Chapter 7

Spectrally Constrained Approximation

- Overview
- Reformulation
- Least Squares Approximation
- Toeplitz Inverse Eigenvalue Problem
- Eigenvalue Computation
- Simultaneous Reduction
- Nearest Normal Matrix Approximation
- Least squares approximations for various types of real and symmetric matrices subject to spectral constraints share a common structure.
- The projected gradient can be formulated explicitly.
- A descent flow can be followed numerically.
- The procedure can be extended to approximating general matrices subject to singular value constraints.
- Notation:

 $\mathcal{S}(n) := \{ \text{All real symmetric matrices} \}$ $\mathcal{O}(n) := \{$ All real orthogonal matrices $\}$ $||X|| :=$ Frobenius matrix norm of X Λ := A given matrix in $\mathcal{S}(n)$ $M(\Lambda) := \{Q^T \Lambda Q | Q \in \mathcal{O}(n)\}\$ \mathcal{V} := A single matrix or a subspace in $\mathcal{S}(n)$ $P(X) :=$ The projection of X into V Σ := A given general matrix in $R^{m \times n}$ $W(\Sigma) := \{Q_1 \Sigma Q_2 | Q_1 \in \mathcal{O}(m), Q_2 \in \mathcal{O}(n)\}\$ $U := A$ single matrix or a subspace in $\mathbb{R}^{m \times n}$

Spectrally Constrained Problem

Minimize
$$
F(X) := \frac{1}{2} ||X - P(X)||^2
$$

Subject to $X \in M(\Lambda)$

• Special cases:

- ¦ Problem A: Given a symmetric matrix, find its least squares approximation with prescribed spectrum.
- ¦ Problem B: Construct a symmetric Toeplitz matrix that has a prescribed set of eigenvalues.
- \diamond Problem C: Find the spectrum of a given a symmetric matrix.

Singular-Value Constrained Problem

Minimize
$$
F(X) := \frac{1}{2} ||X - P(X)||^2
$$

Subject to $X \in W(\Sigma)$

• Special cases:

- \Diamond Problem D: Given a general real $m \times n$ matrix, find its least square approximation that has a prescribed set of singular values.
- \diamond Problem E: Construct a general real $m \times n$ matrix, find its singular values.

Reformulation

• Idea:

- 1. $X \in M(\Lambda)$ satisfies the spectral constraint.
- 2. $P(X) \in V$ has the desirable structure in V.
- 3. Minimize the undesirable part $||X P(X)||$.
- Working with the parameter Q is easier:

Minimize
$$
F(Q) := \frac{1}{2} \langle Q^T \Lambda Q - P(Q^T \Lambda Q),
$$

 $Q^T \Lambda Q - P(Q^T \Lambda Q) \rangle$

Subject to $Q^T Q = I$

 $\Diamond \langle A, B \rangle = \text{trace}(AB^T)$ is the Frobenius inner product.

Feasible Set $O(n)$ & Gradient of F

- The set $O(n)$ is a regular surface.
- The tangent space of $O(n)$ at any orthogonal matrix Q is given by

$$
T_QO(n) = QK(n)
$$

where

$$
K(n) = \{ \text{All skew-symmetric matrices} \}.
$$

• The normal space of $O(n)$ at any orthogonal matrix Q is given by

$$
N_QO(n) = QS(n).
$$

• The Fréchet Derivative of F at a general matrix A acting on B :

$$
F'(A)B = 2\langle \Lambda A(A^T \Lambda A - P(A^T \Lambda A)), B \rangle.
$$

• The gradient of F at a general matrix A :

$$
\nabla F(A) = 2\Lambda A(A^T \Lambda A - P(A^T \Lambda A)).
$$

The Projected Gradient

• A splitting of
$$
R^{n \times n}
$$
:

$$
R^{n \times n} = T_Q O(n) + N_Q O(n)
$$

= $QK(n) + QS(n)$.

• A unique orthogonal splitting of $X \in R^{n \times n}$:

$$
X = Q \left\{ \frac{1}{2} (Q^T X - X^T Q) \right\} + Q \left\{ \frac{1}{2} (Q^T X + X^T Q) \right\}.
$$

• The projection of $\nabla F(Q)$ into the tangent space:

$$
g(Q) = Q\left\{\frac{1}{2}(Q^T \nabla F(Q) - \nabla F(Q)^T Q)\right\}
$$

= $Q[P(Q^T \Lambda Q), Q^T \Lambda Q].$

An Isospectral Descent Flow

• A descent flow on the manifold $O(n)$:

$$
\frac{dQ}{dt} = Q[Q^T \Lambda Q, P(Q^T \Lambda Q)].
$$

• A descent flow on the manifold $M(\Lambda)$:

$$
\frac{dX}{dt} = \frac{dQ^T}{dt} \Lambda Q + Q^T \Lambda \frac{dQ}{dt}
$$

$$
= [X, \underbrace{[X, P(X)]}_{k(X)}].
$$

• The entire concept can be obtained by utilizing the Riemannian geometry on the Lie group $O(n)$.

The Second Order Derivative

• Extend the projected gradient g to the function

$$
G(Z) := Z[P(Z^T \Lambda Z), Z^T \Lambda Z]
$$

for general matrix Z.

• The Fréchet derivative of G :

$$
G'(Z)H = H[P(Z^T \Lambda Z), Z^T \Lambda Z]
$$

+Z[P(Z^T \Lambda Z), Z^T \Lambda H + H^T \Lambda Z]
+Z[P'(Z^T \Lambda Z)(Z^T \Lambda H + H^T \Lambda Z), Z^T \Lambda Z].

 \bullet The projected Hessian at a critical point X = $Q^T\Lambda Q$ for the tangent vector QK with $K \in K(n)$:

$$
\begin{aligned} & \langle G'(Q)QK,QK\rangle = \\ & \langle [P(X),K]-P'(X)[X,K],[X,K]\rangle. \end{aligned}
$$

Least Squares Approximation

- Let the given matrix be \hat{A} and $\Lambda := \text{diag}\{\lambda_1, \ldots, \lambda_n\}.$ The projection is $P(X) = \hat{A}$.
- The projected gradient is given by:

$$
g(Q) = Q[\hat{A}, Q^T \Lambda Q].
$$

• The descent flow is given by the IVP:

$$
\frac{dX}{dt} = [[\hat{A}, X], X]
$$

$$
X(0) = \Lambda.
$$

Sorting Property

- Assume the given eigenvalues are $\lambda_1 > \ldots > \lambda_n$.
- Assume the eigenvalues of \hat{A} are $\mu_1 > \ldots > \mu_n$.
- Assume Q is a critical point on $O(n)$ and define

$$
X := Q^T \Lambda Q
$$

$$
E := Q \hat{A} Q^T.
$$

- The first order condition $[\hat{A}, X] = 0$ implies E must be a diagonal matrix. Hence, the diagonals of E must be a permutation of μ_1, \ldots, μ_n .
- The second order derivative is reduced to

$$
\langle G'(Q)QK, QK \rangle = \langle [\hat{A}, K], [X, K] \rangle
$$

= $\langle E\hat{K} - \hat{K}E, \Lambda \hat{K} - \hat{K} \Lambda \rangle$
= $2 \sum_{i < j} (\lambda_i - \lambda_j)(e_i - e_j)\hat{k}_{ij}^2$.

Wielandt-Hoffman Theorem

• We have shown that if a matrix Q is optimal, then the columns q_1, \ldots, q_n of Q^T must be the normalized eigenvectors of \hat{A} corresponding respectively to μ_1, \ldots, μ_n . The solution to Problem A is unique and is given by

$$
X = \lambda_1 q_1 q_1^T + \ldots + \lambda_n q_n q_n^T.
$$

• Let A and $A + E$ be symmetric matrices with eigenvalues $\mu_1 > \ldots \mu_n$ and $\lambda_1 > \ldots > \lambda_n$, respectively. Then

$$
\sum_{i=1}^{n} (\lambda_i - \mu_i)^2 \le ||E||^2.
$$

Toeplitz Inverse Eigenvalue Problem

- Let $\mathcal T$ be the subspace of all symmetric Toeplitz matrices and $\Lambda := \text{diag}\{\lambda_1, \ldots, \lambda_n\}.$
- The subspace $\mathcal T$ has a natural orthogonal basis, say E_1,\ldots,E_n . So the projection of any matrix X is given by

$$
P(X) = \sum_{i=1}^{n} \langle X, E_i \rangle E_i.
$$

• The projected gradient is given by:

$$
g(Q) = Q[P(Q^T \Lambda Q), Q^T \Lambda Q].
$$

• The descent flow is given by the IVP:

$$
\frac{dX}{dt} = [[P(X), X], X]
$$

X(0) = any thing on M(Λ) but diagonal matrices.

• Open Question: With an arbitrary structured affined subspace $\mathcal V$ (See the IEP with Prescribed Entries), characterize the critical points of the descent flow.

Toeplitz Annihilator

• To stay on the surface $\mathcal{M}(\Lambda)$, a differential equation must take the form

$$
\frac{dX}{dt} = [X, k(X)]
$$

where $k: \mathcal{S}(n) \longrightarrow \mathcal{S}(n)^{\perp}$.

• Require k to be a linear Toeplitz annihilator:

 $\diamond k(X) = 0$ if and only if $X \in \mathcal{T}$.

- What is the idea?
	- \Diamond Suppose all elements in Λ are distinct.
	- $\varphi[X, k(X)] = 0$ if and only if $k(X)$ is a polynomial of X .
	- $\Diamond k(X) \in \mathcal{S}(n) \cap \mathcal{S}(n)^{\perp} = \{0\}.$
	- $\|\phi\| = \|\Lambda\|$ for all $t \in R$.
	- \diamond A bounded flow on a compact set must have a nonempty ω -limit set.
- Can such a k be defined?
	- \diamond The simpliest choice:

$$
k_{ij} := \begin{cases} x_{i+1,j} - x_{i,j-1}, & \text{if } 1 \le i < j \le n \\ 0, & \text{if } 1 \le i = j \le n \\ x_{i,j-1} - x_{i+1,j}, & \text{if } 1 \le j < i \le n \end{cases}
$$

• Open Question: Starting with the unique centro-symmetric Jacobi matrix as the initial value, must the annihilator flow converge? [119]

Eigenvalue Computation

- Let V be the subspace of all diagonal matrices and $\Lambda = X_0$ be the matrix whose eigenvalues are to be found.
- The objective of Problem C is the same as that of the Jacobi method, i.e., to minimize the off-diagonal elements.
- The descent flow is given by the IVP:

$$
\frac{dX}{dt} = [[diag(X), X], X]
$$

$$
X(0) = X_0.
$$

• The necessary condition for X to be critical is

$$
[\operatorname{diag}(X), X] = 0.
$$

Simultaneous Reduction

- Simultaneous reduction of real matrices by either orthogonal similarity or orthogonal equivalence transformation is hard [64].
	- ¦ Little is known in both theory and practice on how reduction for more than two matrices.
	- ¦ The project gradient method based on the Jacobi idea can be formulated.
- Simultaneous reduction flow:

$$
\frac{dX_i}{dt} = \left[X_i, \sum_{j=1}^p \frac{[X_j, P_j^T(X_j)] - [X_j, P_j^T(X_j)]^T}{2} \right]
$$

$$
X_i(0) = A_i
$$

• Nearest normal matrix problem [64]

$$
\frac{dW}{dt} = \left[W, \frac{1}{2}[W, diag(W^*)] - [W, diag(W^*)]^* \right]
$$

$$
W(0) = A.
$$