Chapter 8

Structured Low Rank Approximation

- Overview
- Low Rank Toeplitz Approximation
- Low Rank Circulant Approximation
- Low Rank Covariance Approximation
- Eculidean Distance Matrix Approximation
- Approximate GCD

Overview

• Given

- \diamond A target matrix $A \in \mathbb{R}^{n \times n}$,
- \diamond An integer $k, 1 \leq k < \operatorname{rank}(A),$
- \diamond A class of matrices Ω with linear structure,
- \diamond a fixed matrix norm $\|\cdot\|$;

Find

$$\diamond$$
 A matrix $\hat{B} \in \Omega$ of rank k, and

 \diamond

$$||A - \hat{B}|| = \min_{B \in \Omega, \operatorname{rank}(B) = k} ||A - B||.$$
 (1)

• Example of linear structure:

 \diamond Toeplitz or block Toeplitz matrices.

 \diamond Hankel or banded matrices.

• Applications:

- \diamond Signal and image processing with Toeplitz structure.
- ♦ Model reduction problem in speech encoding and filter design with Hankel structure.
- \diamond Regularization of ill-posed inverse problems.

- No easy way to characterize, either algebraically or analytically, a given class of structured lower rank matrices.
- Lack of explicit description of the feasible set \implies Difficult to apply classical optimization techniques.
- Little discussion on whether lower rank matrices with specified structure actually exist.

An Example of Existence

- Physics sometimes sheds additional light.
- The Toeplitz matrix

$$H := \begin{bmatrix} h_n & h_{n+1} & \dots & h_{2n-1} \\ \vdots & & & \vdots \\ h_2 & h_3 & \dots & h_{n+1} \\ h_1 & h_2 & \dots & h_n \end{bmatrix}$$

with

$$h_j := \sum_{i=1}^k \beta_i z_i^j, \quad j = 1, 2, \dots, 2n - 1,$$

where $\{\beta_i\}$ and $\{z_i\}$ are two sequences of arbitrary nonzero numbers satisfying $z_i \neq z_j$ whenever $i \neq j$ and $k \leq n$, is a Toeplitz matrix of rank k.

- The general Toeplitz structure preserving rank reduction problem as described in (1) remains open.
 - ♦ Existence of lower rank matrices of specified structure does not guarantee *closest* such matrices.
 - \diamond No x > 0 for which 1/x is minimum.

Overview

• For other types of structures, the existence question usually is a hard algebraic problem.

Another Hidden Catch

- The set of all $n \times n$ matrices with rank $\leq k$ is a *closed* set.
- The approximation problem

$$\min_{B \in \Omega, \operatorname{rank}(B) \le k} \|A - B\|$$

is *always* solvable, so long as the feasible set is non-empty.

- \diamond The rank condition is to be less than or equal to k, but not necessarily exactly equal to k.
- It is possible that a given target matrix A does not have a nearest rank k structured matrix approximation, but does have a nearest rank k - 1 or lower structured matrix approximation.

Low Rank Toeplitz Approximation

- Algebraic Structure of Low Rank Toeplitz Matrices.
- Constructing Low Rank Toeplitz Matrices.
 - \diamond Lift and Project Method
 - \diamond Parameterization by SVD
- Implicit Optimization
 - \diamond Engineerers' Misconception
 - \diamond Simplex Search Method
- Explicit Optimization
 - $\diamond \, {\bf constr}$ in MATLAB
 - \diamond **LANCELOT** on NEOS

A General Remark

- Introduce two procedures to tackle the structure preserving rank reduction problem numerically.
- The procedures can be applied to problems of any norm, any linear structure, and any matrix norm.
- Use the symmetric Toeplitz structure with Frobenius matrix norm to illustrate the ideas.

Algebraic Structure

• Identify a *symmetric* Toeplitz matrix by its first row,

$$T = T([t_1, \dots, t_n]) = \begin{bmatrix} t_1 & t_2 & \dots & t_n \\ t_2 & t_1 & \ddots & t_{n-1} \\ \vdots & \ddots & \ddots & \vdots \\ t_{n-1} & & t_2 \\ t_n & t_{n-1} & \dots & t_2 & t_1 \end{bmatrix}$$

 $\diamond \mathcal{T}$ = The affine subspace of all $n \times n$ symmetric Toeplitz matrices.

• Spectral decomposition of symmetric rank k matrices:

$$M = \sum_{i=1}^{k} \alpha_i y^{(i)} y^{(i)^T}.$$
 (2)

• Write $T = T([t_1, \ldots, t_n])$ in terms of $(2) \Longrightarrow$

$$\sum_{i=1}^{\kappa} \alpha_i y_j^{(i)} y_{j+s}^{(i)} = t_{s+1}, \ s = 0, 1, \dots, n-2, \ 1 \le j \le n-s$$
(3)

 Lower rank matrices form an *algebraic variety*, i.e, solutions of polynomial systems.

Some Examples

• The case k = 1 is trivial.

 Rank-one Toeplitz matrices form two simple one-parameter families,

$$T = \alpha_1 T([1, \dots, 1]), \text{ or}$$

 $T = \alpha_1 T([1, -1, 1, \dots, (-1)^{n-1}])$

with arbitrary $\alpha_1 \neq 0$.

• For 4×4 symmetric Toeplitz matrices of rank 2, there are 10 unknowns in 6 equations.

 Explicit description of algebraic equations for higher dimensional lower rank symmetric Toeplitz matrices becomes unbearably complicated.

Let's See It!

Rank deficient T([t₁, t₂, t₃])
 ◊ det(T) = (t₁ - t₃)(t₁² + t₁t₃ - 2t₂²) = 0.
 ◊ A union of two algebraic varieties.

Figure 1: Lower rank, symmetric, Toeplitz matrices of dimension 3 identified in \mathbb{R}^3 .

• The number of *local* solutions to the structured lower rank approximation problem is not unique.

Constructing Lower Rank Toeplitz Matrices

• Idea:

- \diamond Rank k matrices in $\mathbb{R}^{n \times n}$ form a surface $\mathcal{R}(k)$.
- \diamond Rank k Toeplitz matrices = $\mathcal{R}(k) \bigcap \mathcal{T}$.
- Two approaches:
 - ♦ Parameterization by SVD:
 - $\triangleright \text{ Identify } M \in \mathcal{R}(k) \text{ by the triplet } (U, \Sigma, V) \text{ of its singular value decomposition } M = U\Sigma V^T.$
 - $\cdot \; U$ and V are orthogonal matrices, and
 - $\Sigma = \operatorname{diag}\{s_1, \ldots, s_k, 0, \ldots, 0\} \text{ with } s_1 \ge \ldots \ge s_k > 0.$

 \triangleright Enforce the structure.

 \diamond Alternate projections between $\mathcal{R}(k)$ and \mathcal{T} to find intersections. (Cheney & Goldstein'59, Catzow'88)

Lift and Project Algorithm

• Given $A^{(0)} = A$, repeat projections until convergence:

 \diamond **LIFT**. Compute $B^{(\nu)} \in \mathcal{R}(k)$ nearest to $A^{(\nu)}$:

 \triangleright From $A^{(\nu)} \in \mathcal{T}$, first compute its SVD

$$A^{(\nu)} = U^{(\nu)} \Sigma^{(\nu)} V^{(\nu)^T}$$

▷ Replace $\Sigma^{(\nu)}$ by diag $\{s_1^{(\nu)}, \ldots, s_k^{(\nu)}, 0, \ldots, 0\}$ and define

$$B^{(\nu)} := U^{(\nu)} \Sigma^{(\nu)} V^{(\nu)^T}.$$

- ◇ PROJECT. Compute A^(ν+1) ∈ T nearest to B^(ν):
 > From B^(ν), choose A^(ν+1) to be the matrix formed by replacing the diagonals of B^(ν) by the averages of their entries.
- The general approach remains applicable to any other linear structure, and symmetry can be enforced.
 - ♦ The only thing that needs to be modified is the projection in the projection (second) step.

Geometric Sketch

Figure 2: Algorithm 1 with intersection of lower rank matrices and Toeplitz matrices

Black-box Function

• Descent property:

$$\|A^{(\nu+1)} - B^{(\nu+1)}\|_F \le \|A^{(\nu+1)} - B^{(\nu)}\|_F \le \|A^{(\nu)} - B^{(\nu)}\|_F$$

- ♦ Descent with respect to the Frobenius norm which is not necessarily the norm used in the structure preserving rank reduction problem.
- If all $A^{(\nu)}$ are distinct then the iteration converges to a Toeplitz matrix of rank k.
 - \diamond In principle, the iteration could be trapped in an impasse where $A^{(\nu)}$ and $B^{(\nu)}$ would not improve any more, but not experienced in practice.
- The lift and project iteration provides a means to define a *black-box function*

$$P: \mathcal{T} \longrightarrow \mathcal{T} \bigcap \mathcal{R}(k).$$

 \diamond The P(T) is *presumably* piecewise continuous since all projections are continuous.

The graph of P(T)

- Consider $P: R^2 \longrightarrow R^2$:
 - \diamond Use the *xy*-plane to represent the domain of *P* for 2×2 symmetric Toeplitz matrices $T(t_1, t_2)$.
 - \diamond Use the *z*-axis to represent the image $p_{11}(T)$ and $p_{12}(T)$), respectively.

Figure 3: Graph of P(T) for 2-dimensional symmetric Toeplitz T.

• Toeplitz matrices of the form $T(t_1, 0)$ or $T(0, t_2)$, corresponding to points on axes, converge to the zero matrix.

Implicit Optimization

• Implicit formulation:

$$\min_{T=\text{toeplitz}(t_1,\dots,t_n)} \|T_0 - P(T)\|.$$
 (4)

- $\diamond T_0$ is the given target matrix.
- ♦ P(T), regarded as a black box function evaluation, provides a handle to manipulate the objective function $f(T) := ||T_0 - P(T)||$.
- \diamond The norm used in (4) can be any matrix norm.
- Engineers' misconception:
 - $\diamond P(T)$ is *not* necessarily the closest rank k Toeplitz matrix to T.
 - \diamond In practice, $P(T_0)$ has been used "as a cleansing process whereby any corrupting noise, measurement distortion or theoretical mismatch present in the given data set (namely, T_0) is removed."
 - \diamond More needs to be done in order to find the *closest* lower rank Toeplitz approximation to the given T_0 as $P(T_0)$ is merely known to be in the feasible set.

Numerical Experiment

- An ad hoc optimization technique:
 - \diamond The simplex search method by Nelder and Mead requires only function evaluations.
 - ♦ Routine **fmins** in MATLAB, employing the simplex search method, is ready for use in our application.

• An example:

- ♦ Suppose $T_0 = T(1, 2, 3, 4, 5, 6).$
- \diamond Start with $T^{(0)} = T_0$, and set worst case precision to 10^{-6} .
- Able to calculate *all* lower rank matrices while maintaining the symmetric Toeplitz structure. Always so?
- ♦ Nearly machine-zero of smallest calculated singular value(s) $\implies T_k^*$ is computationally of rank k.
- $\diamond T_k^*$ is only a local solution.
- $\|T_k^* T_0\| < \|P(T_0) T_0\|$ which, though represents only a slight improvement, clearly indicates that $P(T_0)$ alone does not give rise to an optimal solution.

rank k	5	4	4 3		1
# of iterations 110		81	46	36	17
# of SVD calls	1881	4782	2585	2294	558
optimal solution	$\begin{bmatrix} 1.1046 \\ 1.8880 \\ 3.1045 \\ 3.9106 \\ 5.0635 \\ 5.9697 \end{bmatrix}$	$\begin{bmatrix} 1.2408 \\ 1.8030 \\ 3.0352 \\ 4.1132 \\ 4.8553 \\ 6.0759 \end{bmatrix}$	$\begin{bmatrix} 1.4128 \\ 1.7980 \\ 2.8171 \\ 4.1089 \\ 5.2156 \\ 5.7450 \end{bmatrix}$	$\begin{bmatrix} 1.9591 \\ 2.1059 \\ 2.5683 \\ 3.4157 \\ 4.7749 \\ 6.8497 \end{bmatrix}$	2.9444 2.9444 2.9444 2.9444 2.9444 2.9444
$ T_0 - T_k^* $	0.5868	0.9851	1.4440	3.2890	8.5959
singular values	$\begin{bmatrix} 17.9851 \\ 7.4557 \\ 2.2866 \\ 0.9989 \\ 0.6164 \\ 3.4638e{-}15 \end{bmatrix}$	$\begin{bmatrix} 17.9980 \\ 7.4321 \\ 2.2836 \\ 0.8376 \\ 2.2454e{-}14 \\ 2.0130e{-}14 \end{bmatrix}$	$\begin{bmatrix} 18.0125 \\ 7.4135 \\ 2.1222 \\ 1.9865e{-}14 \\ 9.0753e{-}15 \\ 6.5255e{-}15 \end{bmatrix}$	$\begin{bmatrix} 18.2486 \\ 6.4939 \\ 2.0884e{-14} \\ 7.5607e{-15} \\ 3.8479e{-15} \\ 2.5896e{-15} \end{bmatrix}$	$\begin{bmatrix} 17.6667 \\ 2.0828e{-}14 \\ 9.8954e{-}15 \\ 6.0286e{-}15 \\ 2.6494e{-}15 \\ 2.1171e{-}15 \end{bmatrix}$

Table 1: Test results for a case of n = 6 symmetric Toeplitz structure

Explicit Optimization

- Difficult to compute the gradient of P(T).
- Other ways to parameterize structured lower rank matrices:
 - ♦ Use eigenvalues and eigenvectors for symmetric matrices;
 - ♦ Use singular values and singular vectors for general matrices.
 - \diamond Robust, but might have overdetermined the problem.

An Illustration

• Define

$$M(\alpha_1, \dots, \alpha_k, y^{(1)}, \dots, y^{(k)}) := \sum_{i=1}^k \alpha_i y^{(i)} y^{(i)^T}.$$

• Reformulate the symmetric Toeplitz structure preserving rank reduction problem *explicitly* as

min
$$||T_0 - M(\alpha_1, \dots, \alpha_k, y^{(1)}, \dots, y^{(k)})||(5)$$

subject to $m_{j,j+s-1} = m_{1,s},$ (6)
 $s = 1, \dots, n-1,$
 $j = 2, \dots, n-s+1,$

if $M = [m_{ij}].$

- \diamond Objective function in (5) is described in terms of the non-zero eigenvalues $\alpha_1, \ldots, \alpha_k$ and the corresponding eigenvectors $y^{(1)}, \ldots, y^{(k)}$ of M.
- \diamond Constraints in (6) are used to ensure that M is symmetric and Toeplitz.
- For other types of structures, we only need modify the constraint statement accordingly.
- The norm used in (5) can be arbitrary but is fixed.

- Symmetric centro-symmetric matrices have special spectral properties:
 - $\diamond \lceil n/2 \rceil$ of the eigenvectors are symmetric; and
 - $\diamond \lfloor n/2 \rfloor$ are skew-symmetric.

▷ $v = [v_i] \in \mathbb{R}^n$ is symmetric (or skew-symmetric) if $v_i = v_{n-i}$ (or $v_i = -v_{n-i}$).

- Symmetric Toeplitz matrices are symmetric and centrosymmetric.
- The formulation in (5) does not take this spectral structure into account in the eigenvectors $y^{(i)}$.
 - \diamond More variables than needed have been introduced.
 - ♦ May have overlooked any internal relationship among the $\frac{n(n-1)}{2}$ equality constraints.
 - ♦ May have caused, inadvertently, additional computation complexity.

Using Existing Optimization Codes

• Using **constr** in MATLAB

- \diamond Routine **constr** in MATLAB:
 - ▷ Uses a sequential quadratic programming method.
 - ▷ Solve the Kuhn-Tucker equations by a quasi-Newton updating procedure.
 - Can estimate derivative information by finite difference approximations.
 - ▷ Readily available in Optimization Toolbox.
- ♦ Our experiments:
 - \triangleright Use the same data as in the implicit formulation.
 - \triangleright Case k = 5 is computationally the same as before.
 - \triangleright Have trouble in cases k = 4 or k = 3,
 - \cdot Iterations will not improve approximations at all.
 - \cdot MATLAB reports that the optimization is terminated successfully.

\bullet Using ${\bf LANCELOT}$ on NEOS

- ♦ Reasons of failure of MATLAB are not clear.
 - Constraints might no longer be linearly independent.
 - Fermination criteria in constr might not be adequate.
 - ▷ Difficult geometry means hard-to-satisfy constraints.
- ♦ Using more sophisticated optimization packages, such as LANCELOT.
 - ▷ A standard Fortran 77 package for solving largescale nonlinearly constrained optimization problems.
 - Break down the functions into sums of *element* functions to introduce sparse Hessian matrix.
 - ⊳ Huge code. See

http://www.rl.ac.uk/departments/ccd/numerical/lancelot/sif/sifhtml.html.

- ▷ Available on the NEOS Server through a socketbased interface.
- \triangleright Uses the **ADIFOR** automatic differentiation tool.

♦ **LANCELOT** works.

- \triangleright Find optimal solutions of problem (5) for all values of k.
- ▷ Results from **LANCELOT** agree, up to the required accuracy 10^{-6} , with those from **fmins**.
- \triangleright Rank affects the computational cost nonlinearly.

rank k	5	4	3	2	1
# of variables	35	28	21	14	7
# of f/c calls	108	56	47	43	19
total time	12.99	4.850	3.120	1.280	.4300

Table 3: Cost overhead in using **LANCELOT** for n = 6.

Conclusions

- Structure preserving rank reduction problems arise in many important applications, particularly in the broad areas of signal and image processing.
- Constructing the nearest approximation of a given matrix by one with any rank and any linear structure is difficult in general.
- We have proposed two ways to formulate the problems as standard optimization computations.
- It is now possible to tackle the problems numerically via utilizing standard optimization packages.
- The ideas were illustrated by considering Toeplitz structure with Frobenius norm.
- Our approach can be readily generalized to consider rank reduction problems for any given linear structure and of any given matrix norm.

Low Rank Circulant Approximation

- Basic Properties
- (Inverse) Eigenvalue Problem
- Conjugate Evenness
- Low Rank Approximation
- Tree Structure
- Numerical Experiment

Basic Properties

• A circulant matrix C = Circul(c) $C = \begin{bmatrix} c_0 & c_1 & \dots & c_{n-1} \\ c_{n-1} & c_0 & c_1 & \dots & c_{n-2} \\ c_{n-2} & c_{n-1} & c_0 & \dots & c_{n-3} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ c_1 & c_2 & c_{n-1} & c_0 \end{bmatrix}$

is uniquely determined by the first row c.

 \diamond Define

$$\Pi := \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & & & 1 \\ 1 & 0 & \dots & 0 \end{bmatrix}$$

Then

$$Circul(c) = \sum_{k=0}^{n-1} c_k \Pi^k = P_c(\Pi)$$

with characteristic polynomial

$$P_c(x) = \sum_{k=0}^{n-1} c_k x^k.$$

Elementary Spectral Properties

• Define

$$\Omega := \operatorname{diag}(1, \omega, \omega^2, \dots, \omega^{n-1}), \quad \omega := \exp(\frac{2\pi i}{n}).$$

• Define the Fourier matrix F where

$$F^* := \frac{1}{\sqrt{n}} \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2n-2} \\ \vdots & & & \vdots \\ 1 & \omega^{n-1} & \omega^{n-2} & \dots & \omega \end{bmatrix}$$

 $\diamond F$ is unitary.

• The forward shift matrix Π is unitarily diagonalizable.

$$\Pi = F^* \Omega F.$$

• The circulant matrix Circul(c) with any given row vector c has a spectral decomposition

$$Circul(c) = F^* P_c(\Omega) F.$$

- Spectral properties:
 - \diamond Closely related to the discrete Fourier transform.
 - ♦ Explicit solution for eigenvalue and inverse eigenvalue problems.
 - \diamond FFT calculation.

(Inverse) Eigenvalue Problem

• Forward problem:

 \diamond Eigenvalues of Circul(c):

$$\lambda = [P_c(1), \dots P_c(\omega^{n-1})].$$

 \diamond Can be computed from

$$\lambda^T = \sqrt{n} F^* c^T.$$

• Inverse problem:

 \diamond Given any vector $\lambda := [\lambda_0, \ldots, \lambda_{n-1}] \in C^n$, define

$$c^T = \frac{1}{\sqrt{n}} F \lambda^T.$$

 $\diamond Circul(c)$ has eigenvalues in vector λ .

- Both matrix-vector products involved done in $O(n \log_2 n)$ flops.
- If all the eigenvalues are distinct, there are precisely n! distinct circulant matrices with the prescribed spectrum.

Conjugate Evenness

• $c^T = \frac{1}{\sqrt{n}} F \lambda^T$ is real if and only if $\lambda^T = \sqrt{n} F^* c^T$ is conjugate-even.

◊ If n = 2m,
λ = [λ₀, λ₁, ..., λ_{m-1}, λ_m, λ_{m-1}, ..., λ₁].
▷ λ₀, λ_m ∈ ℝ. (Absolutely real, others real or complex.)
◊ If n = 2m + 1,
λ := [λ₀, λ₁, ..., λ_m, λ_m, ..., λ₁].
▷ λ₀ ∈ ℝ. (Absolutely real.)
• Singular value decomposition of Circul(c):

$$Circul(c) = (F^*P_c(\Omega)|P_c(\Omega)|^{-1})|P_c(\Omega)|F$$

♦ Singular values are $|P_c(\omega^k)|, k = 0, 1, \dots n - 1$. ♦ At most $\lceil \frac{n+1}{2} \rceil$ distinct singular values.

Low Rank Approximation

• Given $A \in \mathbb{R}^{n \times n}$, its nearest circulant matrix approximation Circul(c) is given by the projection (T. Chan)

$$c_k := \frac{1}{n} \langle A, \Pi^k \rangle, \quad k = 0, \dots, n-1,$$

- $\diamond Circul(c)$ is generally of **full rank** even if A has lower rank.
- How to reduce the rank of Circul(c)?
 - The truncated singular value decomposition (TSVD) gives rise to the nearest low rank approximation in Frobenius norm.
 - \diamond The TSVD of Circul(c) is automatically circulant.
 - ♦ But: the TSVD can lead to a complex circulant approximation.

Trivial $O(n \log n)$ TSVD Algorithm

- Given a real matrix A and a fixed rank $\ell \leq n$,
 - 1. Use the projection to find the nearest real circulant matrix approximation Circul(c) of A.
 - 2. Use the FFT to calculate the spectrum λ of the matrix Circul(c).
 - 3. Arrange all elements of $|\lambda|$ in descending order, including those with equal modulus.
 - 4. Let $\hat{\lambda}$ be the vector consisting of elements of λ , but those corresponding to the last $n - \ell$ singular values in the descending order are set to zero.
 - 5. Apply the inverse FFT to $\hat{\lambda}$ to determine a nearest circulant matrix $Circul(\hat{c})$ of rank ℓ to A.
- The resulting matrix $Circul(\hat{c})$ is complex-valued in general.
 - \diamond Need to preserve the conjugate-even structure.
 - \diamond Need to modify the TSVD strategy.

Data Matching Problem

• The low rank "real" circulant approximation problem is equivalent to a data matching problem:

(DMP) Given a conjugate-even vector $\lambda \in C^n$, find its nearest conjugate-even approximation $\hat{\lambda} \in C^n$ subject to the constraint that $\hat{\lambda}$ has exactly $n - \ell$ zeros.

- How to solve the DMP?
 - \diamond Write $\hat{\lambda} = [\hat{\lambda}_1, 0] \in C^n$ with $\hat{\lambda}_1 \in C^{\ell}$ being arbitrary.
 - ♦ Consider the problem of minimizing

$$F(P, \hat{\lambda}) = \|P\hat{\lambda}^T - \lambda^T\|^2$$

with a permutation matrix P.

 $\triangleright P$ is used to search for the match.

 \diamond Write $P = [P_1, P_2]$ with $P_1 \in \mathbb{R}^{n \times \ell}$.

 \diamond A least squares problem:

$$F(P, \hat{\lambda}) = \|P_1 \hat{\lambda}_1^T - \lambda^T\|^2$$

 \diamond The optimal solution is

$$\hat{\lambda}_1 = \lambda P_1.$$

 \triangleright The entries of $\hat{\lambda}_1$ must be a portion of λ .

 \diamond The objective function becomes

$$F(P, \hat{\lambda}) = \|(P_1 P_1^T - I)\lambda\|^2.$$

 $\triangleright P_1 P_1^T - I$ is just a projection.

- ▷ The optimal permutation P should be such that $P_1P_1^T$ projects λ to its first ℓ components with largest modulus.
- Without the conjugate-even constraint, the answer to the data matching problem corresponds precisely to the usual TSVD selection criterion.
- With the conjugate-even constraint, the above criterion remains effective subject to the conjugate-even structure inside λ .

An Example using a Tree Structure

- Consider the case n = 6.
- Suppose λ_1, λ_2 are complex and distinct.
- Six possible conjugate-even structures.
- Tree graph:
 - \diamond Each node in the tree represents an element of λ .
 - Arrange the nodes from top to bottom in descending order of their moduli.
 - \diamond In case of a tie,
 - \triangleright Complex conjugate nodes stay at the same level.
 - \triangleright Real node is below the complex nodes.
- If $\lambda_1, \overline{\lambda_1}, \lambda_0, \lambda_2, \overline{\lambda_2}, \lambda_3$, then the tree is given by:

Figure 4: Tree graph of $\lambda_1, \overline{\lambda_1}, \lambda_0, \lambda_2, \overline{\lambda_2}, \lambda_3$ with $|\lambda_1| \ge |\lambda_0| > |\lambda_2| \ge |\lambda_3|$.

Figure 5: Tree graphs of $\hat{\lambda}$ with rank 5, 3, and 2.

Figure 6: Tree graphs of $\hat{\lambda}$ with rank 4.

Figure 7: Tree graph of $\hat{\lambda}$ with rank 1.

Low Rank Circulant Approximation

Figure 8: Possible solutions to the DMP when n = 6.

Numerical Experiment

- The low rank approximation algorithm needs to be smart enough to explore the conjugate-even structure, to truncate, and to reassemble the conjugate-even structure.
- Numerical complexity is $O(n \log n)$ flops.

Example 1: Symmetric Illustration

Consider the 8×8 symmetric Circul(c):

c = [0.5404, 0.2794, 0.1801, -0.0253, -0.2178, -0.0253, 0.1801, 0.2794].

• Eigenvalues (in descending order):

[1.1909, 1.1892, 1.1892, 0.3273, 0.3273, **0.1746**, -0.0376, -0.0376]

- For rank 7 approximation, the usual TSVD would set -0.0376 to zero, resulting in a complex matrix.
- Use the conjugate-even eigenvalues

 $\hat{\lambda} = [1.1909, 1.1892, 0.3273, -0.0376, \mathbf{0} - 0.0376, 0.3273, 1.1892],$

to obtain the best real-valued, rank 7, approximation $Circul(\hat{c})$ via the FFT:

 $\hat{c} = [0.5186, 0.3657, 0.0670, -0.0680, -0.0572, -0.0680, 0.0670, 0.3657].$

• To obtain the best real-value, rank 4, circulant approximation, use eigenvalues $\hat{\lambda}$

$$\hat{\lambda} = [1.1909, 1.1892, 0, 0, 0.3273, 0, 0, 1.1892].$$

Example 2: Complex Illustration

Consider the $9 \times 9 \ Circul(c)$ with

- c = [1.6864, 1.7775, 1.9324, 2.9399, 1.9871, 1.7367, 4.0563, 1.2848, 2.5989].
 - Eigenvalues: structure given by

```
[20.0000,
-2.8130 + 1.9106i, -2.8130 - 1.9106i, 3.0239 - 1.0554i, 3.0239 + 1.0554i,
-1.3997 + 0.7715i, -1.3997 - 0.7715i, -1.2223 - 0.2185i, -1.2223 + 0.2185i].
```

- To obtain a real-valued circulant approximation of rank 8, we have no choice but to select the set the *largest* eigenvalue (singular value) of Circul(c) to zero.
 - ♦ Setting the largest singular value to zero to obtain the nearest real low rank approximation is quite counter-intuitive to the usual sense of TSVD.
 - \diamond Apply algorithm to reduce the rank further, to 7.

Example 3: Perturbed Case

- Let $C_{\kappa} \in \mathbb{R}^{n \times n}$ be a given circulant matrix of rank κ . Random noise added to C_{κ} will destroy the circulant structure as well as the rank condition.
- Let $E \in \mathbb{R}^{n \times n}$ denote a random but fixed circulant matrix with unit Frobenius norm, and let

$$W_j = C_\kappa + 10^{-j}E, \quad j = 1, \dots, 12.$$

- W_j will almost certainly be of full rank. Note that $||W_j C_{\kappa}|| = 10^{-j}$. It will be interesting to see if W_j has any closer circulant matrix approximation of rank κ other than C_{κ} , especially when j is large.
- Test case with n = 100, $\kappa = 73$, and a predetermined matrix C_{73} .
- Using our algorithm to find the best circulant approximation Z_j to W_j , we find that it is always the case that

$$\|W_j - Z_j\| < \|W_j - C_\kappa\|$$

for all j, i.e., our real circulant approximation is closest.

Conclusion

- For any given real data matrix, its nearest real circulant approximation can simply be determined from the average of its diagonals.
- The nearest low rank (possibly complex) approximation to the circulant matrix can be determined effectively from the TSVD and the FFT.
- To construct a real circulant matrix with specified spectrum, the eigenvalues must appear in conjugate-even form. So, the truncation criteria for a nearest low rank, real, circulant matrix approximation must be modified.
- We have proposed a fast algorithm with $O(n \log n)$ complexity to accomplish all of these objectives.

Figure 9: Distribution of Singular Values.

Figure 10: Errors in Approximation.

Lor Rank Covarance Approximation

Euclidian Distance Matrix Approximation

Approximate GCD

f-COUNT	FUNCTION	MAX{g}	STEP	Procedures		
29	0.958964	8.65974e-15	1			
77	0.958964	2.66454e-14	1.91e-06			
131	0.958964	2.70894e-14	2.98e-08	Hessian modified twice		
185	0.958964	2.70894e-14	2.98e-08			
239	0.958964	2.73115e-14	2.98e-08			
289	0.958964	2.77556e-14	4.77e-07			
337	0.958964	2.77556e-14	1.91e-06			
393	0.958964	2.77556e-14	7.45e-09	Hessian modified twice		
445	0.958964	5.28466e-14	1.19e-07			
501	0.958964	5.68434e-14	7.45e-09			
557	0.958964	5.70655e-14	7.45e-09	Hessian not updated		
613	0.958964	5.66214e-14	7.45e-09			
667	0.958964	5.55112e-14	2.98e-08	Hessian modified twice		
713	0.958964	3.17302e-13	7.63e-06			
761	0.958964	2.61569e-13	1.91e-06			
812	0.958964	2.60014e-13	-2.38e-07	Hessian modified twice		
856	0.958964	2.57794e-13	3.05e-05	Hessian modified twice		
900	0.958964	2.56462e-13	3.05e-05	Hessian modified twice		
948	0.958964	2.57128e-13	1.91e-06			
994	0.958964	2.56684e-13	7.63e-06			
1038	0.958964	3.42837e-13	3.05e-05			
1083	0.958964	3.41727e-13	-1.53e-05	Hessian modified twice		
1124	0.958964	3.92575e-13	0.000244	Hessian modified twice		
1161	0.958964	5.04485e-13	0.00391	Hessian modified twice		
1200	0.958964	5.12923e-13	0.000977	Hessian modified twice		
1233	0.958964	5.61551e-13	0.0625	Hessian modified twice		
1272	0.958964	5.86642e-13	0.000977	Hessian modified twice		
1308	0.958964	4.84279e-13	0.00781	Hessian modified twice		
1309	0.958964	4.84723e-13	1	Hessian modified twice		
Optimization Converged Successfully						

Table 2: A typical output of intermediate results from **constr**.