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Overview

e Least squares approximations for various types of real
and symmetric matrices subject to spectral constraints
share a common structure.

e The projected gradient can be formulated explicitly.
e A descent flow can be followed numerically.

e The procedure can be extended to approximating gen-
eral matrices subject to singular value constraints.

e Notation:
S(n) := {All real symmetric matrices}
O(n) = {All real orthogonal matrices}
|X|| := Frobenius matrix norm of X

A = A given matrix in S(n)
M(A) = {Q"AQ|Q € O(n)}

V = A single matrix or a subspace in S(n)
P(X) := The projection of X into V

> := A given general matrix in R™*"

W(Z) = {QlZQQ‘Ql - C’)(m), QQ - (’)(n)}

U = A single matrix or a subspace in R™*"
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Spectrally Constrained Problem

1
Minimize F(X) = §||X — P(X)|?
Subject to X € M(A)

e Special cases:
¢ Problem A: Given a symmetric matrix, find its least
squares approximation with prescribed spectrum.

¢ Problem B: Construct a symmetric Toeplitz matrix
that has a prescribed set of eigenvalues.

¢ Problem C: Find the spectrum of a given a symmet-
ric matrix.
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Singular-Value Constrained Problem

1
Minimize F(X) = §||X — P(X)|?
Subject to X € W(Y)

e Special cases:

¢ Problem D: Given a general real m X n matrix, find
its least square approximation that has a prescribed
set of singular values.

¢ Problem E: Construct a general real m x n matrix,
find its singular values.
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Reformulation

e [dea:

1. X € M(A) satisfies the spectral constraint.
2. P(X) € V has the desirable structure in V.
3. Minimize the undesirable part || X — P(X)]|.

e Working with the parameter () is easier:

Minimize F(Q) = % <QT/\Q — P(Q'AQ),

Q'AQ — P(QTAQ))
Subject to QT Q = I

o (A, B) = trace(AB?) is the Frobenius inner prod-
uct.
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Feasible Set O(n) & Gradient of F

e The set O(n) is a regular surface.

e The tangent space of O(n) at any orthogonal matrix ¢)
is given by

To0(n) = QK(n)
where

K(n) = {All skew-symmetric matrices}.

e The normal space of O(n) at any orthogonal matrix ¢)
is given by

NoO(n) = QS(n).

e The Fréchet Derivative of F' at a general matrix A act-
ing on B:

F'(A)B = 2(AA(ATAA — P(A'AA)), B).
e The gradient of F' at a general matrix A:

VF(A) = 2AA(ATAA — P(ATAA)).
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The Projected Gradient

e A splitting of R™*™:
R"™" = THhO(n) 4+ NoO(n)
= QK(n)+Q5(n).

e A unique orthogonal splitting of X € R"*":
1 1
X=qQ {;@TX - XTQ)} + QULQX + XT@>} |
e The projection of VF'(Q) into the tangent space:

9@ = Q{;@VFIQ) - VFQIQ)}
- QIPIQ"AQ).Q"AQ)
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An Isospectral Descent Flow

e A descent flow on the manifold O(n):

d
™~ Q[0"AQ. PQ"AQ))
e A descent flow on the manifold M (A):
dX  dQT - dQ
R A
— [X,[X, P(X)])

~

k(X)

e The entire concept can be obtained by utilizing the
Riemannian geometry on the Lie group O(n).
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The Second Order Derivative

e Eixtend the projected gradient ¢ to the function
G(2):= Z|P(Z'\Z), Z' \Z]
for general matrix Z.
e The Fréchet derivative of G:

G(Z)H =H[P(Z'\Z),Z"\Z]
+Z|P(Z'ANZ), Z"ANH + H"AZ]
+Z[P(Z'AZ)(Z'AH + H'ANZ), ZVAZ).

e The projected Hessian at a critical point X = QTAQ
for the tangent vector QK with K € K(n):

(G'(Q)QK, QK) =
([P(X), K] = PA(X)[X, K], [X, K]).
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Least Squares Approximation

e Lot the given matrix be A and A = diag{A1, ..., A}
The projection is P(X) = A.

e The projected gradient is given by:
9(Q) = Q[A, QTAQ].

e The descent flow is given by the IVP:

dX .
E — HA7X]7X]

X(0) = A
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Sorting Property

e Assume the given eigenvalues are Ay > ... > \,.
e Assume the eigenvalues of A are 1 > .. > [y,
e Assume () is a critical point on O(n) and define
X = Q'AQ
E = QAQT.
e The first order condition [4, X] = 0 implies F must be

a diagonal matrix. Hence, the diagonals of £ must be
a permutation of p,... , .

e The second order derivative is reduced to
(G(QQK,QK) = (A K|, [X,K])
= (EK — KE,AK — KA\)
= 2 Z()\Z — )\j)(@i — 6]')]43@-2]-.

i<j
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Wielandt-Hoffman Theorem

e We have shown that if a matrix () is optimal, then the
columns qi, . . . , g, of @' must be the normalized eigen-
vectors of A corresponding respectively to pq, ... , .
The solution to Problem A is unique and is given by

X = qaq +. ...+ M\agq.

e Let A and A 4+ E be symmetric matrices with eigen-
values 1 > ... pu, and Ay > ... > A, respectively.
Then

n

> (i —w) < |EIP.

1=1
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Toeplitz Inverse Eigenvalue Problem

e Let 7 be the subspace of all symmetric Toeplitz matri-
ces and A := diag{)\,... , A\ }.

e The subspace 7 has a natural orthogonal basis, say
Fq, ..., E,. Sothe projection of any matrix X is given
by

n

P(X)=> (X,E)E;

e The projected gradient is given by:

9(Q) = Q[P(Q'AQ), Q" AQ).

e The descent flow is given by the IVP:

dX
o = [IP(xX), X, x]

X(0) = any thing on M(A) but diagonal matrices.
e Open Question: With an arbitrary structured affined

subspace V (See the IEP with Prescribed Entries), char-
acterize the critical points of the descent flow.
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Toeplitz Annihilator

e To stay on the surface M(A), a differential equation
must take the form

dX
= X k()]

where k : S(n) — S(n)*.
e Require £ to be a linear Toeplitz annihilator:
o k(X)=0ifand only if X € 7.
e What is the idea?

¢ Suppose all elements in A are distinct.

o | X, k(X)] = 0if and only if £(X) is a polynomial
of X.

o k(X) e S(n)NS(n)t ={0}.

o || X(t)|| = ||Al| for all t € R.

¢ A bounded flow on a compact set must have a non-
empty w-limit set.
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e Can such a k£ be defined?

¢ The simpliest choice:

Tiv1,j — Tij-1, 1 <1 <j<n
Tij—1— Ti+1,js if 1 < 1<1<n
e Open Question: Starting with the unique centro-symmetric

Jacobi matrix as the initial value, must the annihilator
flow converge? 119
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Eigenvalue Computation

e Let V' be the subspace of all diagonal matrices and
A = X, be the matrix whose eigenvalues are to be
found.

e The objective of Problem C is the same as that of the
Jacobi method, i.e., to minimize the off-diagonal ele-

ments.
e The descent flow is given by the IVP:
dX .
— = lldiag(X), X], X]
X(0) = X,.

e The necessary condition for X to be critical is

[diag(X), X] = 0.
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Simultaneous Reduction

e Simultaneous reduction of real matrices by either or-
thogonal similarity or orthogonal equivalence transfor-
mation is hard [64].

¢ Little is known in both theory and practice on how
reduction for more than two matrices.

¢ The project gradient method based on the Jacobi
idea can be formulated.

e Simultaneous reduction flow:

dX; ~ |x; i [Xj7 P]T(X])] - [Xj7 PJT(X])]T
dt - 2
X;(0) = A )

e Nearest normal matrix problem 64

aw
dt
W) = A.

:[m;WMWMW%ﬂMWMWW*



