Structured Low Rank Approximation Lecture III: Distance Geometry and Protein Structure

Moody T. Chu

North Carolina State University

presented at

XXII School of Computational Mathematics Numerical Linear Algebra and Its Applications September 14, 2004

Syllabus

- Objectives:
 - $\diamond\,$ To provide some preliminaries.
 - $\diamond\,$ To treat some mathematics.
 - $\diamond\,$ To point out some applications.
 - $\diamond~$ To describe some algorithms.
- Topics:
 - $\diamond\,$ Lecture I: Introduction
 - $\diamond\,$ Lecture II: General Approach
 - \blacklozenge Lecture III: Distance Geometry and Protein Structure
 - $\diamond\,$ Lecture IV': Singular Value Assignment with Low Rank Matrices
 - $\diamond\,$ Lecture V: Nonnegative Matrix Factorization
- Assignments:
 - $\diamond\,$ Application to some real protein data.
 - $\diamond\,$ Streamline the code to make it portable.

Lecture III

Distance Geometry and Protein Structure Joint Work with David Chu and Hunter Brown

Outline

- Introduction
 - ♦ Protein Folding Problem
 - $\diamond\,$ Euclidean Distance Matrix
- Least Squares Formulation
 - $\diamond\,$ Approximation Problem
 - $\diamond\,$ Completion Problem
- Analytic Gradient
- Analytic Hessian
- Numerical Examples

Introduction

• Fundamental Problem in Distance Geometry:

- ♦ Given the distance and chirality constrains which define (our state of knowledge of) a mobile molecule,
- $\diamond\,$ Find one or more conformations which satisfy them, or else prove that no such conformations exists.

• Applications:

- $\diamond\,$ Molecular conformation problems in chemistry.
- ♦ Multidimensional scaling in behavioral sciences.
- $\diamond\,$ Multivariate analysis in statistics.
- $\diamond\,$ Remote exploration and sensing, and antenna array processing.

◊ ...

Protein Folding Problem

• What we know about proteins:

- ♦ A protein molecule is a connected sequence of amino acid molecules.
- ♦ There are only twenty amino acids in nature.
 - ▷ Representing each amino acid by a letter from a twenty-letter alphabet, a protein is a string of amino acids linked together like a word.
- \diamond Most laboratories have the technology to find the ordered sequence of amino acids in a protein.

Real Issue in Protein Folding

- Merely knowing the long linear chains is not enough.
 - \diamond To function properly, the one-dimensional primary amino acid sequence must fold into a particular three-dimensional conformation called its *tertiary configuration*.
 - \diamond This protein then interacts three-dimensionally with other proteins or other groups of molecules called *substrates* in a manner much like a lock and key arrangement.
- The tertiary structure that mediates how a protein functions.
 - ◊ The final folding configuration determines whether a protein acts as an enzyme in chemical reactions or behaves as part of an antibody in the immune system.
 - ♦ How a protein folds determines how the protein works, which ultimately determines how our bodies work.
 - ◊ Wrongly folded proteins do not behave normally, and their abnormal function can lead to disease.
- Understanding how proteins fold into three-dimensional structures given their primary linear sequence thus becomes an incredibly important task.

Then What?

- Literature on the various aspects of protein folding is enormous.
 - ♦ Lots of models using a synthesis of knowledge from biology, physics, chemistry, and mathematics.
 - $\diamond\,$ No clear models.
- Try to see the three dimensional structure.
 - ♦ Biologists use techniques such as x-ray crystallography or molecular dynamics models to peer through the nano-structure.
 - ♦ Noises in the sensing devices or the imperfection of the models often results in indefinite or incomplete images.
- An imperative task:
 - ◊ Retrieve a possible folding structure that is nearest to the observed but possibly inconsistent or imperfect configuration.

Euclidean Distance Matrix

- Given *n* particles at locations $\mathbf{p}_1, \ldots, \mathbf{p}_n \in \mathbb{R}^m$,
 - \diamond A complete record of relative spacing between any two of the *n* particles is called a distance matrix.
 - \diamond The matrix $Q(\mathbf{p}_1, \dots, \mathbf{p}_n) = [q_{ij}]$ where

$$q_{ij} = \|\mathbf{p}_i - \mathbf{p}_j\|_2^2, \quad i, j = 1, \dots, n,$$

is called a *Euclidean distance matrix*.

Structures of Eculidean Distance Matrices

• (Schoenberg'35, Young and Householder'38) $Q \in \mathbb{R}^{(n+1) \times (n+1)}$ is a Euclidean distance matrix if and only if $A \in \mathbb{R}^{n \times n}$ defined by

$$a_{ij} := \frac{1}{2} [d_{0i} + d_{0j} - d_{ij}], \quad 1 \le i, j \le n$$

is positive semidefinite.

- \diamond rank(A) is the minimum imbedding dimension, i.e., the lowest dimension of the Euclidean space in which the points reside.
- $\diamond\,$ Let A be spectrally decomposed as

$$A = U\Lambda U^{\top},\tag{1}$$

then columns of $C := \Lambda^{1/2} U^{\top}$ are coordinates for P_1, \ldots, P_n .

• (Gower'82) Q is a distance matrix if and only if $\mathbf{x}^{\top}Q\mathbf{x} \leq 0$ for all \mathbf{x} such that $\mathbf{x}^{\top}\mathbf{1} = 0$.

♦ Q is a distance matrix if and only in $(I - \mathbf{1s}^{\top})Q(I - \mathbf{s1}^{\top})$ is negative semidefinite whenever $\mathbf{s}^{\top}\mathbf{1} = 1$.

Rank Structure

- For any $n \ge m+2$, the rank of Q is no greater than m+2 and is generically m+2.
 - \diamond Write

$$Q = \left[\|\mathbf{p}_i - \mathbf{p}_j\|^2 \right] = \sum_{\ell=1}^m \left[(p_{\ell i} - p_{\ell j})^2 \right].$$

 \diamond For each $\ell,$

$$Q_{\ell} = \left[(p_{\ell i} - p_{\ell j})^2 \right]$$

is a distance matrix for n points $p_{\ell 1}, \ldots, p_{\ell n}$ on the real line.

 $\diamond\,$ Such a matrix can be denoted in a canonical form,

where d_1, \ldots, d_n denote the 1-dimensional coordinates of these points. $\diamond \ Q_\ell$ can further be reduced by eliminations and scalings to

ſ	-2	d_1	0	0	0	0	0
	d_1	0	$d_1 + d_2$	$d_2 + d_3$	$d_3 + d_4$	$d_4 + d_5$	$d_{5} + d_{6}$
	0	$d_1 + d_2$	0	0	0	0	0
	0	$d_2 + d_3$	0	0	0	0	0
	0	$d_3 + d_4$	0	0	0	0	0
	0	$d_4 + d_5$	0	0	0	0	0
	0	$d_5 + d_6$	0	0	0	0	0

An Inverse Problem

- Once all the inter-particle distances are in hand, it is a simple task to construct the (3-dimensional) geometric structure.
- Not all the inter-particle distances are needed for the construction.
- Many entries in the matrix provide redundant information.
- Rigid body motions, i.e., rotations, translations, and reflections, of particles in space will not alter the distance matrix.
- Open Question: Characterize when and what partial information of inter-particle distances will be sufficient for the determination of the entire geometric structure.

Returning to the Scenario

- Let $F \in \mathbb{R}^{n \times n}$ denote an observation of (the squares of) the relative spacing among n particles in \mathbb{R}^3 .
 - $\diamond\,$ Some of the spacing has not been measured accurately.
 - $\triangleright \operatorname{rank}(F) \geq 5.$
 - \triangleright Want to retrieve whatever feasible information out of the matrix F so as to infer a realistic conformation.
 - $\diamond\,$ Some of the spacing is unobservable.
 - \triangleright The matrix F is incomplete.
 - \triangleright Want to complete the matrix F so that it becomes a distance matrix.
- Find an Euclidean distance matrix $Q \in \mathbb{R}^{n \times n}$ representing the minimal change of F.

Criteria in Approximation

- Criteria used in characterizing the changes affect the way in which the approximation is formulated.
 - \diamond Low rank approximation techniques (Chu el al'02).
 - ▷ A nonnegative and symmetric matrices of rank 5 is not necessarily a distance matrix.
 - \triangleright The distance matrix has more structure that is yet to be exploited.
 - ♦ Alternating projection between two geometric entities (Glunt el al'90).
 - $\triangleright\,$ Slow convergence and possible stagnation.
 - ♦ Semi-definite programming (Alafkin'99).
 - ◊ Limited-memory variable-metric continuation techniques (Moré el al'96).
- Least squares formulation with location vectors $\mathbf{p}_1, \ldots, \mathbf{p}_n$ as parameter.
 - $\diamond\,$ The resulting approximation of the imperfect F is guaranteed to be a distance matrix.
 - $\diamond\,$ Not unique under rotation, translation, or reflection.

Basic Formulation

- Assume initially that all entries of F except the diagonal are to be approximated.
 - $\diamond\,$ Two special cases later:
 - \triangleright The approximation problem where some location vectors of the *n* particles are known and fixed.
 - \triangleright The completion problem where a partial information of spacing among the *n* particles, but not necessarily from known location vectors, is known and fixed.
- Given $F \in \mathbb{R}^{n \times n}$, minimize the objective function

$$f(\mathbf{p}_1, \dots, \mathbf{p}_n) = \frac{1}{2} \|F - [\langle \mathbf{p}_i - \mathbf{p}_j, \mathbf{p}_i - \mathbf{p}_j \rangle]\|_F^2.$$

$$(2)$$

- $\diamond \langle \cdot, \cdot \rangle$ = the usual Euclidean inner product.
- $\|\cdot\|_F =$ the Frobenious matrix norm.
- Our contributions:
 - \diamond The general theory is developed in \mathbb{R}^m .
 - ♦ Offer a highly organized and effective way of computing the derivative information.

Analytic Gradient

• Denote discrepancies

$$d_{ij} = f_{ij} - \langle \mathbf{p}_i - \mathbf{p}_j, \mathbf{p}_i - \mathbf{p}_j \rangle, \quad i, j = 1, \dots n.$$
(3)

- Consider the space $\mathbb{R}^m \times \ldots \times \mathbb{R}^m$ equipped with the product topology.
 - ♦ The Fréchet derivative of f at the point $(\mathbf{p}_1, \dots, \mathbf{p}_n)$ acting on an arbitrary *n*-fold vector $(\mathbf{z}_1, \dots, \mathbf{z}_n) \in \mathbb{R}^m \times \dots \times \mathbb{R}^m$ can be represented as the multi-lineal functional

$$f'(\mathbf{p}_1,\ldots,\mathbf{p}_n).(\mathbf{z}_1,\ldots,\mathbf{z}_n) = \sum_{k=1}^n \frac{\partial f}{\partial \mathbf{p}_k}(\mathbf{p}_1,\ldots,\mathbf{p}_n).\mathbf{z}_k$$
(4)

 \triangleright A.b denotes the operator action of A on b.

Partial Gradient

$$\frac{\partial f}{\partial \mathbf{p}_k} = -4 \sum_{\substack{j=1\\j \neq k}}^n (\mathbf{p}_k - \mathbf{p}_j) d_{kj}.$$
(5)

• Riesz representation:

$$\frac{\partial f}{\partial \mathbf{p}_{\mathbf{k}}}(\mathbf{p}_{1},\ldots,\mathbf{p}_{n}).\mathbf{z}_{k}=\langle \frac{\partial f}{\partial \mathbf{p}_{\mathbf{k}}}(\mathbf{p}_{1},\ldots,\mathbf{p}_{n}),\mathbf{z}_{k}\rangle.$$

• Carry on:

$$\langle \frac{\partial f}{\partial \mathbf{p}_{\mathbf{k}}}, \mathbf{z}_{k} \rangle = \langle \frac{\partial}{\partial \mathbf{p}_{k}} \left(F - \left[\langle \mathbf{p}_{i} - \mathbf{p}_{j}, \mathbf{p}_{i} - \mathbf{p}_{j} \rangle \right] \right) \cdot \mathbf{z}_{k}, F - \left[\langle \mathbf{p}_{i} - \mathbf{p}_{j}, \mathbf{p}_{i} - \mathbf{p}_{j} \rangle \right] \rangle,$$

• Keep going:

$$\frac{\partial}{\partial \mathbf{p}_{k}} \left(F - \left[\langle \mathbf{p}_{i} - \mathbf{p}_{j}, \mathbf{p}_{i} - \mathbf{p}_{j} \rangle \right] \right) \cdot \mathbf{z}_{k} = \\ -2 \begin{pmatrix} 0 & \dots & \langle \mathbf{z}_{k}, \mathbf{p}_{k} - \mathbf{p}_{1} \rangle & 0 \\ \vdots & \vdots & \vdots \\ \langle \mathbf{z}_{k}, \mathbf{p}_{k} - \mathbf{p}_{1} \rangle & \dots & 0 & \dots & \langle \mathbf{z}_{k}, \mathbf{p}_{k} - \mathbf{p}_{n} \rangle \\ \vdots & \vdots & 0 \\ 0 & \langle \mathbf{z}_{k}, \mathbf{p}_{k} - \mathbf{p}_{n} \rangle & 0 \end{pmatrix} .$$

• Finally,

$$\frac{\partial f}{\partial \mathbf{p}_{\mathbf{k}}}(\mathbf{p}_{1},\ldots,\mathbf{p}_{n}).\mathbf{z}_{k} = \langle \mathbf{z}_{k},-4\sum_{\substack{j=1\\j\neq k}}^{n}(\mathbf{p}_{k}-\mathbf{p}_{j})d_{kj}\rangle$$

Gradient of f

• Using the product topology again,

$$\nabla f(\mathbf{p}_1, \dots, \mathbf{p}_n) = \left(\frac{\partial f}{\partial \mathbf{p}_1}, \dots, \frac{\partial f}{\partial \mathbf{p}_n}\right) \in \mathbb{R}^m \times \dots \times \mathbb{R}^m.$$
(6)

- Any numerical method utilizing the gradient information can now be employed to solve the approximation problem.
- Gradient flow:

$$\frac{d\mathbf{p}_k}{dt} = 4\sum_{\substack{j=1\\j\neq k}}^n (\mathbf{p}_k - \mathbf{p}_j)(f_{kj} - \langle \mathbf{p}_k - \mathbf{p}_j, \mathbf{p}_k - \mathbf{p}_j \rangle), \quad k = 1, \dots, n$$

moves in the steepest descent direction to reduce the values for the objective function f.

- $\diamond\,$ A descent flow bounded in a neighborhood of F.
- $\diamond\,$ Limit point must exist.
- \diamond A (local) least squares approximation of the given F.

Analytic Hessian

- Will be more effective for finding critical points if the second-derivative information of f is available.
- Consider

$$g: \mathbb{R}^m \times \ldots \times \mathbb{R}^m \to \mathbb{R}^m \times \ldots \times \mathbb{R}^m.$$

 $\diamond \ g = \nabla f = (g_1, \dots g_n).$

$$g_k(\mathbf{p}_1, \dots, \mathbf{p}_n) = \frac{\partial f}{\partial \mathbf{p}_k}(\mathbf{p}_1, \dots, \mathbf{p}_n).$$
(7)

- The Jacobian matrix of g_k constitutes precisely the k-th row block of the Hessian of f.
 - ♦ The Hessian can be calculated block by block.

Partial Jacobian

$$\frac{\partial g_k}{\partial \mathbf{p}_i} = \begin{cases} \sum_{j=1, j \neq k}^n \left[-4d_{kj}I_m + 8(\mathbf{p}_k - \mathbf{p}_j)(\mathbf{p}_k - \mathbf{p}_j)^T \right], & \text{if } i = k; \\ 4d_{ki}I_m - 8(\mathbf{p}_k - \mathbf{p}_i)(\mathbf{p}_k - \mathbf{p}_i)^T, & \text{if } i \neq k. \end{cases}$$

(8)

• Under the product topology,

$$g'_{k}(\mathbf{p}_{1},\ldots,\mathbf{p}_{n}).(\mathbf{w}_{1},\ldots,\mathbf{w}_{n}) = \sum_{i=1}^{n} \frac{\partial g_{k}}{\partial \mathbf{p}_{i}}.\mathbf{w}_{i}.$$

• If i = k,

$$\frac{\partial g_k}{\partial \mathbf{p}_k} \cdot \mathbf{w}_k = -4 \sum_{\substack{j=1\\j \neq k}}^n \left[\mathbf{w}_k d_{kj} - 2(\mathbf{p}_k - \mathbf{p}_j) \langle \mathbf{w}_k, \mathbf{p}_k - \mathbf{p}_j \rangle \right]$$
$$= \sum_{\substack{j=1\\j \neq k}}^n \left[-4 d_{kj} I_m + 8(\mathbf{p}_k - \mathbf{p}_j) (\mathbf{p}_k - \mathbf{p}_j)^T \right] \mathbf{w}_k.$$

• If $i \neq k$,

$$\frac{\partial g_k}{\partial \mathbf{p}_i} \cdot \mathbf{w}_i = -4 \left[-\mathbf{w}_i d_{ki} - 2(\mathbf{p}_k - \mathbf{p}_i) \langle -\mathbf{w}_i, \mathbf{p}_k - \mathbf{p}_i \rangle \right]$$
$$= \left[4 d_{ki} I_m - 8(\mathbf{p}_k - \mathbf{p}_i)(\mathbf{p}_k - \mathbf{p}_i)^T \right] \mathbf{w}_i.$$

Modification

- Usually some additional information is available in the geometric conformation.
 - ♦ The x-ray crystal structure of each of the twenty amino acids in nature is known.
 - $\diamond\,$ Most of the amino acid sequences of our proteins are also known.
 - \diamond Once a certain amino acid is known to present in the protein, a certain block of the matrix F is already predetermined and fixed.
- Least squares formulations should be modified accordingly to reflect this fact.
 - $\diamond\,$ Derivative information is available in block form.
 - \diamond Convenient for the overall process of assembling essential gradient and the Hessian.

Approximation with Partially Fixed Locations

- Any rotations, translations, or reflections of a given conformation will produce the same relative spacing and hence the same distance matrix.
 - \diamond To shun rotation, translation, or reflection, m + 1 positions of these n particles in the embedding space \mathbb{R}^m must be specified and bound as reference points.
 - \diamond Some additional location vectors among $\mathbf{p}_1, \ldots, \mathbf{p}_n$ might be known and fixed beforehand.
- $\bullet\,$ Let ${\bf q}$ denote the indices of known location vectors.
 - \diamond Entries f_{ij} of F where both $i, j \in \mathbf{q}$ correspond to the spacing among these known location vectors.
 - $\diamond\,$ These entries of F should be exact and kept constant.
 - $\diamond\,$ Derivatives at these points should be zero.
 - ♦ Keep these known position vectors invariant by simply nullifying any derivative information at the corresponding blocks.

Completion with Partially Fixed F

- The matrix F represents a partially specified distance matrix.
 - ♦ The completion problem is different from the approximation problem.
 - \diamond The specified entries in F do not necessarily correspond to any known location vectors, but is required to remain the same throughout the whole matrix completion process.
 - \diamond The specified entries in F must be consistent by themselves to begin with.
 - \diamond Open Question: Determine whether the specified entries in F are consistent so that F indeed can be completed as a distance matrix (Trosett'97).
- Let Δ denote the index set of those specified entries of F.

$$\Delta := \{ (i,j) \in \mathbb{Z} \times \mathbb{Z} \mid d_{ij} = 0 \}.$$

• Minimize the same objective function $f(\mathbf{p}_1, \dots, \mathbf{p}_n)$ as before, subject to additional equality constraints

$$\langle \mathbf{p}_i - \mathbf{p}_j, \mathbf{p}_i - \mathbf{p}_j \rangle = f_{ij} \text{ for all } (i,j) \in \Delta.$$
 (9)

♦ The completion problem is cast as an equality constrained optimization problem.

Example 1

• A knot \mathbb{R}^3 .

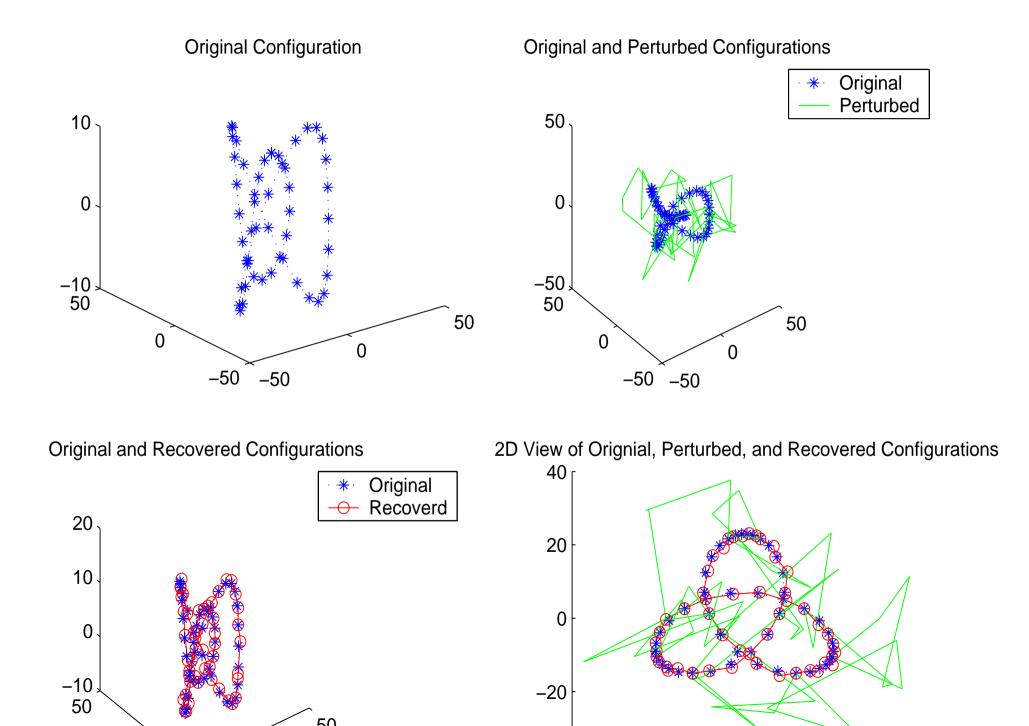
$$\begin{cases} x = -10\cos(t) - 2\cos(5t) + 15\sin(2t); \\ y = -15\cos(2t) + 10\sin(t) - 2\sin(5t); \\ z = 10\cos(3t); \end{cases} \quad 0 \le t \le 2\pi$$

• Simulation:

- $\diamond\,$ Represent the knot by n discrete points.
- \diamond Use the points to define the true $n \times n$ distance matrix $Q = [q_{ij}]$.
- $\diamond\,$ Let ${\bf q}$ denote the indices of known location vectors.
 - \triangleright **q** must contain at least four points.
- \diamond Perturb Q to simulate F.

$$f_{ij} = f_{ji} = \begin{cases} 0, & \text{if } i = j, \\ q_{ij}, & \text{if both } i \text{ and } j \text{ are in } \mathbf{q}, \\ \left(\sqrt{q_{ij}} + \sigma * randn(1)\right)^2, & \text{if either } i \text{ or } j \text{ is not in } \mathbf{q}. \end{cases}$$

- $\triangleright \sigma$ is an indicator of how far F is away from a distance matrix.
- $\triangleright \sigma = 2$ would bury Q in a significant amount of random noise.
- ♦ Use existing routine FMINUNC in the Optimization Toolbox, Version 2.2, of MATLAB.
- \diamond Keep location vectors in by ${\bf q}$ fixed throughout the iteration.
- ♦ Perturb each entry of the true location vectors by an additive noise with uniform distribution over [-20,20].
- Numerical results:
 - \diamond Objective values have been reduced from an order of 10⁹ to 10⁶, indicating that F is far from being a distance matrix.
 - $\diamond\,$ Remarkable likeness between the recovered and the original configurations.



Example 2.

• A helix

 $\begin{cases} x = 4\cos(3t); \\ y = 4\sin(3t); & 0 \le t \le 2\pi; \\ z = 2t. \end{cases}$

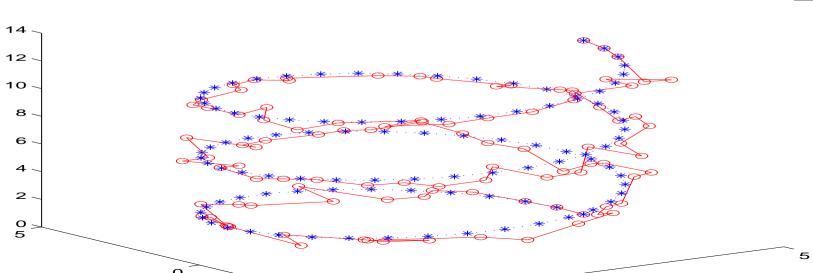
• Numerical results:

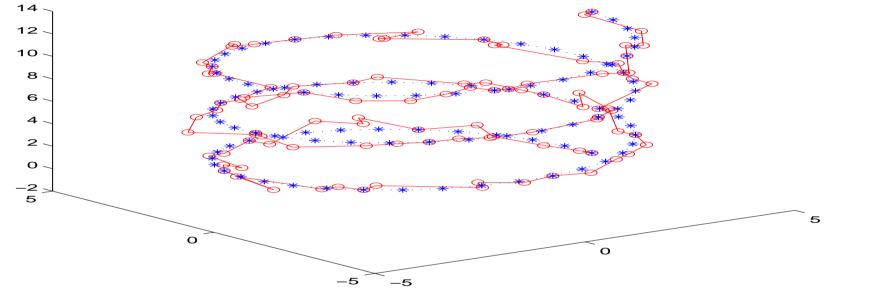
 $\diamond n = 101$ and $\mathbf{q} = 1:5:101$.

- \triangleright Not a smooth solution.
- \triangleright Recapture the helix feature from a fairly deviate initial guess and a fraudulent F.
- \triangleright Pre-shaped?

 $\mathbf{a} = [1:3,99:101].$

- \triangleright Only the first and the last three location vectors are fixed.
- \triangleright Deviate from the helix further.
- \triangleright Spirality is evident.





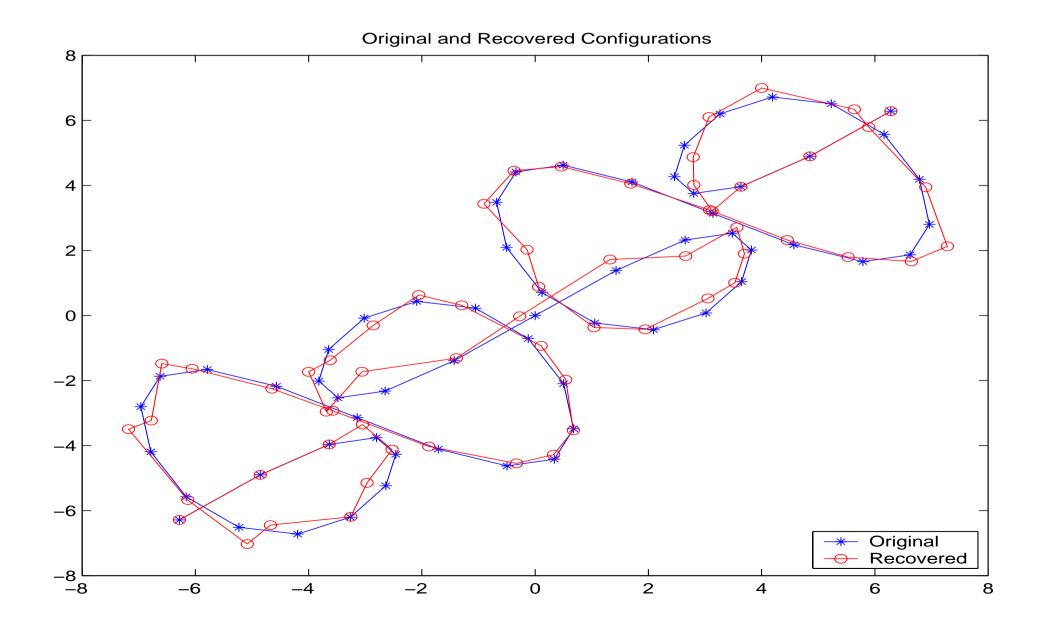
q = [1:5:101]

Example 3

• A 2-dimensional pretzel:

$$\begin{cases} x = t + 3\sin(2t); \\ y = t + 2\sin(3t); & -2\pi \le t \le 2\pi \end{cases}$$

- $\diamond\,$ Has many critical turns which are close to each other.
- \diamond A more careful observation of the spacing among the location vectors is necessary.
 - \triangleright To affect this scenario, we assume a smaller standard deviation $\sigma = 1$ of noise in the simulation.
- Simulation:
 - $\diamond \ n=61.$
 - $\diamond \mathbf{q} = [1:3,59:61].$
 - $\diamond\,$ Moderately wild initial guess.
- Numerical results:
 - \diamond Able to pick up the folds.
 - $\diamond\,$ Smaller σ or more known position would ease the difficulties.



Example 4

• Complete the 6×6 partially specified matrix

	0	3	4	3	4	3
	3	0	1	x_1	5	x_3
F -	4	1	0	5	x_2	5
1' —	3	x_1	5	0	1	x_4
	4	5	x_2	1	0	5
	3	x_3	$ \begin{array}{c} 4 \\ 1 \\ 0 \\ 5 \\ x_2 \\ 5 \end{array} $	x_4	5	0

with values of x_i , $i = 1, \ldots, 4$.

- $\diamond\,$ Look for six location vectors in $\mathbb{R}^m.$
- $\diamond\,$ Not sure about the dimension m of the embedding space.

 \diamond The first 3 \times 3 principal submatrix is completely known, suggesting that three location vectors could have been self-determined.

• If m = 2,

- \diamond Use $\mathbf{p}_1 = (0,0)$, $\mathbf{p}_2 = (\sqrt{3},0)$, and $\mathbf{p}_3 = (\sqrt{3},1)$ as reference points in \mathbb{R}^2 .
- \diamond Eight equality constraints in the form of (9) for the remaining three location vectors.
- \diamond Unknown location vectors \mathbf{p}_j , j = 4, 5, 6, constitute only six unknowns.
- \diamond No feasible solution at all in \mathbb{R}^2 .

- If m = 3,
 - \diamond Embed \mathbf{p}_i , i = 1, 2, 3, in \mathbb{R}^3 by adding zeros to their third components.
 - ♦ Employ an existing routine FMINCON in the Optimization Toolbox of MATLAB by supplying the equality constraints (9).
- Numerical results.

x_1	x_2	x_3	x_4
6.6883	3.9512	2.0187	7.3255
1.7434	9.1772	2.2007	2.2006
2.2800	9.4157	2.3913	4.7487
2.7971	5.7203	7.2315	7.2315
2.2723	9.4208	2.3964	4.7398

Table 1: Examples of entries for completed distance matrix.

\mathbf{p}_1	\mathbf{p}_2	\mathbf{p}_3	\mathbf{p}_4	\mathbf{p}_5	\mathbf{p}_6
0	1.7321	1.7321	0.9014	0.5774	1.1359
0	0	1.0000	-0.5613	-0.4223	-0.9675
0	0	0	1.3335	1.7980	-0.2711
0	0	0	-0.3067	0.5057	0.8367

Table 2: Example of location vectors in \mathbb{R}^4 for completed distance matrix.

Conclusion

- There are several algorithms available for solving the distance matrix approximation problem.
 - ◊ We cast the problem under a least squares approximation in terms of the location vectors directly and propose using conventional large-scale optimization techniques instead.
- We manage the resulting complexity by organizing the gradient and Hessian information in block forms.
 - \diamond The matrix calculus makes it particularly easy to assemble the derivatives for existing software packages when some locations vectors are known and fixed.
- Numerical experiments seem to suggest that the conventional methods are efficient and robust in the reconstruction.