- \diamond Values $\{\lambda_1, \ldots, \lambda_k\} \subset \mathbb{F},$
- \diamond A set \mathcal{N} of structured matrices,

Find $X \in \mathcal{N}$ such that

$$X\mathbf{v}^{(i)} = \lambda_i \mathbf{v}^{(i)}, \quad , i = 1, \dots, k.$$

• Given

♦ Two sets of real vectors $\{x_1, \ldots, x_p\}$ and $\{y_1, \ldots, y_p\}$, $p \le n$,

 \diamond An arbitrary set of complex numbers $\mathcal{L} = \{\lambda_1, \ldots, \lambda_n\}$, Find a real matrix A such that

$$\begin{aligned} Ax_i &= y_i, \\ \sigma(A) &= \mathcal{L} \end{aligned}$$

• Open Question: How many pairs of information are needed to determine such a structured matrix?

PDIEP for Toeplitz Matrices

- Eigenvectors of a Toeplitz matrix have a special structure [8, 55, 113]:
 - ♦ Eigenvectors of any symmetric and centro-symmetric matrix must be either symmetric or skew-symmetric.
- The dimension of Toeplitz matrices with a single prescribed eigenvector in \mathbb{R}^n should be at least $\left[\frac{n+1}{2}\right]$ [85].
- The dimension of Toeplitz matrices with two prescribed eigenvectors is independent of n [75].
- Define

$$S(\mathbf{v}) := \{ \mathbf{c} \in \mathbb{R}^n | T(\mathbf{c})\mathbf{v} = \lambda \mathbf{v} \text{ for some } \lambda \in \mathbb{R} \},\$$

$$\pi(\mathbf{u}, \mathbf{v}) := \dim(S(\mathbf{u}) \bigcap S(\mathbf{v}))$$

• Let η denote the dimension of the affine subspace of symmetric Toeplitz matrices with two prescribed eigenpairs. Then for almost all eigenvectors **u** and **v**, and for any eigenvalues λ_1 and λ_2 , the pair $\pi(\mathbf{u}, \mathbf{v})/\eta$ is summarized in the following table.

n = odd (even)	symmetric	skew-symmetric
symmetric	2/0 (3/1)	2/0 (2/0)
skew-symmetric	2/0 (2/0)	4/0(3/1)

- \diamond The symmetric Toeplitz matrix is uniquely determined, if
 - $\triangleright n$ is odd and if at least one of the given eigenvectors is symmetric, or
 - $\triangleright n$ is even and one eigenvector is symmetric and the other is skew-symmetric.