Structured Low Rank Approximation Lecture II: General Approach

Moody T. Chu

North Carolina State University

presented at

XXII School of Computational Mathematics Numerical Linear Algebra and Its Applications September 14, 2004

Syllabus

- Objectives:
 - $\diamond\,$ To provide some preliminaries.
 - $\diamond\,$ To treat some mathematics.
 - $\diamond\,$ To point out some applications.
 - $\diamond\,$ To describe some algorithms.
- Topics:
 - $\diamond\,$ Lecture I: Introduction
 - \blacklozenge Lecture II: General Approach
 - $\diamond\,$ Lecture III: Distance Geometry and Protein Structure
 - $\diamond\,$ Lecture IV: Singular Value Assignment with Low Rank Matrices
 - $\diamond\,$ Lecture V: Nonnegative Matrix Factorization
- Assignments:
 - $\diamond\,$ Quite a few open questions to be answered.
 - $\diamond\,$ Try out various existing optimization codes on large scale low rank approximation problems.

Lecture II:

General Approach

Joint work with Robert Funderlic and Robert Plemmons

Outline

- Problem Description
- Algebraic Structure:
 - ♦ Algebraic Varieties
 - $\diamond\,$ Rank Deficient 3×3 Toeplitz Matrices
- Constructing Lower Rank Structured Matrices:
 - $\diamond\,$ Lift and Project Method
 - $\diamond\,$ Parameterization by SVD
- Implicit Optimization
 - $\diamond\,$ Engineers' Misconception
 - $\diamond\,$ Simplex Search Method
- Explicit Optimization
 - $\diamond~{\bf fmincon}$ in MATLAB
 - $\diamond~\mathbf{LANCELOT}$ on NEOS

Structure Preserving Rank Reduction Problem

• Given

- $\diamond \text{ A target matrix } A \in \mathbb{R}^{n \times n},$
- $\diamond \text{ An integer } k, 1 \leq k < \operatorname{rank}(A),$
- $\diamond~{\rm A}$ class of matrices Ω with a specified structure,
- \diamond a fixed matrix norm $\|\cdot\|$;

Find

♦ A matrix $\hat{B} \in \Omega$ of rank k, such that

$$||A - \hat{B}|| = \min_{\substack{B \in \Omega, \operatorname{rank}(B) = k}} ||A - B||.$$

(1)

Difficulties

- No easy way to characterize, either algebraically or analytically, a given class of structured lower rank matrices.
- Lack of explicit description of the feasible set \implies Difficult to apply classical optimization techniques.
- Little discussion on whether lower rank matrices with specified structure actually exist.

Feasibility and Approximations

• The Toeplitz matrix

$$H := \begin{bmatrix} h_n & h_{n+1} & \dots & h_{2n-1} \\ \vdots & & \vdots \\ h_2 & h_3 & \dots & h_{n+1} \\ h_1 & h_2 & \dots & h_n \end{bmatrix}$$

with

$$h_j := \sum_{i=1}^k \beta_i z_i^j, \quad j = 1, 2, \dots, 2n - 1,$$

where $\{\beta_i\}$ and $\{z_i\}$ are two sequences of arbitrary nonzero numbers satisfying $z_i \neq z_j$ whenever $i \neq j$ and $k \leq n$, is a Toeplitz matrix of rank k.

- The general Toeplitz structure preserving rank reduction problem as described in (1) remains open.
 - \diamond Existence of lower rank matrices of specified structure does not guarantee *closest* such matrices.
 - \diamond No x > 0 for which 1/x is minimum.

Other Structures?

- For other types of structures, the existence question usually is a hard algebraic problem.
- Given real general matrices $B_0, B_1, \ldots, B_n \in \mathbb{R}^{m \times n}$, $m \ge n$, and an integer k < n,
 - ♦ Open Question: Can values of $\mathbf{c} := (c_1, \ldots, c_n)^\top \in \mathbb{R}^n$ be found such that

$$B(\mathbf{c}) := B_0 + c_1 B_1 + \ldots + c_n B_n$$

is of rank k precisely?

 \diamond Or, $B(\mathbf{c})$ has a prescribed set of singular values $\{\sigma_1, \ldots, \sigma_n\}$.

Another Hidden Catch

- The set of all $n \times n$ matrices with rank $\leq k$ is a *closed* set.
- The approximation problem

$$\min_{B \in \Omega, \operatorname{rank}(B) \le k} \|A - B\|$$

is *always* solvable, so long as the feasible set is non-empty.

- \diamond The rank condition is to be less than or equal to k, but not necessarily exactly equal to k.
- It is possible that a given target matrix A does not have a nearest rank k structured matrix approximation, but does have a nearest structured matrix approximation of rank k 1 or lower.

Our Approach

- Introduce two procedures to tackle the structure preserving rank reduction problem numerically.
- The procedures can be applied to problems of any norm, any *linear* structure, and any matrix norm.
- Use the symmetric Toeplitz structure with Frobenius matrix norm to illustrate the ideas.

Some other approaches

- (van der Veen'96) Given $A \in \mathbb{R}^{m \times n}$ which is known to have k singular values less than ϵ , find all rank-k matrices $B \in \mathbb{R}^{m \times n}$ such that
 - $\|A B\|_2 < \epsilon.$
 - \diamond Not seeking the best approximation, only the one in the ϵ -neighborhood of A.
 - $\diamond\,$ No structure involved.
 - ♦ Open Question: Can it be done this way for structured matrices?
- (Manton, Mahony, and Hua'03) Consider the weighted low rank approximation

$$\min_{B \in \mathbb{R}^{m \times n}, \operatorname{rank}(B) \le k} \|A - B\|_Q^2$$

where

$$||X||_Q^2 = \operatorname{vec}(X)^\top Q \operatorname{vec}(X)$$

and $Q \in \mathbb{R}^{mn \times mn}$ is a SPD matrix.

 $\diamond~$ Reformulate the minimization as

$$\underset{N \in \mathbb{R}^{n \times (n-k)}, N^{\top} N = I}{\min} \underbrace{\left(\underset{B \in \mathbb{R}^{m \times n}, B N = 0}{\min} \|A - B\|_{Q}^{2} \right)}_{\text{A quadratic programming problem}}.$$
(2)

1 1 0 01

 \diamond (Schuermans, Lemmerling, Van Huffel'03) Using a modified operator vec₂ to dictate the underlying linear structure.

• (Frieze, Kannan, and Vempala'98) Monte-Carlo algorithm for finding a matrix B^* of rank at most k so that

$$\|A - B^*\|_F \le \min_{B \in \mathbb{R}^{m \times n}, \operatorname{rank}(B) \le k} \|A - B\|_F + \epsilon \|A\|_F$$

holds with probability $1 - \delta$.

- \diamond The algorithm takes time polynomial in k, $1/\epsilon$ and $\log(1/\delta)$ only, and is independent of m, n.
- ♦ Open question: Can a structure be built in? With what probability?

Representing Low Rank Toeplitz Matrices

• Identify a *symmetric* Toeplitz matrix by its first row,

$$T = T([t_1, \dots, t_n]) = \begin{bmatrix} t_1 & t_2 & \dots & t_n \\ t_2 & t_1 & \ddots & t_{n-1} \\ \vdots & & & & \\ & & \ddots & & \\ t_{n-1} & & & t_2 \\ t_n & t_{n-1} & \dots & t_2 & t_1 \end{bmatrix}.$$

 $\diamond \mathcal{T}$ = The affine subspace of all $n \times n$ symmetric Toeplitz matrices.

• Spectral decomposition of symmetric rank k matrices:

$$M = \sum_{i=1}^{k} \alpha_i \mathbf{y}^{(i)} \mathbf{y}^{(i)^{\top}}.$$
(3)

• Write $T = T([t_1, \ldots, t_n])$ in terms of (3) \Longrightarrow

$$\sum_{i=1}^{k} \alpha_i \mathbf{y}_j^{(i)} \mathbf{y}_{j+s}^{(i)} = t_{s+1}, \ s = 0, 1, \dots, n-1, \ 1 \le j \le n-s$$
(4)

♦ Low rank matrices form an *algebraic variety*, i.e., solutions of polynomial systems.

Some Examples

• The case k = 1 is trivial.

 $\diamond\,$ Rank-one Toeplitz matrices form two simple one-parameter families,

$$T = \alpha_1 T([1, \dots, 1]), \text{ or} T = \alpha_1 T([1, -1, 1, \dots, (-1)^{n-1}])$$

with arbitrary $\alpha_1 \neq 0$.

• For 4×4 symmetric Toeplitz matrices of rank 2, there are 10 unknowns in 6 equations (by dropping the references to t_1, \ldots, t_4).

$$\begin{cases} \alpha_1 &:= \frac{\alpha_2 \left(y_1^{(2)^2} - y_2^{(2)^2}\right)}{-y_1^{(1)^2} + y_2^{(1)^2}}, \\ y_3^{(1)} &:= \frac{y_2^{(1)} y_1^{(2)} y_1^{(1)} + 2y_2^{(2)} y_2^{(1)^2} - y_2^{(2)} y_1^{(1)^2}}{y_2^{(1)} y_1^{(2)} + y_1^{(1)} y_2^{(2)}}, \\ y_4^{(1)} &:= -\frac{y_2^{(1)} y_1^{(2)^2} - 4y_2^{(1)^3} y_2^{(2)^2} - 4y_1^{(1)} y_1^{(2)} y_2^{(2)} y_2^{(1)^2} - 2y_2^{(1)} y_1^{(1)^2} y_1^{(2)^2} + 3y_2^{(1)} y_2^{(2)^2} y_1^{(1)^2} + 2y_1^{(2)} y_2^{(2)} y_1^{(1)^3}}{y_2^{(1)^2} y_1^{(2)^2} + 2y_2^{(1)} y_1^{(1)} y_2^{(2)^2} + 2y_2^{(1)} y_1^{(2)} y_2^{(2)^2} + 2y_2^{(1)} y_1^{(2)} y_1^{(1)} y_2^{(2)} + y_1^{(1)^2} y_2^{(2)^2}}, \\ y_3^{(2)} &:= -\frac{y_2^{(1)} y_1^{(2)^2} - 2y_2^{(1)} y_2^{(2)^2} - y_1^{(2)} y_2^{(2)} y_1^{(1)}}{y_2^{(1)} y_1^{(2)} + y_1^{(1)} y_2^{(2)}}, \\ y_4^{(2)} &:= -\frac{3y_2^{(1)^2} y_1^{(2)^2} y_2^{(2)} - 4y_2^{(1)^2} y_2^{(2)^3} + 2y_2^{(1)} y_1^{(1)} y_1^{(2)^3} - 4y_2^{(1)} y_1^{(1)} y_2^{(2)^2} + 2y_2^{(2)} y_1^{(1)^2} y_2^{(2)^2}}}{y_2^{(1)^2} y_1^{(1)^2} y_1^{(2)^2} + 2y_2^{(1)} y_1^{(1)} y_2^{(2)^2} + y_1^{(1)^2} y_2^{(2)^2}}. \end{cases}$$

♦ The eigstructure of symmetric and centrosymmetric matrices has a special parity property, but that has not been taken into account.

♦ Explicit description of algebraic equations for higher dimensional low rank symmetric Toeplitz matrices becomes unbearably complicated.

About Uniqueness

- Consider rank deficient $T([t_1, t_2, t_3])$
 - $\diamond \ \det(T) = (t_1 t_3)(t_1^2 + t_1 t_3 2t_2^2) = 0.$
 - $\diamond\,$ A union of two algebraic varieties.

Figure 1: Low rank, symmetric, Toeplitz matrices of dimension 3 identified in \mathbb{R}^3 .

• The number of *local* solutions to the structured lower rank approximation problem is not unique.

Dimensionality

• (Adamjan, Arov and Krein'71) Suppose the underlying matrices are of infinite dimension. Then the closest approximation to a Hankel matrix by a low rank Hankel matrix always exists and is unique.

Constructing Lower Rank Toeplitz Matrices

• Idea:

- \diamond Rank k matrices in $\mathbb{R}^{n \times n}$ form a surface $\mathcal{R}(k)$.
- $\diamond \text{ Rank } k \text{ Toeplitz matrices} = \mathcal{R}(k) \bigcap \mathcal{T}.$
- Two approaches:
 - $\diamond\,$ Parameterization by SVD:
 - ▷ Identify $M \in \mathcal{R}(k)$ by the triplet (U, Σ, V) of its singular value decomposition $M = U\Sigma V^{\top}$.
 - $\cdot \ U$ and V are orthogonal matrices, and
 - $\cdot \Sigma = \operatorname{diag}\{s_1, \ldots, s_k, 0, \ldots, 0\} \text{ with } s_1 \ge \ldots \ge s_k > 0.$
 - \triangleright Enforce the structure.
 - \diamond Alternate projections between $\mathcal{R}(k)$ and \mathcal{T} to find intersections. (Cheney & Goldstein'59, Catzow'88)

Lift and Project Algorithm

- Given $A^{(0)} = A$, repeat projections until convergence:
 - ♦ **LIFT**. Compute $B^{(\nu)} \in \mathcal{R}(k)$ nearest to $A^{(\nu)}$:
 - \triangleright From $A^{(\nu)} \in \mathcal{T}$, first compute its SVD

$$A^{(\nu)} = U^{(\nu)} \Sigma^{(\nu)} V^{(\nu)^{+}}.$$

 \triangleright Replace $\Sigma^{(\nu)}$ by diag $\{s_1^{(\nu)}, \ldots, s_k^{(\nu)}, 0, \ldots, 0\}$ and define

$$B^{(\nu)} := U^{(\nu)} \Sigma^{(\nu)} V^{(\nu)^{\top}}$$

♦ **PROJECT**. Compute $A^{(\nu+1)} \in \mathcal{T}$ nearest to $B^{(\nu)}$:

 \triangleright From $B^{(\nu)}$, choose $A^{(\nu+1)}$ to be the matrix formed by replacing the diagonals of $B^{(\nu)}$ by the averages of their entries.

- The general approach remains applicable to any other linear structure, and symmetry can be enforced.
 - \diamond The only thing that needs to be modified is the projection in the projection (second) step.

Geometric Sketch

Figure 2: Lift-and-project algorithm with intersection of low rank matrices and Toeplitz matrices

Black-box Function

• Descent property:

$$\|A^{(\nu+1)} - B^{(\nu+1)}\|_F \le \|A^{(\nu+1)} - B^{(\nu)}\|_F \le \|A^{(\nu)} - B^{(\nu)}\|_F.$$

♦ Descent with respect to the Frobenius norm which is not necessarily the norm used in the structure preserving rank reduction problem.

• If all $A^{(\nu)}$ are distinct then the iteration converges to a Toeplitz matrix of rank k.

 \diamond In principle, the iteration could be trapped in an impasse where $A^{(\nu)}$ and $B^{(\nu)}$ would not improve any more, but not experienced in practice.

 $\bullet\,$ The lift and project iteration provides a means to define a *black-box function*

$$P: \mathcal{T} \longrightarrow \mathcal{T} \bigcap \mathcal{R}(k).$$

 \diamond The P(T) is *presumably* piecewise continuous since all projections are continuous.

The graph of P(T)

• Consider $P: R^2 \longrightarrow R^2$:

- \diamond Use the xy-plane to represent the domain of P for 2 \times 2 symmetric Toeplitz matrices $T(t_1, t_2)$.
- \diamond Use the z-axis to represent the image $p_{11}(T)$ and $p_{12}(T)$), respectively.

Figure 3: Graph of P(T) for 2-dimensional symmetric Toeplitz T.

• Toeplitz matrices of the form $T(t_1, 0)$ or $T(0, t_2)$, corresponding to points on axes, converge to the zero matrix.

Implicit Optimization

• Implicit formulation:

$$\min_{T=\text{toeplit}_{Z(t_1,\dots,t_n)}} \|T_0 - P(T)\|.$$
(5)

- $\diamond T_0$ is the given target matrix.
- $\diamond P(T)$, regarded as a black box function evaluation, provides a handle to manipulate the objective function $f(T) := ||T_0 P(T)||$.
- \diamond The norm used in (5) can be any matrix norm.
- Engineers' misconception:
 - $\diamond P(T)$ is not necessarily the closest rank k Toeplitz matrix to T.
 - \diamond In practice, $P(T_0)$ has been used "as a cleansing process whereby any corrupting noise, measurement distortion or theoretical mismatch present in the given data set (namely, T_0) is removed."
 - \diamond More needs to be done in order to find the *closest* lower rank Toeplitz approximation to the given T_0 as $P(T_0)$ is merely known to be in the feasible set.

Numerical Experiment

- An ad hoc optimization technique:
 - \diamond The simplex search method by Nelder and Mead requires only function evaluations.
 - ♦ Routine **fminsearch** in MATLAB, employing the simplex search method, is ready for use in our application.
- An example:
 - ♦ Suppose $T_0 = T(1, 2, 3, 4, 5, 6)$.
 - $\diamond\,$ Start with $T^{(0)}=T_0,$ and set worst case precision to $10^{-6}.$
 - ♦ Able to calculate *all* lower rank matrices while maintaining the symmetric Toeplitz structure. Always so?
 - \diamond Nearly machine-zero of smallest calculated singular value(s) $\implies T_k^*$ is computationally of rank k.
 - $\diamond T_k^*$ is only a local solution.
 - $\|T_k^* T_0\| < \|P(T_0) T_0\|$ which, though represents only a slight improvement, clearly indicates that $P(T_0)$ alone does not give rise to an optimal solution.

rank k	5	4	3	2	1
# of iterations	110	81	46	36	17
# of SVD calls	1881	4782	2585	2294	558
optimal solution	$\begin{bmatrix} 1.1046 \\ 1.8880 \\ 3.1045 \\ 3.9106 \\ 5.0635 \\ 5.9697 \end{bmatrix}$	$\begin{bmatrix} 1.2408 \\ 1.8030 \\ 3.0352 \\ 4.1132 \\ 4.8553 \\ 6.0759 \end{bmatrix}$	$\begin{bmatrix} 1.4128\\ 1.7980\\ 2.8171\\ 4.1089\\ 5.2156\\ 5.7450 \end{bmatrix}$	$\begin{bmatrix} 1.9591 \\ 2.1059 \\ 2.5683 \\ 3.4157 \\ 4.7749 \\ 6.8497 \end{bmatrix}$	$\begin{bmatrix} 2.9444 \\ 2.9444 \\ 2.9444 \\ 2.9444 \\ 2.9444 \\ 2.9444 \\ 2.9444 \end{bmatrix}$
$ T_0 - T_k^* $	0.5868	0.9851	1.4440	3.2890	8.5959
singular values	$\begin{bmatrix} 17.9851 \\ 7.4557 \\ 2.2866 \\ 0.9989 \\ 0.6164 \\ 3.4638e-15 \end{bmatrix}$	$\begin{bmatrix} 17.9980 \\ 7.4321 \\ 2.2836 \\ 0.8376 \\ 2.2454e{-14} \\ 2.0130e{-14} \end{bmatrix}$	$\begin{bmatrix} 18.0125 \\ 7.4135 \\ 2.1222 \\ 1.9865e{-}14 \\ 9.0753e{-}15 \\ 6.5255e{-}15 \end{bmatrix}$	$\begin{bmatrix} 18.2486 \\ 6.4939 \\ 2.0884e{-14} \\ 7.5607e{-15} \\ 3.8479e{-15} \\ 2.5896e{-15} \end{bmatrix}$	$\begin{bmatrix} 17.6667 \\ 2.0828e{-14} \\ 9.8954e{-15} \\ 6.0286e{-15} \\ 2.6494e{-15} \\ 2.1171e{-15} \end{bmatrix}$

Table 1: Test results for a case of n = 6 symmetric Toeplitz structure

Explicit Optimization

- Difficult to compute the gradient of P(T).
- Other ways to parameterize structured lower rank matrices:
 - ♦ Use eigenvalues and eigenvectors for symmetric matrices;
 - $\diamond\,$ Use singular values and singular vectors for general matrices.
 - $\diamond\,$ Robust, but might have over determined the problem.

An Illustration

• Define

$$M(\alpha_1,\ldots,\alpha_k,\mathbf{y}^{(1)},\ldots,\mathbf{y}^{(k)}) := \sum_{i=1}^k \alpha_i \mathbf{y}^{(i)} {\mathbf{y}^{(i)}}^\top.$$

• Reformulate the symmetric Toeplitz structure preserving rank reduction problem *explicitly* as

$$\min \qquad \|T_0 - M(\alpha_1, \dots, \alpha_k, \mathbf{y}^{(1)}, \dots, \mathbf{y}^{(k)})\| \tag{6}$$

subject to
$$m_{j,j+s-1} = m_{1,s},$$

 $s = 1, \dots n - 1,$
 $j = 2, \dots, n - s + 1,$
(7)

if $M = [m_{ij}].$

 \diamond Objective function in (6) is described in terms of the non-zero eigenvalues $\alpha_1, \ldots, \alpha_k$ and the corresponding eigenvectors $\mathbf{y}^{(1)}, \ldots, \mathbf{y}^{(k)}$ of M.

 \diamond Constraints in (7) are used to ensure that M is symmetric and Toeplitz.

- For other types of structures, we only need modify the constraint statement accordingly.
- The norm used in (6) can be arbitrary but is fixed.

Redundant Constraints

- Symmetric centro-symmetric matrices have special spectral properties (Cantoni and Butler'76):
 - $\left(n/2 \right)$ of the eigenvectors are symmetric; and
 - $\diamond \lfloor n/2 \rfloor$ are skew-symmetric.
 - $\triangleright \mathbf{v} = [v_i] \in \mathbb{R}^n$ is symmetric (or skew-symmetric) if $v_i = v_{n-i}$ (or $v_i = -v_{n-i}$).
- Symmetric Toeplitz matrices are symmetric and centro-symmetric.
- The formulation in (6) does not take this spectral structure of eigenvectors $\mathbf{y}^{(i)}$ into account.
 - $\diamond\,$ More variables than needed have been introduced.
 - \diamond May have overlooked any internal relationship among the $\frac{n(n-1)}{2}$ equality constraints.
 - $\diamond\,$ May have caused, in advertently, additional computation complexity.

Using fmincon in MATLAB

• Routine **fmincon** in MATLAB:

- $\diamond\,$ Uses a sequential quadratic programming method.
- ♦ Solve the Kuhn-Tucker equations by a quasi-Newton updating procedure.
- $\diamond\,$ Can estimate derivative information by finite difference approximations.
- ♦ Readily available in Optimization Toolbox.
- Our experiments:
 - $\diamond\,$ Use the same data as in the implicit formulation.
 - \diamond Case k=5 is computationally the same as before.
 - \diamond Have trouble in cases k = 4 or k = 3,
 - ▷ Iterations will not improve approximations at all.
 - $\triangleright\,$ MATLAB reports that the optimization is terminated successfully.

f-COUNT	FUNCTION	MAX{g}	STEP	Procedures
29	0.958964	8.65974e-15	1	
77	0.958964	2.66454e-14	1.91e-06	
131	0.958964	2.70894e-14	2.98e-08	Hessian modified twice
185	0.958964	2.70894e-14	2.98e-08	
239	0.958964	2.73115e-14	2.98e-08	
289	0.958964	2.77556e-14	4.77e-07	
337	0.958964	2.77556e-14	1.91e-06	
393	0.958964	2.77556e-14	7.45e-09	Hessian modified twice
445	0.958964	5.28466e-14	1.19e-07	
501	0.958964	5.68434e-14	7.45e-09	
557	0.958964	5.70655e-14	7.45e-09	Hessian not updated
613	0.958964	5.66214e-14	7.45e-09	
667	0.958964	5.55112e-14	2.98e-08	Hessian modified twice
713	0.958964	3.17302e-13	7.63e-06	
761	0.958964	2.61569e-13	1.91e-06	
812	0.958964	2.60014e-13	-2.38e-07	Hessian modified twice
856	0.958964	2.57794e-13	3.05e-05	Hessian modified twice
900	0.958964	2.56462e-13	3.05e-05	Hessian modified twice
948	0.958964	2.57128e-13	1.91e-06	
994	0.958964	2.56684e-13	7.63e-06	
1038	0.958964	3.42837e-13	3.05e-05	
1083	0.958964	3.41727e-13	-1.53e-05	Hessian modified twice
1124	0.958964	3.92575e-13	0.000244	Hessian modified twice
1161	0.958964	5.04485e-13	0.00391	Hessian modified twice
1200	0.958964	5.12923e-13	0.000977	Hessian modified twice
1233	0.958964	5.61551e-13	0.0625	Hessian modified twice
1272	0.958964	5.86642e-13	0.000977	Hessian modified twice
1308	0.958964	4.84279e-13	0.00781	Hessian modified twice
1309	0.958964	4.84723e-13	1	Hessian modified twice
Optimizat	tion Conver	ged Successful	ly	

Using LANCELOT on NEOS

- Reasons of failure of MATLAB are not clear.
 - ♦ Constraints might no longer be linearly independent.
 - ♦ Termination criteria in **fmincon** might not be adequate.
 - $\diamond\,$ Difficult geometry means hard-to-satisfy constraints.
- Using more sophisticated optimization packages, such as **LANCELOT**.
 - ♦ A standard Fortran 77 package for solving large-scale nonlinearly constrained optimization problems (Conn, Could, and Toint'92).
 - $\diamond\,$ Break down the functions into sums of *element functions* to introduce sparse Hessian matrix.
 - $\diamond\,$ Huge code. See

http://www.rl.ac.uk/departments/ccd/numerical/lancelot/sif/sifhtml.html.

- $\diamond\,$ Available on the NEOS Server through a socket-based interface.
- $\diamond\,$ Uses the ${\bf ADIFOR}$ automatic differentiation tool.

- LANCELOT works, so far.
 - \diamond Find optimal solutions of problem (6) for all values of k.
 - \diamond Results from **LANCELOT** agree, up to the required accuracy 10⁻⁶, with those from **fmins**.
 - $\diamond\,$ Rank affects the computational cost nonlinearly.

rank k	5	4	3	2	1
# of variables	35	28	21	14	7
# of f/c calls	108	56	47	43	19
total time	12.99	4.850	3.120	1.280	.4300

Table 3: Cost overhead in using **LANCELOT** for n = 6.

- It is not clear whether the **LANCELOT** would run into the same trouble as **fmincon** when applied to larger size problems.
- There are many other algorithms available in NEOS.

Conclusions

- Structure preserving rank reduction problems arise in many important applications, particularly in the broad areas of signal and image processing.
- Constructing the nearest approximation of a given matrix by one with any rank and any linear structure is difficult in general.
- We have proposed two ways to formulate the problems as standard optimization computations.
- It is now possible to tackle the problems numerically via utilizing standard optimization packages.
- The ideas were illustrated by considering Toeplitz structure with Frobenius norm.
- Our approach can be readily generalized to consider rank reduction problems for any given linear structure and of any given matrix norm.