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Syllabus

e Objectives:

¢ To provide some preliminaries.
¢ To treat some mathematics.
¢ To point out some applications.

¢ To describe some algorithms.
e Topics:

¢ Lecture I: Introduction

¢ Lecture II: General Approach

¢ Lecture III: Distance Geometry and Protein Structure

o Lecture IV: Singular Value Assignment with Low Rank Matrices

¢ Lecture V: Nonnegative Matrix Factorization
e Assignments:

¢ Quite a few open questions to be answered.

o Try out various existing optimization codes on large scale low rank approximation problems.



Lecture 11I:

General Approach

Joint work with Robert Funderlic and Robert Plemmons



Outline

Problem Description
Algebraic Structure:

o Algebraic Varieties
¢ Rank Deficient 3 x 3 Toeplitz Matrices

Constructing Lower Rank Structured Matrices:

o Lift and Project Method
o Parameterization by SVD

Implicit Optimization

¢ Engineers’ Misconception

o Simplex Search Method
Explicit Optimization

¢ fmincon in MATLAB
¢ LANCELOT on NEOS



Structure Preserving Rank Reduction Problem

e (Given

o A target matrix A € R™",
o An integer k, 1 < k < rank(A),
o A class of matrices (2 with a specified structure,

o a fixed matrix norm || - |;
Find
o A matrix B € Q of rank k, such that R
|A— B| = min I|A — B||.

Beqrank(B)=k



Difficulties

e No easy way to characterize, either algebraically or analytically, a given class of structured lower rank matrices.
e Lack of explicit description of the feasible set = Difficult to apply classical optimization techniques.

e Little discussion on whether lower rank matrices with specified structure actually exist.



Feasibility and Approximations

e The Toeplitz matrix

hn hn—i—l s h?n—l
H = : :

ho hy ... hput

hy he ... hy

with .
hij=>Y Bz, j=12..2n-1,
=1

where {;} and {z;} are two sequences of arbitrary nonzero numbers satisfying z; # z; whenever i # j and k < n, is a Toeplitz matrix of rank k.
e The general Toeplitz structure preserving rank reduction problem as described in (1) remains open.

o Existence of lower rank matrices of specified structure does not guarantee closest such matrices.

o No z > 0 for which 1/z is minimum.



Other Structures?

e For other types of structures, the existence question usually is a hard algebraic problem.
e Given real general matrices By, By,..., B, € R"™*" m > n, and an integer k < n,
o Open Question: Can values of ¢ := (cy,...,¢,)" € R™ be found such that
B(c):=By+ 1B+ ...+ ¢,B,

is of rank k precisely?

o Or, B(c) has a prescribed set of singular values {oy,...,0,}.



Another Hidden Catch

e The set of all n x n matrices with rank < k is a closed set.

e The approximation problem

min I|A — Bl
Beqrank(p)<k

is always solvable, so long as the feasible set is non-empty.
¢ The rank condition is to be less than or equal to k, but not necessarily exactly equal to k.

e [t is possible that a given target matrix A does not have a nearest rank k structured matrix approximation, but does have a nearest structured
matrix approximation of rank £ — 1 or lower.



10

Our Approach

e Introduce two procedures to tackle the structure preserving rank reduction problem numerically.
e The procedures can be applied to problems of any norm, any linear structure, and any matrix norm.

e Use the symmetric Toeplitz structure with Frobenius matrix norm to illustrate the ideas.



Some other approaches

e (van der Veen’96) Given A € R™*" which is known to have k singular values less than ¢, find all rank-k matrices B € R™*" such that
A= Bz <e.

¢ Not seeking the best approximation, only the one in the e-neighborhood of A.
¢ No structure involved.

o Open Question: Can it be done this way for structured matrices?
e (Manton, Mahony, and Hua’03) Consider the weighted low rank approximation

min I|A — B||2Q7
BeRmxn rank(B)<k

where

HX||2Q = vec(X)TQvec(X)
and Q € R™*™" is a, SPD matrix.

¢ Reformulate the minimization as

min ( min HA—B%)
NeRnx(n—k) NTN=] BeR™mXxXn BN=0

(& J/

A quadratic prog?rramming problem
¢ (Schuermans, Lemmerling, Van Huffel’03) Using a modified operator vecy to dictate the underlying linear structure.

e (Frieze, Kannan, and Vempala’98) Monte-Carlo algorithm for finding a matrix B* of rank at most k so that

|A—=B[r < min |A = Bl[r +¢€l|Allr
BeRmxn rank(B)<k

holds with probability 1 — 9.

o The algorithm takes time polynomial in k, 1/e and log(1/d) only, and is independent of m, n.
o Open question: Can a structure be built in? With what probability?
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Representing Low Rank Toeplitz Matrices

e Identify a symmetric Toeplitz matrix by its first row,

t1 to tn
12} t tn1
T=T(t, ... t]) =
tnfl t2
| Ly 2} ) t A

o 7 = The affine subspace of all n x n symmetric Toeplitz matrices.

e Spectral decomposition of symmetric rank k& matrices:
k
M= ayWy®",
i=1
o Write T'=T([ty,...,t,]) in terms of (3) =
k . .
Zaiyj(‘l)y](':)-s:ts—i-la 820717”'771_]—’ 1 S]Sn_s

=1

o Low rank matrices form an algebraic variety, i.e, solutions of polynomial systems.



Some Examples

e The case k =1 is trivial.

o Rank-one Toeplitz matrices form two simple one-parameter families,

T = oT([1,...,1]), or
T = aT([1,-1,1,....(=D)" 1))

with arbitrary aq # 0.

e For 4 x 4 symmetric Toeplitz matrices of rank 2, there are 10 unknowns in 6 equations (by dropping the references to tq,...,%,).
a2(y§2)2—y§2>2)
“ N *y§1)2+y§1)2 ' .
. y$ P D 42y Dy Py (D
Y3 = NOMONMONC)
1 _yél)gy§2>2—4y§1) y§2’2—4y§1>y§2)y§2’y§1)2—2yél)y§1)2y§2)2+3y§1>y§2>2y§1)2+2y§2)y§2)y§1>3
oo YD 7y P72y Dy Py Dy 4y (D7) ’
@)y gDy Py Ry (D
Ys = NONONNONE) ) ‘ t ‘
(2 ._ _3y§1)2y§2)2y§2)*4y§1> y§2)3+2yél)y?)yiz)s*‘lyél)y?)yf)rzyf)*?yéz)y§1)2y§2)2+y§1)2y§2)3
o T e T o '

¢ The eigstructure of symmetric and centrosymmetric matrices has a special parity property, but that has not been taken into account.

o Explicit description of algebraic equations for higher dimensional low rank symmetric Toeplitz matrices becomes unbearably complicated.
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About Uniqueness

e Consider rank deficient T'([ty, 2, t3])

o det(T) = (t — t3)(t] + tats — 2t5) = 0.

¢ A union of two algebraic varieties.

Figure 1: Low rank, symmetric, Toeplitz matrices of dimension 3 identified in R3.

e The number of local solutions to the structured lower rank approximation problem is not unique.
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Dimensionality

e (Adamjan, Arov and Krein'71) Suppose the underlying matrices are of infinite dimension. Then the closest approximation to a Hankel matrix by
a low rank Hankel matrix always exists and is unique.
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Constructing Lower Rank Toeplitz Matrices

e [dea:

o Rank k£ matrices in R™*" form a surface R(k).

o Rank k Toeplitz matrices = R(k) (7.
e Two approaches:

o Parameterization by SVD:

> Identify M € R(k) by the triplet (U, %, V) of its singular value decomposition M = USV T,
- U and V are orthogonal matrices, and
- ¥ =diag{s1,...,8,0,...,0} with sy > ... > s > 0.

> Enforce the structure.

¢ Alternate projections between R (k) and 7 to find intersections. (Cheney & Goldstein’59, Catzow’88)



Lift and Project Algorithm
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e Given A® = A, repeat projections until convergence:

o LIFT. Compute B") € R(k) nearest to A®):

> From A" e T, first compute its SVD
AW — gOn@ym T

> Replace ™) by diag{s(ly), c s,(:), 0,...,0} and define
BW — Wy’
o PROJECT. Compute A¥*Y € T nearest to B™:
> From B™), choose A“*V to be the matrix formed by replacing the diagonals of B®) by the averages of their entries.

e The general approach remains applicable to any other linear structure, and symmetry can be enforced.

¢ The only thing that needs to be modified is the projection in the projection (second) step.
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Geometric Sketch

Figure 2: Lift-and-project algorithm with intersection of low rank matrices and Toeplitz matrices
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Black-box Function

e Descent property:
||A(V+1) _ B(”“)HF < ||A(V+1) _ B(")HF < ||A(”) _ B(”)HF-

¢ Descent with respect to the Frobenius norm which is not necessarily the norm used in the structure preserving rank reduction problem.
o If all A® are distinct then the iteration converges to a Toeplitz matrix of rank k.
o In principle, the iteration could be trapped in an impasse where A®) and B® would not improve any more, but not experienced in practice.

e The lift and project iteration provides a means to define a black-box function
P:T — T(\R(k).

o The P(T) is presumably piecewise continuous since all projections are continuous.
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The graph of P(T)

e Consider P: R? — R?:

o Use the xy-plane to represent the domain of P for 2 x 2 symmetric Toeplitz matrices T(t1,t2).

o Use the z-axis to represent the image p11(7T") and p12(T")), respectively.

Figure 3: Graph of P(T) for 2-dimensional symmetric Toeplitz T

e Toeplitz matrices of the form T'(t1,0) or T'(0,s), corresponding to points on axes, converge to the zero matrix.
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Implicit Optimization

e [mplicit formulation:

min |To — P(T)]|- (5)
T=toeplitz(t,,...t,)

o Tj is the given target matrix.
o P(T), regarded as a black box function evaluation, provides a handle to manipulate the objective function f(T") := ||Ty — P(T)||.

¢ The norm used in (5) can be any matrix norm.
e Engineers’ misconception:

o P(T) is not necessarily the closest rank k& Toeplitz matrix to 7.

o In practice, P(Ty) has been used “as a cleansing process whereby any corrupting noise, measurement distortion or theoretical mismatch
present in the given data set (namely, Tj) is removed.”

© More needs to be done in order to find the closest lower rank Toeplitz approximation to the given Ty as P(Tp) is merely known to be in the
feasible set.
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Numerical Experiment

e An ad hoc optimization technique:

¢ The simplex search method by Nelder and Mead requires only function evaluations.

o Routine fminsearch in MATLAB, employing the simplex search method, is ready for use in our application.

e An example:

Suppose Tp = T'(1,2,3,4,5,6).

Start with 7© = T, and set worst case precision to 1076.

Able to calculate all lower rank matrices while maintaining the symmetric Toeplitz structure. Always so?
Nearly machine-zero of smallest calculated singular value(s) == T} is computationally of rank k.

T} is only a local solution.

[ R R R R

T3 — Tol| < ||P(Ty) — To|| which, though represents only a slight improvement, clearly indicates that P(7p) alone does not give rise to an
optimal solution.



| rank k | 5 4 3 2 1
# of iterations 110 81 46 36 17
# of SVD calls 1881 4782 2585 2294 558
[1.1046] [1.2408] [1.4128] [1.9591] [2.9444]
1.8880 1.8030 1.7980 2.1059 2.9444
optimal solution 3.1045 3.0352 2.8171 2.5683 2.9444
3.9106 4.1132 4.1089 3.4157 2.9444
5.0635 4.8553 5.2156 4.7749 2.9444
5.9697 | 16.0759 5.7450 6.8497 | 2.9444 |
|To — T;]| 0.5868 0.9851 1.4440 3.2890 8.5959
[ 17.9851 ] [ 179980 | | [ 18.0125 ]| [ 18.2486 | | [ 17.6667 |
7.4557 7.4321 7.4135 6.4939 2.0828e—14
singular values 2.2866 2.2836 2.1222 2.0884e—14 9.8954e—15
0.9989 0.8376 1.9865e—14 7.5607e—15 6.0286e—15
0.6164 2.2454e—14 9.0753e—15 3.8479e—15 2.6494e—15
3.4638e—15] 2.0130e—14] | |6.5255e—15 2.5896e—15] | |2.1171e—15

Table 1: Test results for a case of n = 6 symmetric Toeplitz structure
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Explicit Optimization

e Difficult to compute the gradient of P(T).
e Other ways to parameterize structured lower rank matrices:

¢ Use eigenvalues and eigenvectors for symmetric matrices;
¢ Use singular values and singular vectors for general matrices.

o Robust, but might have overdetermined the problem.
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An Illustration

e Define i
DON
M(alv"‘valﬂy(l)v"‘7y(k)> = Zazy( )y() .

=1

e Reformulate the symmetric Toeplitz structure preserving rank reduction problem explicitly as

min |To — M(ay,...,a,yY,...,.y®)| (6)
subject to M 11 = Mg, (7
s=1,...n—1,
j=2,....n—s+1,
o Objective function in (6) is described in terms of the non-zero eigenvalues a1, ..., o and the corresponding eigenvectors y(), ... y®) of M.
o Constraints in (7) are used to ensure that M is symmetric and Toeplitz.

e For other types of structures, we only need modify the constraint statement accordingly.

e The norm used in (6) can be arbitrary but is fixed.
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Redundant Constraints

e Symmetric centro-symmetric matrices have special spectral properties (Cantoni and Butler’76):

[n/

2] of the eigenvectors are symmetric; and
|n/2| are skew-symmetric.
v

&
&

> v = [v;] € R" is symmetric (or skew-symmetric) if v; = v,_; (or v; = —v,_;).

e Symmetric Toeplitz matrices are symmetric and centro-symmetric.
e The formulation in (6) does not take this spectral structure of eigenvectors y(® into account.

¢ More variables than needed have been introduced.

o May have overlooked any internal relationship among the n(n-1)

5— equality constraints.

o May have caused, inadvertently, additional computation complexity.



Using fmincon in MATLAB
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e Routine fmincon in MATLAB:

¢ Uses a sequential quadratic programming method.
¢ Solve the Kuhn-Tucker equations by a quasi-Newton updating procedure.
¢ Can estimate derivative information by finite difference approximations.

¢ Readily available in Optimization Toolbox.
e Our experiments:

¢ Use the same data as in the implicit formulation.
o Case k = 5 is computationally the same as before.
o Have trouble in cases k =4 or k = 3,

> Iterations will not improve approximations at all.

> MATLAB reports that the optimization is terminated successfully.
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£-COUNT

29
4
131
185
239
289
337
393
445
501
557
613
667
713
761
812
856
900
948
994
1038
1083
1124
1161
1200
1233
1272
1308
1309

FUNCTION
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
.958964
0.958964

O O O O O O OO OO OO ODIODOODOODOOOOOOOOoOoO oo

OO OO WWWNDNDNDNDDNDNWO OTOoooNDDNDNDDNDDNDDNDDN O

4

MAX{g}

.65974e-15
.66454e-14
.70894e-14
.70894e-14
.73115e-14
.77556e-14
.77556e-14
.77556e-14
.28466e-14
.68434e-14
.70655e-14
.66214e-14
.56112e-14
.17302e-13
.61569e-13
.60014e-13
.57794e-13
.56462e-13
.57128e-13
.56684e-13
.42837e-13
.41727e-13
.92575e-13
.04485e-13
.12923e-13
.61551e-13
.86642e-13
.84279e-13
.84723e-13
Optimization Converged Successfully

STEP

1
.91e-06
.98e-08
.98e-08
.98e-08
.77e-07
.91e-06
.45e-09
.19e-07
.45e-09
.45e-09
.45e-09
.98e-08
.63e-06
.91e-06
.38e-07
.05e-05
.05e-05
.91e-06
.63e-06
.05e-05
.53e-05
0.000244
0.00391
0.000977
0.0625
0.000977
0.00781
1
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Procedures

Hessian

Hessian

Hessian

Hessian

Hessian
Hessian
Hessian

Hessian
Hessian
Hessian
Hessian
Hessian
Hessian
Hessian
Hessian

modified

modified

twice

twice

not updated

modified

modified
modified
modified

modified
modified
modified
modified
modified
modified
modified
modified

twice

twice
twice
twice

twice
twice
twice
twice
twice
twice
twice
twice




Using LANCELOT on NEOS
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e Reasons of failure of MATLAB are not clear.

¢ Constraints might no longer be linearly independent.
¢ Termination criteria in fmincon might not be adequate.

o Difficult geometry means hard-to-satisfy constraints.

e Using more sophisticated optimization packages, such as LANCELOT.

<

A standard Fortran 77 package for solving large-scale nonlinearly constrained optimization problems (Conn, Could, and Toint’92).

<

Break down the functions into sums of element functions to introduce sparse Hessian matrix.

<

Huge code. See

http://www.rl.ac.uk/departments/ccd/numerical /lancelot/sif /sifhtml.html.

&

Available on the NEOS Server through a socket-based interface.
Uses the ADIFOR. automatic differentiation tool.

&



e LANCELOT works, so far.

¢ Find optimal solutions of problem (6) for all values of k.
¢ Results from LANCELOT agree, up to the required accuracy 107%, with those from fmins.

o Rank affects the computational cost nonlinearly.

| rankk | 5 | 4 | 3 | 2 | 1 |

# of variables | 35 28 21 14 7

# of f/c calls | 108 56 47 43 19
total time 12.99 | 4.850 | 3.120 | 1.280 | .4300

Table 3: Cost overhead in using LANCELOT for n = 6.

e [t is not clear whether the LANCELOT would run into the same trouble as fmincon when applied to larger size problems.

e There are many other algorithms available in NEOS.
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Conclusions

Structure preserving rank reduction problems arise in many important applications, particularly in the broad areas of signal and image processing.
Constructing the nearest approximation of a given matrix by one with any rank and any linear structure is difficult in general.

We have proposed two ways to formulate the problems as standard optimization computations.

It is now possible to tackle the problems numerically via utilizing standard optimization packages.

The ideas were illustrated by considering Toeplitz structure with Frobenius norm.

Our approach can be readily generalized to consider rank reduction problems for any given linear structure and of any given matrix norm.



