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Syllabus

• Objectives:

� To provide some preliminaries.

� To treat some mathematics.

� To point out some applications.

� To describe some algorithms.

• Topics:

� Lecture I: Introduction

� Lecture II: General Approach

� Lecture III: Distance Geometry and Protein Structure

� Lecture IV: Singular Value Assignment with Low Rank Matrices

� Lecture V: Nonnegative Matrix Factorization

• Assignments:

� Quite a few open questions to be answered.

� Try out various existing optimization codes on large scale low rank approximation problems.
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Lecture II:

General Approach
Joint work with Robert Funderlic and Robert Plemmons
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Outline

• Problem Description

• Algebraic Structure:

� Algebraic Varieties

� Rank Deficient 3 × 3 Toeplitz Matrices

• Constructing Lower Rank Structured Matrices:

� Lift and Project Method

� Parameterization by SVD

• Implicit Optimization

� Engineers’ Misconception

� Simplex Search Method

• Explicit Optimization

� fmincon in MATLAB

� LANCELOT on NEOS
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Structure Preserving Rank Reduction Problem

• Given

� A target matrix A ∈ R
n×n,

� An integer k, 1 ≤ k < rank(A),

� A class of matrices Ω with a specified structure,

� a fixed matrix norm ‖ · ‖;

Find

� A matrix B̂ ∈ Ω of rank k, such that
‖A − B̂‖ = min

B∈Ω,rank(B)=k

‖A − B‖. (1)
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Difficulties

• No easy way to characterize, either algebraically or analytically, a given class of structured lower rank matrices.

• Lack of explicit description of the feasible set =⇒ Difficult to apply classical optimization techniques.

• Little discussion on whether lower rank matrices with specified structure actually exist.
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Feasibility and Approximations

• The Toeplitz matrix

H :=

⎡
⎢⎢⎢⎣

hn hn+1 . . . h2n−1
...

...
h2 h3 . . . hn+1

h1 h2 . . . hn

⎤
⎥⎥⎥⎦

with

hj :=
k∑

i=1

βiz
j
i , j = 1, 2, . . . , 2n − 1,

where {βi} and {zi} are two sequences of arbitrary nonzero numbers satisfying zi �= zj whenever i �= j and k ≤ n, is a Toeplitz matrix of rank k.

• The general Toeplitz structure preserving rank reduction problem as described in (1) remains open.

� Existence of lower rank matrices of specified structure does not guarantee closest such matrices.

� No x > 0 for which 1/x is minimum.
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Other Structures?

• For other types of structures, the existence question usually is a hard algebraic problem.

• Given real general matrices B0, B1, . . . , Bn ∈ R
m×n, m ≥ n, and an integer k < n,

� Open Question: Can values of c := (c1, . . . , cn)� ∈ R
n be found such that

B(c) := B0 + c1B1 + . . . + cnBn

is of rank k precisely?

� Or, B(c) has a prescribed set of singular values {σ1, . . . , σn}.
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Another Hidden Catch

• The set of all n × n matrices with rank ≤ k is a closed set.

• The approximation problem
min

B∈Ω,rank(B)≤k

‖A − B‖

is always solvable, so long as the feasible set is non-empty.

� The rank condition is to be less than or equal to k, but not necessarily exactly equal to k.

• It is possible that a given target matrix A does not have a nearest rank k structured matrix approximation, but does have a nearest structured
matrix approximation of rank k − 1 or lower.
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Our Approach

• Introduce two procedures to tackle the structure preserving rank reduction problem numerically.

• The procedures can be applied to problems of any norm, any linear structure, and any matrix norm.

• Use the symmetric Toeplitz structure with Frobenius matrix norm to illustrate the ideas.
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Some other approaches

• (van der Veen’96) Given A ∈ R
m×n which is known to have k singular values less than ε, find all rank-k matrices B ∈ R

m×n such that

‖A − B‖2 < ε.

� Not seeking the best approximation, only the one in the ε-neighborhood of A.

� No structure involved.

� Open Question: Can it be done this way for structured matrices?

• (Manton, Mahony, and Hua’03) Consider the weighted low rank approximation

min
B∈Rm×n,rank(B)≤k

‖A − B‖2
Q,

where
‖X‖2

Q = vec(X)�Qvec(X)

and Q ∈ R
mn×mn is a SPD matrix.

� Reformulate the minimization as

min
N∈Rn×(n−k),N�N=I

(
min

B∈Rm×n,BN=0
‖A − B‖2

Q

)
︸ ︷︷ ︸

A quadratic programming problem

. (2)

� (Schuermans, Lemmerling, Van Huffel’03) Using a modified operator vec2 to dictate the underlying linear structure.

• (Frieze, Kannan, and Vempala’98) Monte-Carlo algorithm for finding a matrix B∗ of rank at most k so that

‖A − B∗‖F ≤ min
B∈Rm×n,rank(B)≤k

‖A − B‖F + ε‖A‖F

holds with probability 1 − δ.

� The algorithm takes time polynomial in k, 1/ε and log(1/δ) only, and is independent of m,n.

� Open question: Can a structure be built in? With what probability?
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Representing Low Rank Toeplitz Matrices

• Identify a symmetric Toeplitz matrix by its first row,

T = T ([t1, . . . , tn]) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1 t2 . . . tn

t2 t1
. . . tn−1

...
. . .

tn−1 t2
tn tn−1 . . . t2 t1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

� T = The affine subspace of all n × n symmetric Toeplitz matrices.

• Spectral decomposition of symmetric rank k matrices:

M =
k∑

i=1

αiy
(i)y(i)�. (3)

• Write T = T ([t1, . . . , tn]) in terms of (3) =⇒

k∑
i=1

αiy
(i)
j y

(i)
j+s = ts+1, s = 0, 1, . . . , n − 1, 1 ≤ j ≤ n − s (4)

� Low rank matrices form an algebraic variety, i.e, solutions of polynomial systems.
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Some Examples

• The case k = 1 is trivial.

� Rank-one Toeplitz matrices form two simple one-parameter families,

T = α1T ([1, . . . , 1]), or

T = α1T ([1,−1, 1, . . . , (−1)n−1])

with arbitrary α1 �= 0.

• For 4 × 4 symmetric Toeplitz matrices of rank 2, there are 10 unknowns in 6 equations (by dropping the references to t1, . . . , t4).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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� The eigstructure of symmetric and centrosymmetric matrices has a special parity property, but that has not been taken into account.

� Explicit description of algebraic equations for higher dimensional low rank symmetric Toeplitz matrices becomes unbearably complicated.
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About Uniqueness

• Consider rank deficient T ([t1, t2, t3])

� det(T ) = (t1 − t3)(t
2
1 + t1t3 − 2t22) = 0.

� A union of two algebraic varieties.

-4
-2

0
t12

4

-4

-2

0t2

2

4

-4

-2

0
t3

2

4

Figure 1: Low rank, symmetric, Toeplitz matrices of dimension 3 identified in R
3.

• The number of local solutions to the structured lower rank approximation problem is not unique.
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Dimensionality

• (Adamjan, Arov and Krein’71) Suppose the underlying matrices are of infinite dimension. Then the closest approximation to a Hankel matrix by
a low rank Hankel matrix always exists and is unique.
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Constructing Lower Rank Toeplitz Matrices

• Idea:

� Rank k matrices in Rn×n form a surface R(k).

� Rank k Toeplitz matrices = R(k)
⋂
T .

• Two approaches:

� Parameterization by SVD:

� Identify M ∈ R(k) by the triplet (U, Σ, V ) of its singular value decomposition M = UΣV �.

· U and V are orthogonal matrices, and

· Σ = diag{s1, . . . , sk, 0, . . . , 0} with s1 ≥ . . . ≥ sk > 0.

� Enforce the structure.

� Alternate projections between R(k) and T to find intersections. (Cheney & Goldstein’59, Catzow’88)
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Lift and Project Algorithm

• Given A(0) = A, repeat projections until convergence:

� LIFT. Compute B(ν) ∈ R(k) nearest to A(ν):

� From A(ν) ∈ T , first compute its SVD

A(ν) = U (ν)Σ(ν)V (ν)�.

� Replace Σ(ν) by diag{s(ν)
1 , . . . , s

(ν)
k , 0, . . . , 0} and define

B(ν) := U (ν)Σ(ν)V (ν)�.

� PROJECT. Compute A(ν+1) ∈ T nearest to B(ν):

� From B(ν), choose A(ν+1) to be the matrix formed by replacing the diagonals of B(ν) by the averages of their entries.

• The general approach remains applicable to any other linear structure, and symmetry can be enforced.

� The only thing that needs to be modified is the projection in the projection (second) step.
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Geometric Sketch

A
A

B

B

ν

ν

ν+1

ν+1
( )

( )

(   )

(   )

R(k)

T

Figure 2: Lift-and-project algorithm with intersection of low rank matrices and Toeplitz matrices
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Black-box Function

• Descent property:
‖A(ν+1) − B(ν+1)‖F ≤ ‖A(ν+1) − B(ν)‖F ≤ ‖A(ν) − B(ν)‖F .

� Descent with respect to the Frobenius norm which is not necessarily the norm used in the structure preserving rank reduction problem.

• If all A(ν) are distinct then the iteration converges to a Toeplitz matrix of rank k.

� In principle, the iteration could be trapped in an impasse where A(ν) and B(ν) would not improve any more, but not experienced in practice.

• The lift and project iteration provides a means to define a black-box function

P : T −→ T
⋂

R(k).

� The P (T ) is presumably piecewise continuous since all projections are continuous.
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The graph of P (T )

• Consider P : R2 −→ R2:

� Use the xy-plane to represent the domain of P for 2 × 2 symmetric Toeplitz matrices T (t1, t2).

� Use the z-axis to represent the image p11(T ) and p12(T )), respectively.
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Figure 3: Graph of P (T ) for 2-dimensional symmetric Toeplitz T .

• Toeplitz matrices of the form T (t1, 0) or T (0, t2), corresponding to points on axes, converge to the zero matrix.
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Implicit Optimization

• Implicit formulation:

min
T=toeplitz(t1,...,tn)

‖T0 − P (T )‖. (5)

� T0 is the given target matrix.

� P (T ), regarded as a black box function evaluation, provides a handle to manipulate the objective function f(T ) := ‖T0 − P (T )‖.
� The norm used in (5) can be any matrix norm.

• Engineers’ misconception:

� P (T ) is not necessarily the closest rank k Toeplitz matrix to T .

� In practice, P (T0) has been used “as a cleansing process whereby any corrupting noise, measurement distortion or theoretical mismatch
present in the given data set (namely, T0) is removed.”

� More needs to be done in order to find the closest lower rank Toeplitz approximation to the given T0 as P (T0) is merely known to be in the
feasible set.
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Numerical Experiment

• An ad hoc optimization technique:

� The simplex search method by Nelder and Mead requires only function evaluations.

� Routine fminsearch in MATLAB, employing the simplex search method, is ready for use in our application.

• An example:

� Suppose T0 = T (1, 2, 3, 4, 5, 6).

� Start with T (0) = T0, and set worst case precision to 10−6.

� Able to calculate all lower rank matrices while maintaining the symmetric Toeplitz structure. Always so?

� Nearly machine-zero of smallest calculated singular value(s) =⇒ T ∗
k is computationally of rank k.

� T ∗
k is only a local solution.

� ‖T ∗
k − T0‖ < ‖P (T0) − T0‖ which, though represents only a slight improvement, clearly indicates that P (T0) alone does not give rise to an

optimal solution.
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rank k 5 4 3 2 1

# of iterations 110 81 46 36 17
# of SVD calls 1881 4782 2585 2294 558

optimal solution

⎡
⎢⎢⎢⎢⎢⎢⎣

1.1046
1.8880
3.1045
3.9106
5.0635
5.9697

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1.2408
1.8030
3.0352
4.1132
4.8553
6.0759

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1.4128
1.7980
2.8171
4.1089
5.2156
5.7450

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1.9591
2.1059
2.5683
3.4157
4.7749
6.8497

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

2.9444
2.9444
2.9444
2.9444
2.9444
2.9444

⎤
⎥⎥⎥⎥⎥⎥⎦

‖T0 − T ∗
k ‖ 0.5868 0.9851 1.4440 3.2890 8.5959

singular values

⎡
⎢⎢⎢⎢⎢⎢⎣

17.9851
7.4557
2.2866
0.9989
0.6164

3.4638e−15

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

17.9980
7.4321
2.2836
0.8376

2.2454e−14
2.0130e−14

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

18.0125
7.4135
2.1222

1.9865e−14
9.0753e−15
6.5255e−15

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

18.2486
6.4939

2.0884e−14
7.5607e−15
3.8479e−15
2.5896e−15

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

17.6667
2.0828e−14
9.8954e−15
6.0286e−15
2.6494e−15
2.1171e−15

⎤
⎥⎥⎥⎥⎥⎥⎦

Table 1: Test results for a case of n = 6 symmetric Toeplitz structure
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Explicit Optimization

• Difficult to compute the gradient of P (T ).

• Other ways to parameterize structured lower rank matrices:

� Use eigenvalues and eigenvectors for symmetric matrices;

� Use singular values and singular vectors for general matrices.

� Robust, but might have overdetermined the problem.
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An Illustration

• Define

M(α1, . . . , αk,y
(1), . . . ,y(k)) :=

k∑
i=1

αiy
(i)y(i)�.

• Reformulate the symmetric Toeplitz structure preserving rank reduction problem explicitly as

min ‖T0 − M(α1, . . . , αk,y
(1), . . . ,y(k))‖ (6)

subject to mj,j+s−1 = m1,s, (7)

s = 1, . . . n − 1,

j = 2, . . . , n − s + 1,

if M = [mij].

� Objective function in (6) is described in terms of the non-zero eigenvalues α1, . . . , αk and the corresponding eigenvectors y(1), . . . ,y(k) of M .

� Constraints in (7) are used to ensure that M is symmetric and Toeplitz.

• For other types of structures, we only need modify the constraint statement accordingly.

• The norm used in (6) can be arbitrary but is fixed.
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Redundant Constraints

• Symmetric centro-symmetric matrices have special spectral properties (Cantoni and Butler’76):

� 	n/2
 of the eigenvectors are symmetric; and

� �n/2� are skew-symmetric.

� v = [vi] ∈ R
n is symmetric (or skew-symmetric) if vi = vn−i (or vi = −vn−i).

• Symmetric Toeplitz matrices are symmetric and centro-symmetric.

• The formulation in (6) does not take this spectral structure of eigenvectors y(i) into account.

� More variables than needed have been introduced.

� May have overlooked any internal relationship among the n(n−1)
2

equality constraints.

� May have caused, inadvertently, additional computation complexity.
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Using fmincon in MATLAB

• Routine fmincon in MATLAB:

� Uses a sequential quadratic programming method.

� Solve the Kuhn-Tucker equations by a quasi-Newton updating procedure.

� Can estimate derivative information by finite difference approximations.

� Readily available in Optimization Toolbox.

• Our experiments:

� Use the same data as in the implicit formulation.

� Case k = 5 is computationally the same as before.

� Have trouble in cases k = 4 or k = 3,

� Iterations will not improve approximations at all.

� MATLAB reports that the optimization is terminated successfully.
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f-COUNT FUNCTION MAX{g} STEP Procedures

29 0.958964 8.65974e-15 1

77 0.958964 2.66454e-14 1.91e-06

131 0.958964 2.70894e-14 2.98e-08 Hessian modified twice

185 0.958964 2.70894e-14 2.98e-08

239 0.958964 2.73115e-14 2.98e-08

289 0.958964 2.77556e-14 4.77e-07

337 0.958964 2.77556e-14 1.91e-06

393 0.958964 2.77556e-14 7.45e-09 Hessian modified twice

445 0.958964 5.28466e-14 1.19e-07

501 0.958964 5.68434e-14 7.45e-09

557 0.958964 5.70655e-14 7.45e-09 Hessian not updated

613 0.958964 5.66214e-14 7.45e-09

667 0.958964 5.55112e-14 2.98e-08 Hessian modified twice

713 0.958964 3.17302e-13 7.63e-06

761 0.958964 2.61569e-13 1.91e-06

812 0.958964 2.60014e-13 -2.38e-07 Hessian modified twice

856 0.958964 2.57794e-13 3.05e-05 Hessian modified twice

900 0.958964 2.56462e-13 3.05e-05 Hessian modified twice

948 0.958964 2.57128e-13 1.91e-06

994 0.958964 2.56684e-13 7.63e-06

1038 0.958964 3.42837e-13 3.05e-05

1083 0.958964 3.41727e-13 -1.53e-05 Hessian modified twice

1124 0.958964 3.92575e-13 0.000244 Hessian modified twice

1161 0.958964 5.04485e-13 0.00391 Hessian modified twice

1200 0.958964 5.12923e-13 0.000977 Hessian modified twice

1233 0.958964 5.61551e-13 0.0625 Hessian modified twice

1272 0.958964 5.86642e-13 0.000977 Hessian modified twice

1308 0.958964 4.84279e-13 0.00781 Hessian modified twice

1309 0.958964 4.84723e-13 1 Hessian modified twice

Optimization Converged Successfully

T bl 2 A t i l t t f i t di t lt f f i
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Using LANCELOT on NEOS

• Reasons of failure of MATLAB are not clear.

� Constraints might no longer be linearly independent.

� Termination criteria in fmincon might not be adequate.

� Difficult geometry means hard-to-satisfy constraints.

• Using more sophisticated optimization packages, such as LANCELOT.

� A standard Fortran 77 package for solving large-scale nonlinearly constrained optimization problems (Conn, Could, and Toint’92).

� Break down the functions into sums of element functions to introduce sparse Hessian matrix.

� Huge code. See
http://www.rl.ac.uk/departments/ccd/numerical/lancelot/sif/sifhtml.html.

� Available on the NEOS Server through a socket-based interface.

� Uses the ADIFOR automatic differentiation tool.
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• LANCELOT works, so far.

� Find optimal solutions of problem (6) for all values of k.

� Results from LANCELOT agree, up to the required accuracy 10−6, with those from fmins.

� Rank affects the computational cost nonlinearly.

rank k 5 4 3 2 1

# of variables 35 28 21 14 7
# of f/c calls 108 56 47 43 19

total time 12.99 4.850 3.120 1.280 .4300

Table 3: Cost overhead in using LANCELOT for n = 6.

• It is not clear whether the LANCELOT would run into the same trouble as fmincon when applied to larger size problems.

• There are many other algorithms available in NEOS.
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Conclusions

• Structure preserving rank reduction problems arise in many important applications, particularly in the broad areas of signal and image processing.

• Constructing the nearest approximation of a given matrix by one with any rank and any linear structure is difficult in general.

• We have proposed two ways to formulate the problems as standard optimization computations.

• It is now possible to tackle the problems numerically via utilizing standard optimization packages.

• The ideas were illustrated by considering Toeplitz structure with Frobenius norm.

• Our approach can be readily generalized to consider rank reduction problems for any given linear structure and of any given matrix norm.


