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Overview

• Least squares approximations for various types of real
and symmetric matrices subject to spectral constraints
share a common structure.

• The projected gradient can be formulated explicitly.

• A descent flow can be followed numerically.

• The procedure can be extended to approximating gen-
eral matrices subject to singular value constraints.

• Notation:

S(n) := {All real symmetric matrices}
O(n) := {All real orthogonal matrices}
||X|| := Frobenius matrix norm of X

Λ := A given matrix in S(n)

M(Λ) := {QTΛQ|Q ∈ O(n)}
V := A single matrix or a subspace in S(n)

P (X) := The projection of X into V
Σ := A given general matrix in Rm×n

W (Σ) := {Q1ΣQ2|Q1 ∈ O(m), Q2 ∈ O(n)}
U := A single matrix or a subspace in Rm×n
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Spectrally Constrained Problem

Minimize F (X) :=
1

2
||X − P (X)||2

Subject to X ∈ M(Λ)

• Special cases:

¦ Problem A: Given a symmetric matrix, find its least
squares approximation with prescribed spectrum.

¦ Problem B: Construct a symmetric Toeplitz matrix
that has a prescribed set of eigenvalues.

¦ Problem C: Find the spectrum of a given a symmet-
ric matrix.
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Singular-Value Constrained Problem

Minimize F (X) :=
1

2
||X − P (X)||2

Subject to X ∈ W (Σ)

• Special cases:

¦ Problem D: Given a general real m×n matrix, find
its least square approximation that has a prescribed
set of singular values.

¦ Problem E: Construct a general real m× n matrix,
find its singular values.
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Reformulation

• Idea:

1. X ∈ M(Λ) satisfies the spectral constraint.

2. P (X) ∈ V has the desirable structure in V .

3. Minimize the undesirable part ‖X − P (X)‖.
• Working with the parameter Q is easier:

Minimize F (Q) :=
1

2

〈
QTΛQ − P (QTΛQ),

QTΛQ − P (QTΛQ)
〉

Subject to QTQ = I

¦ 〈A, B〉 = trace(ABT ) is the Frobenius inner prod-
uct.



270 Spectrally Constrained Approximation

Feasible Set O(n) & Gradient of F

• The set O(n) is a regular surface.

• The tangent space of O(n) at any orthogonal matrix Q
is given by

TQO(n) = QK(n)

where

K(n) = {All skew-symmetric matrices}.

• The normal space of O(n) at any orthogonal matrix Q
is given by

NQO(n) = QS(n).

• The Fréchet Derivative of F at a general matrix A act-
ing on B:

F ′(A)B = 2〈ΛA(ATΛA − P (ATΛA)), B〉.

• The gradient of F at a general matrix A:

∇F (A) = 2ΛA(ATΛA − P (ATΛA)).
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The Projected Gradient

• A splitting of Rn×n:

Rn×n = TQO(n) + NQO(n)

= QK(n) + QS(n).

• A unique orthogonal splitting of X ∈ Rn×n:

X = Q

{
1

2
(QTX − XTQ)} + Q{1

2
(QTX + XTQ)

}
.

• The projection of ∇F (Q) into the tangent space:

g(Q) = Q

{
1

2
(QT∇F (Q) −∇F (Q)TQ)

}

= Q[P (QTΛQ), QTΛQ].
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An Isospectral Descent Flow

• A descent flow on the manifold O(n):

dQ

dt
= Q[QTΛQ, P (QTΛQ)].

• A descent flow on the manifold M(Λ):

dX

dt
=

dQT

dt
ΛQ + QTΛ

dQ

dt
= [X, [X,P (X)]︸ ︷︷ ︸

k(X)

].

• The entire concept can be obtained by utilizing the
Riemannian geometry on the Lie group O(n).
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The Second Order Derivative

• Extend the projected gradient g to the function

G(Z) := Z[P (ZTΛZ), ZTΛZ]

for general matrix Z.

• The Fréchet derivative of G:

G′(Z)H = H [P (ZTΛZ), ZTΛZ]

+Z[P (ZTΛZ), ZTΛH + HTΛZ]

+Z[P ′(ZTΛZ)(ZTΛH + HTΛZ), ZTΛZ].

• The projected Hessian at a critical point X = QTΛQ
for the tangent vector QK with K ∈ K(n):

〈G′(Q)QK, QK〉 =

〈[P (X), K] − P ′(X)[X, K], [X,K]〉.



274 Spectrally Constrainted Approximation

Least Squares Approximation

• Let the given matrix be Â and Λ := diag{λ1, . . . , λn}.
The projection is P (X) = Â.

• The projected gradient is given by:

g(Q) = Q[Â, QTΛQ].

• The descent flow is given by the IVP:

dX

dt
= [[Â, X ], X ]

X(0) = Λ.
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Sorting Property

• Assume the given eigenvalues are λ1 > . . . > λn.

• Assume the eigenvalues of Â are µ1 > . . . > µn.

• Assume Q is a critical point on O(n) and define

X := QTΛQ

E := QÂQT.

• The first order condition [Â, X ] = 0 implies E must be
a diagonal matrix. Hence, the diagonals of E must be
a permutation of µ1, . . . , µn.

• The second order derivative is reduced to

〈G′(Q)QK, QK〉 = 〈[Â, K], [X, K]〉
= 〈EK̂ − K̂E, ΛK̂ − K̂Λ〉
= 2

∑
i<j

(λi − λj)(ei − ej)k̂
2
ij.
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Wielandt-Hoffman Theorem

• We have shown that if a matrix Q is optimal, then the
columns q1, . . . , qn of QT must be the normalized eigen-
vectors of Â corresponding respectively to µ1, . . . , µn.
The solution to Problem A is unique and is given by

X = λ1q1q1
T + . . . + λnqnqn

T .

• Let A and A + E be symmetric matrices with eigen-
values µ1 > . . . µn and λ1 > . . . > λn, respectively.
Then

n∑
i=1

(λi − µi)
2 ≤ ||E||2.
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Toeplitz Inverse Eigenvalue Problem

• Let T be the subspace of all symmetric Toeplitz matri-
ces and Λ := diag{λ1, . . . , λn}.

• The subspace T has a natural orthogonal basis, say
E1, . . . , En. So the projection of any matrix X is given
by

P (X) =

n∑
i=1

〈X, Ei〉Ei.

• The projected gradient is given by:

g(Q) = Q[P (QTΛQ), QTΛQ].

• The descent flow is given by the IVP:

dX

dt
= [[P (X), X ], X ]

X(0) = any thing on M(Λ) but diagonal matrices.

• Open Question: With an arbitrary structured affined
subspace V (See the IEP with Prescribed Entries), char-
acterize the critical points of the descent flow.
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Toeplitz Annihilator

• To stay on the surface M(Λ), a differential equation
must take the form

dX

dt
= [X, k(X)]

where k : S(n) −→ S(n)⊥.

• Require k to be a linear Toeplitz annihilator:

¦ k(X) = 0 if and only if X ∈ T .

• What is the idea?

¦ Suppose all elements in Λ are distinct.

¦ [X, k(X)] = 0 if and only if k(X) is a polynomial
of X .

¦ k(X) ∈ S(n) ∩ S(n)⊥ = {0}.
¦ ||X(t)|| = ||Λ|| for all t ∈ R.

¦ A bounded flow on a compact set must have a non-
empty ω-limit set.
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• Can such a k be defined?

¦ The simpliest choice:

kij :=




xi+1,j − xi,j−1, if 1 ≤ i < j ≤ n
0, if 1 ≤ i = j ≤ n
xi,j−1 − xi+1,j, if 1 ≤ j < i ≤ n

• Open Question: Starting with the unique centro-symmetric
Jacobi matrix as the initial value, must the annihilator
flow converge? [119]
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Eigenvalue Computation

• Let V be the subspace of all diagonal matrices and
Λ = X0 be the matrix whose eigenvalues are to be
found.

• The objective of Problem C is the same as that of the
Jacobi method, i.e., to minimize the off-diagonal ele-
ments.

• The descent flow is given by the IVP:

dX

dt
= [[diag(X), X ], X ]

X(0) = X0.

• The necessary condition for X to be critical is

[diag(X), X ] = 0.
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Simultaneous Reduction

• Simultaneous reduction of real matrices by either or-
thogonal similarity or orthogonal equivalence transfor-
mation is hard [64].

¦ Little is known in both theory and practice on how
reduction for more than two matrices.

¦ The project gradient method based on the Jacobi
idea can be formulated.

• Simultaneous reduction flow:

dXi

dt
=


Xi,

p∑
j=1

[Xj, P
T
j (Xj)]−[Xj, P

T
j (Xj)]

T

2




Xi(0) = Ai

• Nearest normal matrix problem [64]

dW

dt
=

[
W,

1

2
[W, diag(W ∗)] − [W, diag(W ∗)]∗

]
W (0) = A.


