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Syllabus

• Objectives:

� To provide some preliminaries.

� To treat some mathematics.

� To point out some applications.

� To describe some algorithms.

• Topics:

� Lecture I: Introduction

� Lecture II: General Approach

� Lecture III: Distance Geometry and Protein Structure

� Lecture IV’: Singular Value Assignment with Low Rank Matrices

� Lecture V: Nonnegative Matrix Factorization

• Assignments:

� Application to some real protein data.

� Streamline the code to make it portable.
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Lecture III

Distance Geometry and Protein Structure
Joint Work with David Chu and Hunter Brown
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Outline

• Introduction

� Protein Folding Problem

� Euclidean Distance Matrix

• Least Squares Formulation

� Approximation Problem

� Completion Problem

• Analytic Gradient

• Analytic Hessian

• Numerical Examples
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Introduction

• Fundamental Problem in Distance Geometry:

� Given the distance and chirality constrains which define (our state of knowledge of) a mobile molecule,

� Find one or more conformations which satisfy them, or else prove that no such conformations exists.

• Applications:

� Molecular conformation problems in chemistry.

� Multidimensional scaling in behavioral sciences.

� Multivariate analysis in statistics.

� Remote exploration and sensing, and antenna array processing.

� . . .
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Protein Folding Problem

• What we know about proteins:

� A protein molecule is a connected sequence of amino acid molecules.

� There are only twenty amino acids in nature.

� Representing each amino acid by a letter from a twenty-letter alphabet, a protein is a string of amino acids linked together like a word.

� Most laboratories have the technology to find the ordered sequence of amino acids in a protein.
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Real Issue in Protein Folding

• Merely knowing the long linear chains is not enough.

� To function properly, the one-dimensional primary amino acid sequence must fold into a particular three-dimensional conformation called its
tertiary configuration.

� This protein then interacts three-dimensionally with other proteins or other groups of molecules called substrates in a manner much like a
lock and key arrangement.

• The tertiary structure that mediates how a protein functions.

� The final folding configuration determines whether a protein acts as an enzyme in chemical reactions or behaves as part of an antibody in
the immune system.

� How a protein folds determines how the protein works, which ultimately determines how our bodies work.

� Wrongly folded proteins do not behave normally, and their abnormal function can lead to disease.

• Understanding how proteins fold into three-dimensional structures given their primary linear sequence thus becomes an incredibly important task.
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Then What?

• Literature on the various aspects of protein folding is enormous.

� Lots of models using a synthesis of knowledge from biology, physics, chemistry, and mathematics.

� No clear models.

• Try to see the three dimensional structure.

� Biologists use techniques such as x-ray crystallography or molecular dynamics models to peer through the nano-structure.

� Noises in the sensing devices or the imperfection of the models often results in indefinite or incomplete images.

• An imperative task:

� Retrieve a possible folding structure that is nearest to the observed but possibly inconsistent or imperfect configuration.
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Euclidean Distance Matrix

• Given n particles at locations p1, . . . ,pn ∈ R
m,

� A complete record of relative spacing between any two of the n particles is called a distance matrix.

� The matrix Q(p1, . . . ,pn) = [qij] where
qij = ‖pi − pj‖2

2, i, j = 1, . . . , n,

is called a Euclidean distance matrix.
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Structures of Eculidean Distance Matrices

• (Schoenberg’35, Young and Householder’38) Q ∈ R
(n+1)×(n+1) is a Euclidean distance matrix if and only if A ∈ R

n×n defined by

aij :=
1

2
[d0i + d0j − dij], 1 ≤ i, j ≤ n

is positive semidefinite.

� rank(A) is the minimum imbedding dimension, i.e., the lowest dimension of the Euclidean space in which the points reside.

� Let A be spectrally decomposed as
A = UΛU�, (1)

then columns of C := Λ1/2U� are coordinates for P1, . . . , Pn.

• (Gower’82) Q is a distance matrix if and only if x�Qx ≤ 0 for all x such that x�1 = 0.

� Q is a distance matrix if and only in (I − 1s�)Q(I − s1�) is negative semidefinite whenever s�1 = 1.
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Rank Structure

• For any n ≥ m + 2, the rank of Q is no greater than m + 2 and is generically m + 2.

� Write

Q =
[‖pi − pj‖2

]
=

m∑
�=1

[
(p�i − p�j)

2
]
.

� For each �,
Q� =

[
(p�i − p�j)

2
]

is a distance matrix for n points p�1, . . . , p�n on the real line.

� Such a matrix can be denoted in a canonical form,

Q� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 d2
1 (d1 + d2)

2 (d1 + d2 + d3)
2 . . .

d2
1 0 d2

2 (d2 + d3)
2

(d1 + d2)
2 d2

2 0 d2
3

...

...
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where d1, . . . , dn denote the 1-dimensional coordinates of these points.

� Q� can further be reduced by eliminations and scalings to⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 d1 0 0 0 0 0

d1 0 d1 + d2 d2 + d3 d3 + d4 d4 + d5 d5 + d6

0 d1 + d2 0 0 0 0 0

0 d2 + d3 0 0 0 0 0

0 d3 + d4 0 0 0 0 0

0 d4 + d5 0 0 0 0 0

0 d5 + d6 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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An Inverse Problem

• Once all the inter-particle distances are in hand, it is a simple task to construct the (3-dimensional) geometric structure.

• Not all the inter-particle distances are needed for the construction.

• Many entries in the matrix provide redundant information.

• Rigid body motions, i.e., rotations, translations, and reflections, of particles in space will not alter the distance matrix.

• Open Question: Characterize when and what partial information of inter-particle distances will be sufficient for the determination of the entire
geometric structure.
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Returning to the Scenario

• Let F ∈ R
n×n denote an observation of (the squares of) the relative spacing among n particles in R

3.

� Some of the spacing has not been measured accurately.

� rank(F ) ≥ 5.

� Want to retrieve whatever feasible information out of the matrix F so as to infer a realistic conformation.

� Some of the spacing is unobservable.

� The matrix F is incomplete.

� Want to complete the matrix F so that it becomes a distance matrix.

• Find an Euclidean distance matrix Q ∈ R
n×n representing the minimal change of F .
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Criteria in Approximation

• Criteria used in characterizing the changes affect the way in which the approximation is formulated.

� Low rank approximation techniques (Chu el al’02).

� A nonnegative and symmetric matrices of rank 5 is not necessarily a distance matrix.

� The distance matrix has more structure that is yet to be exploited.

� Alternating projection between two geometric entities (Glunt el al’90).

� Slow convergence and possible stagnation.

� Semi-definite programming (Alafkin’99).

� Limited-memory variable-metric continuation techniques (Moré el al’96).

• Least squares formulation with location vectors p1, . . . ,pn as parameter.

� The resulting approximation of the imperfect F is guaranteed to be a distance matrix.

� Not unique under rotation, translation, or reflection.
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Basic Formulation

• Assume initially that all entries of F except the diagonal are to be approximated.

� Two special cases later:

� The approximation problem where some location vectors of the n particles are known and fixed.

� The completion problem where a partial information of spacing among the n particles, but not necessarily from known location vectors,
is known and fixed.

• Given F ∈ R
n×n, minimize the objective function

f(p1, . . .pn) =
1

2
‖F − [〈pi − pj,pi − pj〉]‖2

F . (2)

� 〈·, ·〉 = the usual Euclidean inner product.

� ‖ · ‖F = the Frobenious matrix norm.

• Our contributions:

� The general theory is developed in R
m.

� Offer a highly organized and effective way of computing the derivative information.
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Analytic Gradient

• Denote discrepancies
dij = fij − 〈pi − pj,pi − pj〉, i, j = 1, . . . n. (3)

• Consider the space R
m × . . . × R

m equipped with the product topology.

� The Fréchet derivative of f at the point (p1, . . .pn) acting on an arbitrary n-fold vector (z1, . . . , zn) ∈ R
m × . . . × R

m can be represented as
the multi-lineal functional

f
′
(p1, . . .pn).(z1, . . . , zn) =

n∑
k=1

∂f

∂pk

(p1, . . .pn).zk (4)

� A.b denotes the operator action of A on b.
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Partial Gradient

∂f

∂pk

= −4
n∑

j=1
j �=k

(pk − pj)dkj. (5)

• Riesz representation:
∂f

∂pk

(p1, . . .pn).zk = 〈 ∂f

∂pk

(p1, . . .pn), zk〉.

• Carry on:

〈 ∂f

∂pk

, zk〉 = 〈 ∂

∂pk

(F − [〈pi − pj,pi − pj〉]) .zk, F − [〈pi − pj,pi − pj〉]〉,

• Keep going:

∂

∂pk

(F − [〈pi − pj,pi − pj〉]) .zk =

−2

⎛
⎜⎜⎜⎜⎜⎝

0 . . . 〈zk,pk − p1〉 0
...

...
...

〈zk,pk − p1〉 . . . 0 . . . 〈zk,pk − pn〉
...

0 〈zk,pk − pn〉 0

⎞
⎟⎟⎟⎟⎟⎠ .

• Finally,
∂f

∂pk

(p1, . . .pn).zk = 〈zk,−4
n∑

j=1
j �=k

(pk − pj)dkj〉
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Gradient of f

• Using the product topology again,

∇f(p1, . . .pn) =

(
∂f

∂p1

, . . . ,
∂f

∂pn

)
∈ R

m × . . . × R
m. (6)

• Any numerical method utilizing the gradient information can now be employed to solve the approximation problem.

• Gradient flow:
dpk

dt
= 4

n∑
j=1
j �=k

(pk − pj)(fkj − 〈pk − pj,pk − pj〉), k = 1, . . . , n

moves in the steepest descent direction to reduce the values for the objective function f .

� A descent flow bounded in a neighborhood of F .

� Limit point must exist.

� A (local) least squares approximation of the given F .
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Analytic Hessian

• Will be more effective for finding critical points if the second-derivative information of f is available.

• Consider
g : R

m × . . . × R
m → R

m × . . . × R
m.

� g = ∇f = (g1, . . . gn).

gk(p1, . . .pn) =
∂f

∂pk

(p1, . . .pn). (7)

• The Jacobian matrix of gk constitutes precisely the k-th row block of the Hessian of f .

� The Hessian can be calculated block by block.
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Partial Jacobian

∂gk

∂pi

=

{∑n
j=1,j �=k

[−4dkjIm + 8(pk − pj)(pk − pj)
T
]
, if i = k;

4dkiIm − 8(pk − pi)(pk − pi)
T , if i 
= k.

(8)

• Under the product topology,

g
′
k(p1, . . .pn).(w1, . . .wn) =

n∑
i=1

∂gk

∂pi

.wi.

• If i = k,

∂gk

∂pk

.wk = −4
n∑

j=1
j �=k

[wkdkj − 2(pk − pj)〈wk,pk − pj〉]

=
n∑

j=1
j �=k

[−4dkjIm + 8(pk − pj)(pk − pj)
T
]
wk.

• If i 
= k,

∂gk

∂pi

.wi = −4 [−widki − 2(pk − pi)〈−wi,pk − pi〉]
=

[
4dkiIm − 8(pk − pi)(pk − pi)

T
]
wi.
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Modification

• Usually some additional information is available in the geometric conformation.

� The x-ray crystal structure of each of the twenty amino acids in nature is known.

� Most of the amino acid sequences of our proteins are also known.

� Once a certain amino acid is known to present in the protein, a certain block of the matrix F is already predetermined and fixed.

• Least squares formulations should be modified accordingly to reflect this fact.

� Derivative information is available in block form.

� Convenient for the overall process of assembling essential gradient and the Hessian.
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Approximation with Partially Fixed Locations

• Any rotations, translations, or reflections of a given conformation will produce the same relative spacing and hence the same distance matrix.

� To shun rotation, translation, or reflection, m + 1 positions of these n particles in the embedding space R
m must be specified and bound as

reference points.

� Some additional location vectors among p1, . . . ,pn might be known and fixed beforehand.

• Let q denote the indices of known location vectors.

� Entries fij of F where both i, j ∈ q correspond to the spacing among these known location vectors.

� These entries of F should be exact and kept constant.

� Derivatives at these points should be zero.

� Keep these known position vectors invariant by simply nullifying any derivative information at the corresponding blocks.
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Completion with Partially Fixed F

• The matrix F represents a partially specified distance matrix.

� The completion problem is different from the approximation problem.

� The specified entries in F do not necessarily correspond to any known location vectors, but is required to remain the same throughout the
whole matrix completion process.

� The specified entries in F must be consistent by themselves to begin with.

� Open Question: Determine whether the specified entries in F are consistent so that F indeed can be completed as a distance matrix
(Trosett’97).

• Let ∆ denote the index set of those specified entries of F .

∆ := {(i, j) ∈ Z × Z | dij = 0} .

• Minimize the same objective function f(p1, . . .pn) as before, subject to additional equality constraints

〈pi − pj,pi − pj〉 = fij for all (i, j) ∈ ∆. (9)

� The completion problem is cast as an equality constrained optimization problem.
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Example 1

• A knot R
3. ⎧⎪⎨

⎪⎩
x = −10 cos(t) − 2 cos(5t) + 15 sin(2t);

y = −15 cos(2t) + 10 sin(t) − 2 sin(5t); 0 ≤ t ≤ 2π

z = 10 cos(3t);

• Simulation:

� Represent the knot by n discrete points.

� Use the points to define the true n × n distance matrix Q = [qij].

� Let q denote the indices of known location vectors.

� q must contain at least four points.

� Perturb Q to simulate F .

fij = fji =

⎧⎪⎨
⎪⎩

0, if i = j,

qij, if both i and j are in q,(√
qij + σ ∗ randn(1)

)2
, if either i or j is not in q.

� σ is an indicator of how far F is away from a distance matrix.

� σ = 2 would bury Q in a significant amount of random noise.

� Use existing routine fminunc in the Optimization Toolbox, Version 2.2, of MATLAB.

� Keep location vectors in by q fixed throughout the iteration.

� Perturb each entry of the true location vectors by an additive noise with uniform distribution over [-20,20].

• Numerical results:

� Objective values have been reduced from an order of 109 to 106, indicating that F is far from being a distance matrix.

� Remarkable likeness between the recovered and the original configurations.
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Example 2.

• A helix ⎧⎪⎨
⎪⎩

x = 4 cos(3t);

y = 4 sin(3t); 0 ≤ t ≤ 2π;

z = 2t.

• Numerical results:

� n = 101 and q = 1 : 5 : 101.

� Not a smooth solution.

� Recapture the helix feature from a fairly deviate initial guess and a fraudulent F .

� Pre-shaped?

� q = [1 : 3, 99 : 101].

� Only the first and the last three location vectors are fixed.

� Deviate from the helix further.

� Spirality is evident.
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Example 3

• A 2-dimensional pretzel: {
x = t + 3 sin(2t);

y = t + 2 sin(3t); −2π ≤ t ≤ 2π.

� Has many critical turns which are close to each other.

� A more careful observation of the spacing among the location vectors is necessary.

� To affect this scenario, we assume a smaller standard deviation σ = 1 of noise in the simulation.

• Simulation:

� n = 61.

� q = [1 : 3, 59 : 61].

� Moderately wild initial guess.

• Numerical results:

� Able to pick up the folds.

� Smaller σ or more known position would ease the difficulties.
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Example 4

• Complete the 6 × 6 partially specified matrix

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 3 4 3 4 3
3 0 1 x1 5 x3

4 1 0 5 x2 5
3 x1 5 0 1 x4

4 5 x2 1 0 5
3 x3 5 x4 5 0

⎤
⎥⎥⎥⎥⎥⎥⎦

with values of xi, i = 1, . . . , 4.

� Look for six location vectors in R
m.

� Not sure about the dimension m of the embedding space.

� The first 3 × 3 principal submatrix is completely known, suggesting that three location vectors could have been self-determined.

• If m = 2,

� Use p1 = (0, 0), p2 = (
√

3, 0), and p3 = (
√

3, 1) as reference points in R
2.

� Eight equality constraints in the form of (9) for the remaining three location vectors.

� Unknown location vectors pj, j = 4, 5, 6, constitute only six unknowns.

� No feasible solution at all in R
2.
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• If m = 3,

� Embed pi, i = 1, 2, 3, in R
3 by adding zeros to their third components.

� Employ an existing routine fmincon in the Optimization Toolbox of MATLAB by supplying the equality constraints (9).

• Numerical results.

x1 x2 x3 x4

6.6883 3.9512 2.0187 7.3255
1.7434 9.1772 2.2007 2.2006
2.2800 9.4157 2.3913 4.7487
2.7971 5.7203 7.2315 7.2315
2.2723 9.4208 2.3964 4.7398

Table 1: Examples of entries for completed distance matrix.

p1 p2 p3 p4 p5 p6

0 1.7321 1.7321 0.9014 0.5774 1.1359
0 0 1.0000 -0.5613 -0.4223 -0.9675
0 0 0 1.3335 1.7980 -0.2711
0 0 0 -0.3067 0.5057 0.8367

Table 2: Example of location vectors in R
4 for completed distance matrix.
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Conclusion

• There are several algorithms available for solving the distance matrix approximation problem.

� We cast the problem under a least squares approximation in terms of the location vectors directly and propose using conventional large-scale
optimization techniques instead.

• We manage the resulting complexity by organizing the gradient and Hessian information in block forms.

� The matrix calculus makes it particularly easy to assemble the derivatives for existing software packages when some locations vectors are
known and fixed.

• Numerical experiments seem to suggest that the conventional methods are efficient and robust in the reconstruction.


