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Syllabus

e Objectives:

¢ To provide some preliminaries.
¢ To treat some mathematics.
¢ To point out some applications.

¢ To describe some algorithms.
e Topics:

¢ Lecture I: Introduction

o Lecture II: General Approach

¢ Lecture III: Distance Geometry and Protein Structure

o Lecture IV’: Singular Value Assignment with Low Rank Matrices

¢ Lecture V: Nonnegative Matrix Factorization
e Assignments:

o Application to some real protein data.

¢ Streamline the code to make it portable.
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Introduction

e Fundamental Problem in Distance Geometry:

¢ Given the distance and chirality constrains which define (our state of knowledge of) a mobile molecule,

¢ Find one or more conformations which satisfy them, or else prove that no such conformations exists.
e Applications:

Molecular conformation problems in chemistry.
Multidimensional scaling in behavioral sciences.
Multivariate analysis in statistics.

Remote exploration and sensing, and antenna array processing.
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Protein Folding Problem

e What we know about proteins:

© A protein molecule is a connected sequence of amino acid molecules.
¢ There are only twenty amino acids in nature.
> Representing each amino acid by a letter from a twenty-letter alphabet, a protein is a string of amino acids linked together like a word.

© Most laboratories have the technology to find the ordered sequence of amino acids in a protein.



Real Issue in Protein Folding

e Merely knowing the long linear chains is not enough.
¢ To function properly, the one-dimensional primary amino acid sequence must fold into a particular three-dimensional conformation called its
tertiary configuration.
¢ This protein then interacts three-dimensionally with other proteins or other groups of molecules called substrates in a manner much like a
lock and key arrangement.
e The tertiary structure that mediates how a protein functions.
¢ The final folding configuration determines whether a protein acts as an enzyme in chemical reactions or behaves as part of an antibody in
the immune system.
o How a protein folds determines how the protein works, which ultimately determines how our bodies work.

o Wrongly folded proteins do not behave normally, and their abnormal function can lead to disease.

e Understanding how proteins fold into three-dimensional structures given their primary linear sequence thus becomes an incredibly important task.



Then What?

e Literature on the various aspects of protein folding is enormous.

¢ Lots of models using a synthesis of knowledge from biology, physics, chemistry, and mathematics.

¢ No clear models.
e Try to see the three dimensional structure.

¢ Biologists use techniques such as x-ray crystallography or molecular dynamics models to peer through the nano-structure.

¢ Noises in the sensing devices or the imperfection of the models often results in indefinite or incomplete images.
e An imperative task:

¢ Retrieve a possible folding structure that is nearest to the observed but possibly inconsistent or imperfect configuration.



Euclidean Distance Matrix

e Given n particles at locations pq,...,p, € R™,

¢ A complete record of relative spacing between any two of the n particles is called a distance matrix.

o The matrix Q(p1, ..., Pn) = [¢;;] where
%ij = le - ij%» t,7=1,...,n,

is called a Fuclidean distance matriz.
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Structures of Eculidean Distance Matrices

e (Schoenberg’35, Young and Householder’38) @ € R™+1)x(+1) i5 a Fuclidean distance matrix if and only if A € R™" defined by
1 ..
a;j = §[d0i+d0j—dz‘j]a 1<uj<n

is positive semidefinite.

o rank(A) is the minimum imbedding dimension, i.e., the lowest dimension of the Euclidean space in which the points reside.

o Let A be spectrally decomposed as
A=UAUT,

then columns of C' := AY2UT are coordinates for P, ..., P,.

o (Gower’82) @ is a distance matrix if and only if x" Qx < 0 for all x such that x'1 = 0.

o @Q is a distance matrix if and only in (I — 1s")Q(I — s1") is negative semidefinite whenever s"1 = 1.



Rank Structure
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e For any n > m + 2, the rank of ) is no greater than m + 2 and is generically m + 2.

o Write

¢ For each /,

Qe = [(pei
is a distance matrix for n points py, ..., pe on the real line.
¢ Such a matrix can be denoted in a canonical form,
i 0 di (dy + dy)?
&0 &
(dy +do)* d 0
Q= :
where dy, ..., d, denote the 1-dimensional coordinates of these points.
o @y can further be reduced by eliminations and scalings to
[ —2 dy 0 0
dy 0 dy +dy dy+ds
0 di+ds 0 0
0 do+ds 0 0
0 ds+dy 0 0
0 dy+ds 0 0
| 0 ds+ds 0 0

Q= [sz - Pj|| Z pez pzj
(=1

— i)’

(di + doy + d3)?

(dy + d3)?

0
d3 + dy
0

0
0
0
0

d;

0
dy + ds
0

0
0
0
0

0
ds + dg
0

0
0
0
0
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An Inverse Problem

Once all the inter-particle distances are in hand, it is a simple task to construct the (3-dimensional) geometric structure.
Not all the inter-particle distances are needed for the construction.

Many entries in the matrix provide redundant information.

Rigid body motions, i.e., rotations, translations, and reflections, of particles in space will not alter the distance matrix.

Open Question: Characterize when and what partial information of inter-particle distances will be sufficient for the determination of the entire
geometric structure.



Returning to the Scenario
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e Let F € R™™ denote an observation of (the squares of) the relative spacing among n particles in R3.

o Some of the spacing has not been measured accurately.

> rank(F) > 5.

> Want to retrieve whatever feasible information out of the matrix F' so as to infer a realistic conformation.
o Some of the spacing is unobservable.

> The matrix F' is incomplete.
> Want to complete the matrix I’ so that it becomes a distance matrix.

e Find an Euclidean distance matrix ) € R"*" representing the minimal change of F'.
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Criteria in Approximation

e Criteria used in characterizing the changes affect the way in which the approximation is formulated.

¢ Low rank approximation techniques (Chu el al’02).

> A nonnegative and symmetric matrices of rank 5 is not necessarily a distance matrix.

> The distance matrix has more structure that is yet to be exploited.
o Alternating projection between two geometric entities (Glunt el al’90).
> Slow convergence and possible stagnation.
o Semi-definite programming (Alafkin’99).

¢ Limited-memory variable-metric continuation techniques (Moré el al’96).
e Least squares formulation with location vectors pq, ..., p, as parameter.

¢ The resulting approximation of the imperfect F' is guaranteed to be a distance matrix.

¢ Not unique under rotation, translation, or reflection.



15

Basic Formulation

e Assume initially that all entries of F' except the diagonal are to be approximated.

o Two special cases later:

> The approximation problem where some location vectors of the n particles are known and fixed.

> The completion problem where a partial information of spacing among the n particles, but not necessarily from known location vectors,
is known and fixed.

e Given F' € R" " minimize the objective function

1

fprs-pn) = SIF = [(pi = pjy i = P I[7- (2)

o (-,-) = the usual Euclidean inner product.

o || - ||r = the Frobenious matrix norm.
e Our contributions:

¢ The general theory is developed in R™.

¢ Offer a highly organized and effective way of computing the derivative information.
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Analytic Gradient

e Denote discrepancies
dij = fij — <p¢—pj,pz' —Pj>7 1,7=1,...n.

e Consider the space R™ x ... x R™ equipped with the product topology.

o The Fréchet derivative of f at the point (pi,...p,) acting on an arbitrary n-fold vector (z, ...

the multi-lineal functional

, "9
f (1, -pPn)(z1,...,2,) = Z —f(pl, .. Pn)-Zk

> A.b denotes the operator action of A on b.

(3)

,Zn) € R™ x ... x R™ can be represented as

(4)



Partial Gradient
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Riesz representation:

Carry on:

Keep going:

Finally,

a n
a—pfk = jz;(pk — P;)di;-
Jk
b m = (i b)),
<5)8—I;]Z(’Zk> _ <8ipk (F —[(pi — Pj, Pi — P;)]) -2k, F' — [(Pi — Pj, Pi — Pj)]),

0
— (F' = [{(pi — Pj,Pi — Pj)|) 21 =
3pk< [(pi — Pj, Pi — Pj)]) -2k
0 oo {2k, PE—P1) 0
—2 <Zkapk_p1> 0 <Zk>pk_pn>
0 <Zk7pk_pn> 0

of

a—pk(pb oo D)2k, = (Zp, —4 Z(sz — P;)dij)

Jj=1
J#k
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Gradient of f

e Using the product topology again,

91p = (L L) e

e Any numerical method utilizing the gradient information can now be employed to solve the approximation problem.

e Gradient flow:
dp
_k_4z —p;j)(fr; — (P —P;, P —P;), k=1,....n
J#k

moves in the steepest descent direction to reduce the values for the objective function f.

o A descent flow bounded in a neighborhood of F'.
¢ Limit point must exist.

o A (local) least squares approximation of the given F.



Analytic Hessian
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e Will be more effective for finding critical points if the second-derivative information of f is available.

e Consider
g:R"x ... xR™" —=R"x...xR™

0 g=Vf=(91,--9n)

0
g(P1,...Pn) = 8—;;(1)1, . Pn)-

e The Jacobian matrix of g, constitutes precisely the k-th row block of the Hessian of f.

¢ The Hessian can be calculated block by block.
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Partial Jacobian

e Under the product topology,

o If i =k,

o Ifi#£Kk,

Ogk

op;

_ i A T + 8Pk — i) (P — )], i =k
AdyiTm = 8(Px = i) (P = Pi)", ifi £ k.

/ "

i=1

8 n
8_19)]; W, = —4Z[Wkdk] _2<pk _pj)<wk7pk _pj>]
=1
J#h
=1
J#k
0
8f)k-'wi = —4[-widk; — 2(Pr — Pi){—Wi, Pt — Pi)]

= [4diiln — 8(px — Pi)(Pr — Pi)"] Wi



Modification
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e Usually some additional information is available in the geometric conformation.

¢ The x-ray crystal structure of each of the twenty amino acids in nature is known.
© Most of the amino acid sequences of our proteins are also known.

¢ Once a certain amino acid is known to present in the protein, a certain block of the matrix F' is already predetermined and fixed.
e Least squares formulations should be modified accordingly to reflect this fact.

¢ Derivative information is available in block form.

o Convenient for the overall process of assembling essential gradient and the Hessian.
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Approximation with Partially Fixed Locations

e Any rotations, translations, or reflections of a given conformation will produce the same relative spacing and hence the same distance matrix.
¢ To shun rotation, translation, or reflection, m + 1 positions of these n particles in the embedding space R™ must be specified and bound as
reference points.

o Some additional location vectors among py, ..., p, might be known and fixed beforehand.
e Let q denote the indices of known location vectors.

¢ Entries f;; of I where both 4, j € q correspond to the spacing among these known location vectors.
¢ These entries of F' should be exact and kept constant.
¢ Derivatives at these points should be zero.

¢ Keep these known position vectors invariant by simply nullifying any derivative information at the corresponding blocks.
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Completion with Partially Fixed F

e The matrix F' represents a partially specified distance matrix.

¢ The completion problem is different from the approximation problem.

¢ The specified entries in F' do not necessarily correspond to any known location vectors, but is required to remain the same throughout the
whole matrix completion process.

¢ The specified entries in F' must be consistent by themselves to begin with.

o Open Question: Determine whether the specified entries in F' are consistent so that F' indeed can be completed as a distance matrix
(Trosett’97).

e Let A denote the index set of those specified entries of F'.

e Minimize the same objective function f(pi,...p,) as before, subject to additional equality constraints

(Pi — Pj;Pi —Pj) = fi; forall (4,7) € A. (9)

¢ The completion problem is cast as an equality constrained optimization problem.
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Example 1

e A knot R3.
x = —10cos(t) — 2 cos(5t) + 15sin(2t);

y = —15cos(2t) + 10sin(t) — 2sin(5t); 0<t<2r
z = 10 cos(3t);

e Simulation:

¢ Represent the knot by n discrete points.
o Use the points to define the true n x n distance matrix @ = [g;;].
o Let q denote the indices of known location vectors.
> g must contain at least four points.
o Perturb @ to simulate F'.
0, if i = 7,
fiz = fii = 1 @, if both 7 and j are in q,
(@ + 0% randn(l))2 , if either ¢ or j is not in q.
> o is an indicator of how far F' is away from a distance matrix.
> o = 2 would bury () in a significant amount of random noise.
¢ Use existing routine FMINUNC in the Optimization Toolbox, Version 2.2, of MATLAB.
o Keep location vectors in by q fixed throughout the iteration.

o Perturb each entry of the true location vectors by an additive noise with uniform distribution over [-20,20].
e Numerical results:

¢ Objective values have been reduced from an order of 10° to 10°, indicating that F is far from being a distance matrix.

o Remarkable likeness between the recovered and the original configurations.
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Example 2.

e A helix
x = 4 cos(3t);
y =4sin(3t); 0<t < 2m;
z = 2t.

e Numerical results:

on=101andq=1:5:101.
> Not a smooth solution.
> Recapture the helix feature from a fairly deviate initial guess and a fraudulent F'.
> Pre-shaped?
o q=/[1:3,99:101].
> Only the first and the last three location vectors are fixed.
> Deviate from the helix further.

> Spirality is evident.
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12

10

ao

q = [1:5:101]

—_5 —_5
q =[1:3,99:101]

e - Original
——— Recoverd

e - Original
——— Recoverd
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Example 3

e A 2-dimensional pretzel:
x =1+ 3sin(2t);
y=1t+2sin(3t); —27 <t <2m.

¢ Has many critical turns which are close to each other.
¢ A more careful observation of the spacing among the location vectors is necessary.

> To affect this scenario, we assume a smaller standard deviation ¢ = 1 of noise in the simulation.
e Simulation:

o n =061
o q=|[1:3,59:61].

o Moderately wild initial guess.
e Numerical results:

o Able to pick up the folds.

o Smaller ¢ or more known position would ease the difficulties.



Original and Recovered Configurations

—%— Original
——=— Recovered
|

6
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Example 4

e Complete the 6 x 6 partially specified matrix

0 3 4 3 4 3
3 0 1 T 5% T3
|41 0 5 a2 5
F= 3 1 5 0 1 x4
4 5 xo 1 0 5

| 3 23 5 my 5 0 |

with values of z;, 1 =1,...,4.

¢ Look for six location vectors in R™.
o Not sure about the dimension m of the embedding space.

¢ The first 3 x 3 principal submatrix is completely known, suggesting that three location vectors could have been self-determined.
o [fm =2,

o Use p; = (0,0), p2 = (/3,0), and ps = (v/3,1) as reference points in R2.
o Eight equality constraints in the form of (9) for the remaining three location vectors.
¢ Unknown location vectors p;, 7 = 4,5, 6, constitute only six unknowns.

o No feasible solution at all in R2.



o [fm =3,

o Embed p;, i = 1,2, 3, in R? by adding zeros to their third components.
o Employ an existing routine FMINCON in the Optimization Toolbox of MATLAB by supplying the equality constraints (9).

e Numerical results.

Lm [ oo | @ | o |
6.6583 | 3.9512 | 20187 | 7.3255
1.7434 | 9.1772 | 2.2007 | 2.2006
2.9800 | 9.4157 | 2.3913 | 4.7487
27971 | 57203 | 7.2315 | 7.2315
2.2723 | 9.4208 | 2.3964 | 4.7398

Table 1: Examples of entries for completed distance matrix.

'pi| P2 P3| P4 | D5 | Ps |
0] 1.7321 | 1.7321 | 0.9014 | 0.5774 | 1.1359
0 0| 1.0000 | -0.5613 | -0.4223 | -0.9675
0 0 0] 1.3335 | 1.7980 | -0.2711
0 0 0| -0.3067 | 0.5057 | 0.8367

Table 2: Example of location vectors in R* for completed distance matrix.
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Conclusion

e There are several algorithms available for solving the distance matrix approximation problem.

o We cast the problem under a least squares approximation in terms of the location vectors directly and propose using conventional large-scale
optimization techniques instead.

e We manage the resulting complexity by organizing the gradient and Hessian information in block forms.

¢ The matrix calculus makes it particularly easy to assemble the derivatives for existing software packages when some locations vectors are
known and fixed.

e Numerical experiments seem to suggest that the conventional methods are efficient and robust in the reconstruction.



