Structured Low Rank Approximation Lecture IV: Singular Value Assignment with Low Rank Matrices

Moody T. Chu

North Carolina State University

presented at

XXII School of Computational Mathematics Numerical Linear Algebra and Its Applications September 15, 2004

Syllabus

- Objectives:
 - $\diamond\,$ To provide some preliminaries.
 - $\diamond\,$ To treat some mathematics.
 - $\diamond\,$ To point out some applications.
 - $\diamond\,$ To describe some algorithms.
- Topics:
 - $\diamond\,$ Lecture I: Introduction
 - $\diamond\,$ Lecture II: General Approach
 - $\diamond\,$ Lecture III: Distance Geometry and Protein Structure
 - \blacklozenge Lecture IV: Singular Value Assignment with Low Rank Matrices
 - $\diamond\,$ Lecture V: Nonnegative Matrix Factorization
- Assignments:
 - $\diamond\,$ Theory and computation of the approximation problem are yet to be studied.

Lecture IV

Singular Value Assignment with Low Rank Matrices Joint Work with Delin Chu

Outline

- Introduction
 - \diamond Pole Assignment Problem
 - $\diamond\,$ Singular Value Assignment Problem
- Rank One Update the Building Block
 - $\diamond\,$ Necessary and Sufficient Condition
 - \diamond Complete Characterization
 - $\diamond~$ Unsolvability
- Main Result
- Recursive Algorithm
- Minimum Low Rank Approximation

State Feedback Control Pole Assignment Problem

• Given matrices $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$, consider the state $\mathbf{x}(t) \in \mathbb{R}^n$ under the dynamic state displayment:

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t). \tag{1}$$

 \diamond Select the input $\mathbf{u}(t) \in \mathbb{R}^m$ so that the dynamics of the resulting $\mathbf{x}(t)$ is driven into to a certain desired state.

 $\diamond~$ In state feedback control,

 $\mathbf{u}(t) = F\mathbf{x}(t).$

 \diamond System (1) is changed to a closed-loop dynamical system:

$$\dot{\mathbf{x}}(t) = (A + BF)\mathbf{x}(t).$$

- Choose the gain matrix $F \in \mathbb{R}^{m \times n}$ so as to achieve stability and to speed up response.
 - \diamond The problem can be translated into choosing F so as to reassign eigenvalues of the matrix A + BF.

Known Results

- Well studied subject. (Byrnes'89, Kautsky, Nichols, and Van Dooren'85, Sun'96, Wonham'85)
- Given any set of n complex numbers $\{\lambda_1, \ldots, \lambda_n\}$, closed under complex conjugation, a matrix $F \in \mathbb{R}^{m \times n}$ exists such that

$$\lambda(A+BF) = \{\lambda_1, \dots, \lambda_n\}$$

if and only if

$$\operatorname{rank}[A - \mu I, B] = n, \text{ for all } \mu \in \mathbb{C}.$$

- \diamond Also known as the pair (A, B) being *controllable*.
- \diamond If m = 1, the pole assignment problem, if solvable, has a unique solution.
- It can be proved that

$$\bigcap_{F \in \mathbb{R}^{m \times n}} \lambda(A + BF) = \{ \mu \in \lambda(A) \mid \operatorname{rank} [A - \mu I, B] < n \},\$$

- \diamond For a certain peculiar pair (A, B) of matrices the eigenvalues of A cannot be reassigned by any F.
- ♦ Unassignable matrix pairs form a zero measure set.

Singular Value Assignment Problem (ISVPrk)

• Given

- $\diamond \text{ A matrix } A \in \mathbb{R}^{m \times n} \ (m \ge n),$
- \diamond An integer $n \ge \ell > 0$, and
- $\diamond \text{ Real numbers } \beta_1 \geq \beta_2 \geq \cdots \geq \beta_n \geq 0,$
- Find a matrix $F \in \mathbb{R}^{m \times n}$ such that

 $\operatorname{rank}(F) \leq \ell,$ $\sigma(A+F) = \{\beta_1, \beta_2, \cdots, \beta_n\}.$

Literature Search

- The state feedback pole assignment problem is a special case of the inverse eigenvalue problems.
 - $\diamond\,$ See the book by Chu and Golub'04.
 - http://www4.ncsu.edu/ mtchu/Research/Lectures/lecture.html
- The inverse singular value problems have not received as many studies.
- Some related inverse problems:
 - ♦ The de Oliveira theorem (de Oliveira'71) on the principal elements and singular values.
 - ♦ The Weyl-Horn theorem (Horn'54, Weyl'49) on the relationship between singular values and eigenvalues.
 - ♦ The Sing-Thompson theorem (Sing'76, Thompson'77) on the majorization between the diagonal elements and singular values.
- An inverse singular value problem can be recast as a specially structured inverse eigenvalue problem.
 - $\diamond\,$ The existing theory does not provide us a clue on when the ISVPrk is solvable.

Our Contributions

- We completely characterize the necessary and sufficient condition under which the above ISVPrk is solvable.
- We offer a constructive proof which can be implemented as a numerical means to find the solution.

Rank One Update — the Building Block

- A rank one update is of the form $F = \mathbf{b}\mathbf{f}^{\top}$.
 - $\diamond \text{ Two controls, } \mathbf{b} \in \mathbb{R}^{m \times 1} \text{ and } \mathbf{f} \in \mathbb{R}^{n \times 1}.$
- Assume the scenario where
 - \diamond The column vector $\mathbf{b} \in \mathbb{R}^m$ is temporarily given and fixed.
 - $\diamond\,$ The column vector $\mathbf{f}\in\mathbb{R}^n$ is to be determined.
 - \diamond What conditions must be imposed on $\beta_1 \ge \beta_2 \ge \cdots \ge \beta_n \ge 0$ for existence?
- How the vector **b** could be adjusted to maximally relax the condition?

First Scenario Where b Is Fixed

• Let $Q_{\mathbf{b}} \in \mathbb{R}^{m \times m}$ be the Householder transformation such that that

$$Q_{\mathbf{b}}^{\top}\mathbf{b} = \left[\begin{array}{c} b_0\\ \mathbf{0} \end{array}\right],$$

where $b_0 = \|\mathbf{b}\|_2 \in \mathbb{R}$.

• Write

$$Q_{\mathbf{b}}^{\top}A = \left[\begin{array}{c} \mathbf{a}_{\mathbf{b}}^{\top} \\ A_{\mathbf{b}} \end{array}\right],$$

with $\mathbf{a}_{\mathbf{b}} \in \mathbb{R}^n$ and $A_{\mathbf{b}} \in \mathbb{R}^{(m-1) \times n}$.

• Denote the SVD of $A_{\mathbf{b}}$:

$$A_{\mathbf{b}} = U_{\mathbf{b}} \begin{bmatrix} \gamma_1 & & & 0 \\ & \gamma_2 & & 0 \\ & & \ddots & & \vdots \\ & & & \gamma_{n-1} & 0 \end{bmatrix} V_{\mathbf{b}}^{\top} \quad \text{or} \quad A_{\mathbf{b}} = U_{\mathbf{b}} \begin{bmatrix} \gamma_1 & & & \\ & \gamma_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & \gamma_n \\ \mathbf{0} & & \mathbf{0} \end{bmatrix} V_{\mathbf{b}}^{\top}.$$

• For any $\mathbf{f} \in \mathbb{R}^n$, denote

$$(\mathbf{a}_{\mathbf{b}}^{\top} + b_0 \mathbf{f}^{\top}) V_{\mathbf{b}} = [f_1, f_2, \cdots, f_n].$$

Equivalence

• Define $A(\mathbf{f}) \in \mathbb{R}^{(n+1) \times n}$ by

 $\diamond \gamma_n = 0$ if m = n.

• Obtain the equivalence

$$\sigma(A + \mathbf{b}\mathbf{f}^{\top}) = \{\beta_1, \beta_2, \cdots, \beta_n\} \iff \sigma(A(\mathbf{f})) = \{\beta_1, \beta_2, \cdots, \beta_n\}.$$

- For each given **b** the matrix $A_{\mathbf{b}}$ is known and hence values of γ_i 's are also known.
- To solve the ISVPrk for the case of $F = \mathbf{b}\mathbf{f}^{\top}$, it suffices to determine the values of f_1, \ldots, f_n .

First Necessary and Sufficient Condition

• Given any fixed $\mathbf{b} \in \mathbb{R}^m$, there exists a vector $\mathbf{f} \in \mathbb{R}^n$ such that

$$\sigma(A(\mathbf{f})) = \{\beta_1, \beta_2, \cdots, \beta_n\}$$

$$\beta_i \ge \gamma_i \ge \beta_{i+1}, \quad i = 1, 2, \cdots, n,$$

(2)

where $\beta_{n+1} := 0$.

if and only if

Ideas of Proof

- The necessity of the interlacing inequality (2) is a well known property of singular value decompositions. (Golub and Van Loan'96)
- Observe that

$$\mathcal{A}_{\mathbf{f}} := A(\mathbf{f})A(\mathbf{f})^{\top} = \begin{bmatrix} \sum_{i=1}^{n} f_{i}^{2} & f_{1}\gamma_{1} & f_{2}\gamma_{2} & \cdots & f_{n-1}\gamma_{n-1} & f_{n}\gamma_{n} \\ f_{1}\gamma_{1} & \gamma_{1}^{2} & & & \\ f_{2}\gamma_{2} & & \gamma_{2}^{2} & & & \\ \vdots & & \ddots & & \\ f_{n-1}\gamma_{n-1} & & & \gamma_{n-1}^{2} & \\ f_{n}\gamma_{n} & & & & & \gamma_{n}^{2} \end{bmatrix}$$

is a bordered matrix in $\mathbb{R}^{(n+1)\times(n+1)}$.

• Consider the fact

$$\sigma(A(\mathbf{f})) = \{\beta_1, \cdots, \beta_n\} \iff \lambda(\mathcal{A}_{\mathbf{f}}) = \{\beta_1^2, \cdots, \beta_n^2, 0\}$$
$$\iff p(\mu) := \mu \prod_{i=1}^n (\mu - \beta_i^2) - \det(\mu I - \mathcal{A}_{\mathbf{f}}) \equiv 0.$$

• Note that

$$p(\mu) = \left(\operatorname{trace}(\mathcal{A}_{\mathbf{f}}) - \sum_{i=1}^{n} \beta_{i}^{2} \right) \mu^{n} + \text{low degree terms in } \mu$$

is a polynomial of degree at most n in μ .

- Note also that we can expand the determinant of $\mathcal{A}_{\mathbf{f}}$ and solve the equation,

$$\mu \prod_{j=1}^{n} (\mu - \beta_j^2) = (\mu - \sum_{i=1}^{n} f_i^2) \prod_{j=1}^{n} (\mu - \gamma_j^2) - \sum_{i=1}^{n} \left((f_i \gamma_i)^2 \prod_{\substack{j=1\\j \neq i}}^{n} (\mu - \gamma_j^2) \right).$$
(3)

- Need to consider four cases:
 - \diamond That all γ_k , $k = 1, \dots n$, are distinct and nonzero.
 - \diamond That $\gamma_1 > \cdots > \gamma_t > \gamma_{t+1} = \cdots = \gamma_n = 0$ for some integer t.
 - \diamond That the set $\{\gamma_1, \gamma_2, \cdots, \gamma_n\}$ consists of t many distinct non-zero elements.
 - \diamond That the set $\{\gamma_1, \gamma_2, \cdots, \gamma_n\}$ consists of t+1 distinct elements including one zero.

- Will illustrate only the first case. (Boley and Golub'87)
 - $\diamond\,$ For each $k,\,{\rm set}\,\,\mu=\gamma_k^2$ in (3) to obtain

$$\gamma_k^2 \prod_{j=1}^n (\gamma_k^2 - \beta_j^2) = -(f_k \gamma_k)^2 \prod_{\substack{j=1\\ j \neq k}}^n (\gamma_k^2 - \gamma_j^2)$$

 $\diamond~f_k^2$ is uniquely determined by

$$f_k^2 = -\frac{\prod_{j=1}^n (\gamma_k^2 - \beta_j^2)}{\prod_{\substack{j=1\\ j \neq k}}^n (\gamma_k^2 - \gamma_j^2)}, \quad k = 1, \cdots, n.$$
(4)

 \diamond The interlacing property (2) guarantees that the right hand side of (4) is nonnegative and hence real-valued f_k can be defined.

- \diamond With this choice of f_1, \dots, f_n , we see that $p(\mu)$ has n+1 zeros at $\mu = 0, \gamma_1^2, \dots, \gamma_n^2$ and hence $p(\mu) \equiv 0$.
- For other cases, f_k can be defined slightly differently. (Chu and Chu'04)

Second Scenario Where b Is Relaxed

- Recall $\sigma(A_{\mathbf{b}}) = \{\gamma_1, \ldots, \gamma_n\}$ are determined by $Q_{\mathbf{b}}$ associated with the vector \mathbf{b} .
- If **b** is changed, then is the interlacing inequality (2).
 - \diamond How much room can the inequality be adjusted by changing b?

The Effect of ${\bf b}$

- Let $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ be given and fixed.
 - \diamond Denote

$$\sigma(A) = \{\alpha_1, \cdots, \alpha_n\}, \quad \alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_n$$

• There exist a unit vector $\mathbf{b} \in \mathbb{R}^m$ and an orthogonal matrix $Q_{\mathbf{b}} \in \mathbb{R}^{m \times m}$ such that

$$Q_{\mathbf{b}}^{\top}\mathbf{b} = \begin{bmatrix} 1\\ \mathbf{0} \end{bmatrix}, \quad Q_{\mathbf{b}}^{\top}A = \begin{bmatrix} \mathbf{a}_{\mathbf{b}}^{\top}\\ A_{\mathbf{b}} \end{bmatrix},$$

with

$$\sigma(A_{\mathbf{b}}) = \begin{cases} \{\gamma_1, \cdots, \gamma_{n-1}\}, & \text{if } m = n, \\ \{\gamma_1, \cdots, \gamma_n\}, & \text{if } m > n. \end{cases}$$

if and only if values γ_i satisfy the interlacing inequality

$$\alpha_i \ge \gamma_i \ge \alpha_{i+1}, \quad i = 1, \cdots, n, \tag{5}$$

where $\alpha_{n+1} = 0$ and $\gamma_n = 0$ if m = n.

Ideas of Proof (Constructive)

- The necessity of (5) is due to the fact that $A_{\mathbf{b}}$ is a submatrix of A.
- Define

 \diamond Pad the last row with **0**'s, if m > n + 1.

- Consider the first scenario with \tilde{A} and $\tilde{\mathbf{b}} = \begin{bmatrix} 1 \\ \mathbf{0} \end{bmatrix} \in \mathbb{R}^m$,
 - $\diamond\,$ There exists $\mathbf{c}\in\mathbb{R}^n$ such that

$$\sigma(\tilde{A} + \tilde{\mathbf{b}}\mathbf{c}^{\top}) = \{\alpha_1, \alpha_2, \cdots, \alpha_n\}.$$

• Denote

$$A = U_1 \Sigma V_1^{\top},$$

$$\tilde{A} + \tilde{\mathbf{b}} \mathbf{c}^{\top} = U_2 \Sigma V_2^{\top}.$$

• Define

$$Q_{\mathbf{b}} := U_1 U_2^{\top}$$
 and $\mathbf{b} := Q_{\mathbf{b}} \tilde{\mathbf{b}}.$

• Observe the partition

$$Q_{\mathbf{b}}^{\top}A = (\tilde{A} + \tilde{\mathbf{b}}\mathbf{c}^{\top})(V_2V_1^{\top}) = \begin{bmatrix} \mathbf{a}_{\mathbf{b}}^{\top} \\ A_{\mathbf{b}} \end{bmatrix}$$

• The desired properties are built in.

$$\mathbf{a}_{\mathbf{b}} = A^{\top}\mathbf{b} \quad (=V_1V_2^{\top}\mathbf{c})$$

and

$$A_{\mathbf{b}} = \begin{bmatrix} \gamma_{1} & & & & \\ & \gamma_{2} & & & \\ & & \ddots & & \vdots \\ & & & \gamma_{n-1} & 0 \end{bmatrix} V_{2}V_{1}^{\top} \text{ or } \begin{bmatrix} \gamma_{1} & & & \\ & \gamma_{2} & & \\ & & \ddots & \\ & & & \gamma_{n} \\ 0 & 0 & \cdots & 0 \end{bmatrix} V_{2}V_{1}^{\top}.$$

Complete Characterization

• The following three statements are equivalent:

- 1. The ISVPrk with $\ell = 1$ is solvable.
- 2. For each $i = 1, \dots, n$, there exists a value γ_i satisfying both inequalities

$$\begin{array}{l}
\alpha_i \ge \gamma_i \ge \alpha_{i+1}, \\
\beta_i \ge \gamma_i \ge \beta_{i+1},
\end{array}$$
(6)
(7)

where $\alpha_{n+1} := 0$ and $\beta_{n+1} := 0$.

3. For each $i = 1, \dots, n - 1$,

 $\beta_{i+1} \leq \alpha_i$ and $\alpha_{i+1} \leq \beta_i$.

• Note that α_i 's and β_i 's do not necessarily satisfy any interlacing property.

Figure 1: Feasible range of α_i 's and β_i 's for the case n = 3.

Proof

- By keeping the ordering $\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_n$ and $\beta_1 \ge \beta_2 \ge \cdots \ge \beta_n$, the equivalence of Statements 2 and 3 is obvious.
- Assume the ISVPrk has a rank one solution $F \in \mathbb{R}^{m \times n}$.
 - \diamond There exists orthogonal matrix Q_F such that

$$Q_F^{\top}F = \begin{bmatrix} \mathbf{f}^{\top} \\ \mathbf{O} \end{bmatrix},$$

with $\mathbf{f} \in \mathbb{R}^n$.

 $\diamond~{\rm Write}$

$$Q_F^{\top} A = \left[\begin{array}{c} \mathbf{a}_{\mathbf{f}}^{\top} \\ A_F \end{array} \right],$$

with $\mathbf{a}_{\mathbf{f}} \in \mathbb{R}^n$ and $A_F \in \mathbb{R}^{(m-1) \times n}$.

 $\diamond~{\rm Let}$

$$\sigma(A_F) = \begin{cases} \{\gamma_1, \gamma_2, \cdots, \gamma_{n-1}\} & \text{if } m = n, \\ \{\gamma_1, \gamma_2, \cdots, \gamma_n\}, & \text{if } m > n, \end{cases}$$

with the descending order $\gamma_1 \geq \gamma_2 \geq \cdots$.

 $\diamond A_F$ is a submatrix of both $Q_F^{\top}A$ and $Q_F^{\top}(A+F)$, the singular values of A_F interlace with those of both $Q_F^{\top}A$ and $Q_F^{\top}(A+F)$.

 $\diamond\,$ The interlacing properties follow.

- Assume the interlacing inequality (6) holds.
 - $\diamond \text{ By relaxation, there exist } \mathbf{b} \in \mathbb{R}^m \text{ and } Q_{\mathbf{b}} \in \mathbb{R}^{m \times m} \text{ such that } Q_{\mathbf{b}}^\top \mathbf{b} = \begin{bmatrix} 1 \\ \mathbf{0} \end{bmatrix}, Q_{\mathbf{b}}^\top A = \begin{bmatrix} \mathbf{a}_{\mathbf{b}}^\top \\ A_{\mathbf{b}} \end{bmatrix}, \text{ and } \sigma(A_{\mathbf{b}}) = \{\mu_1, \dots, \mu_n\}.$
- With this **b**, by the first scenario, a vector $\mathbf{f} \in \mathbb{R}^n$ can be constructed such that

$$\sigma(A + \mathbf{b}\mathbf{f}^{\top}) = \{\beta_1, \beta_2, \cdots, \beta_n\}.$$

Unsolvability

- When is the case of A where its singular values absolutely cannot be reassigned by any rank one matrices?
- Denote the multiplicity of distinct singular values $\alpha_1(A)$, \cdots , $\alpha_t(A)$ of A as s_1, \cdots, s_t . Then

$$\bigcap_{\operatorname{rank}(F)\leq 1} \sigma(A+F) = \{\alpha_k(A) \text{ with algebraic multiplicity } (s_k-2) | s_k > 2, \ 1 \leq k \leq t \}.$$

• Values in $\bigcap_{\operatorname{rank}(F)\leq 1} \sigma(A+F)$ are those which are invariant under rank one update.

$$\bigcap_{\operatorname{rank}(F)\leq 1} \sigma(A+F) = \emptyset \quad \Longleftrightarrow \quad s_k \leq 2, \ k = 1, \cdots, t.$$

Main Result

- Recall the problem.
 - $\diamond\,$ Given
 - $\triangleright \text{ A matrix } A \in \mathbb{R}^{m \times n} \ (m \ge n),$
 - \triangleright An integer $n \ge \ell > 0$, and
 - $\triangleright \text{ Real numbers } \beta_1 \geq \beta_2 \geq \cdots \geq \beta_n \geq 0,$
 - $\diamond~$ Find a matrix $F \in \mathbb{R}^{m \times n}$ such that

 $\operatorname{rank}(F) \leq \ell,$ $\sigma(A+F) = \{\beta_1, \beta_2, \cdots, \beta_n\}.$

• The ISVPrk is solvable if and only if for each $i = 1, \dots n - \ell$,

 $\beta_{i+\ell} \leq \alpha_i$, and $\alpha_{i+\ell} \leq \beta_i$.

- The necessary condition is related to the classical Weyl inequality for singular values of sums of matrices.
- The simplicity of the condition is surprisingly pleasant.

Proof

- The case for $\ell = 1$ has already been established.
- Assume that the assertion is true for $\ell = k$.
 - \diamond Want to establish the case $\ell = k + 1 \leq n$.
- The necessity.
 - $\diamond~ \operatorname{Any}\, F \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(F) \leq k+1$ can be factorized as

 $F = F_1 + F_2,$

```
with \operatorname{rank}(F_1) \leq k and \operatorname{rank}(F_2) \leq 1.
```

 \diamond Denote

$$\sigma(A+F_1)=\{\gamma_1,\gamma_2,\cdots,\gamma_n\}.$$

 \triangleright By assumption,

$$\gamma_{i+k} \leq \alpha_i$$
 and $\alpha_{i+k} \leq \gamma_i$, $i = 1, \cdots, n-k$.

 \triangleright As a rank one update of $A + F_1$,

$$\beta_{i+1} \leq \gamma_i$$
 and $\gamma_{i+1} \leq \beta_i$, $i = 1, \cdots, n-1$.

 \diamond Together,

$$\beta_{i+k+1} \leq \alpha_i$$
 and $\alpha_{i+k+1} \leq \beta_i$, $i = 1, \cdots, n-k-1$.

- The sufficiency.
 - $\diamond\,$ Note that

$$\begin{cases} \beta_{k+2} \leq \alpha_1 \\ \beta_{k+3} \leq \alpha_2 \\ \vdots \\ \beta_n \leq \alpha_{n-k-1} \end{cases} \text{ and } \begin{cases} \alpha_{k+2} \leq \beta_1 \\ \alpha_{k+3} \leq \beta_2 \\ \vdots \\ \alpha_n \leq \beta_{n-k-1} \end{cases}$$

 \diamond By inspection that there exist γ_i , $i = 1, \dots, n$, with

 $\gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_n,$

such that

$$\begin{cases} \max\{\beta_{1}, \alpha_{1}\} < \gamma_{1} \\ \max\{\alpha_{k+2}, \beta_{3}\} \leq \gamma_{2} \leq \beta_{1} \\ \max\{\alpha_{k+3}, \beta_{4}\} \leq \gamma_{3} \leq \beta_{2} \\ \vdots \\ \max\{\alpha_{n}, \beta_{n-k+1}\} \leq \gamma_{n-k} \leq \beta_{n-k-1} \\ \beta_{n-k} \leq \gamma_{n+1-k} \leq \beta_{n-k} \\ \vdots \\ \beta_{n-k} \leq \gamma_{n+1-k} \leq \beta_{k-1} \\ \beta_{k+2} \leq \gamma_{k+1} \leq \min\{\beta_{k}, \alpha_{1}\} \\ \beta_{k+3} \leq \gamma_{k+2} \leq \min\{\beta_{k+1}, \alpha_{2}\} \\ \vdots \\ \beta_{n} \leq \gamma_{n-1} \leq \min\{\beta_{n-2}, \alpha_{n-1-k}\} \\ \gamma_{n} = 0 \end{cases}$$
$$\max\{\alpha_{1}, \beta_{1}\} < \gamma_{1} \\ \max\{\alpha_{k+2}, \beta_{3}\} \leq \gamma_{2} \leq \beta_{1} \\ \max\{\alpha_{k+3}, \beta_{4}\} \leq \gamma_{3} \leq \beta_{2} \\ \vdots \\ \max\{\alpha_{2k}, \beta_{k+1}\} \leq \gamma_{k+2} \leq \min\{\alpha_{1}, \beta_{k}\} \\ \max\{\alpha_{2k+2}, \beta_{k+3}\} \leq \gamma_{k+2} \leq \min\{\alpha_{2}, \beta_{k+1}\} \\ \vdots \\ \max\{\alpha_{2k+2}, \beta_{k+3}\} \leq \gamma_{k+2} \leq \min\{\alpha_{1}, \beta_{k+1}\} \\ \inf n - k \geq k + 1 \text{ with } J = (n-k) - (k+1). \\ \max\{\alpha_{n}, \beta_{k+J+2}\} \leq \gamma_{k+J+1} \leq \min\{\alpha_{J+1}, \beta_{k+J+1}\} \\ \beta_{k+J+4} \leq \gamma_{k+J+3} \leq \min\{\alpha_{J+3}, \beta_{k+J+2}\} \end{cases}$$

or

 $\diamond\,$ These values of γ_i satisfy

$$\gamma_{i+k} \leq \alpha_i, \quad \alpha_{i+k} \leq \gamma_i, \quad i = 1, \cdots, n-k,$$

and

$$\beta_{i+1} \leq \gamma_i, \quad \gamma_{i+1} \leq \beta_i, \quad i = 1, \cdots, n-1.$$

 $\diamond\,$ By the inductive assumption, there exists a matrix $F_1\in\mathbb{R}^{m\times n}$ such that

$$\operatorname{rank}(F_1) \le k, \quad \sigma(A + F_1) = \{\gamma_1, \gamma_2, \cdots, \gamma_n\}.$$

 $\diamond\,$ By rank one update, there exists a matrix $F_2 \in \mathbb{R}^{m \times n}$ such that

$$\operatorname{rank}(F_2) \le 1, \quad \sigma((A + \underbrace{F_1) + F_2}_F) = \{\beta_1, \beta_2, \cdots, \beta_n\}.$$

Numerical Algorithm

- The proofs given above can be implemented as numerical means to compute a solution for the ISVPrk.
- Once a rank one update algorithm is available, the entire induction process can easily be implemented in any programming language that supports a routine to call itself recursively.
 - $\diamond\,$ The main feature in the routine should be a single divide and conquer mechanism.
 - $\diamond\,$ See the pseudo-code.

```
function [F]=svd_update(A,alpha,beta,ell);
if ell == 1
                                             % The rank one case
    [b,f] = svd_update_rank_one(A,alpha,beta); % Algorithm 4.1
    F = b*f';
else
    k = ell-1;
                                               % The general case
    choose gamma(1) >= gamma(2) >= \dots >= gamma(n) such that
        gamma(i+k) <= alpha(i); alpha(i+k) <= gamma(i); i = 1, ..., n-k</pre>
        beta(i+1) <= gamma(i); gamma(i+1) <= beta(i); i = 1, ..., n-1</pre>
    [F1] = svd_update(A,alpha,gamma,k);
    [b,f] = svd_update_rank_one(A+F1,gamma,beta);
    F2 = b*f';
    F = F1+F2;
end
```

Table 1: A pseudo-MATLAB program for the recursive algorithm.

Singular Value Reassignment with Rank One Update

1. Compute the singular value decomposition

 $A = U_1 \Sigma V_1^\top$

and denote $\sigma(A) = \{\alpha_1, \cdots, \alpha_n\}$ with $\alpha_1 \ge \cdots \ge \alpha_n$.

2. For $i = 1, \dots, n-1$, check to see if

$$\beta_{i+1} \leq \alpha_i \quad \text{and} \quad \alpha_{i+1} \leq \beta_i$$

If not, stop.

3. For $i = 1, \dots, n-1$, define

$$\gamma_i := \frac{\min\{\alpha_i, \beta_i\} + \max\{\alpha_{i+1}, \beta_{i+1}\}}{2}.$$

and

$$\gamma_n := \begin{cases} 0, & \text{if } m = n, \\ \frac{\min\{\alpha_n, \beta_n\}}{2}, & \text{otherwise.} \end{cases}$$

4. If $\gamma_1 > \cdots > \gamma_n > 0$, define for each $k = 1, \cdots, n$

$$c_k := \sqrt{-\frac{\prod_{j=1}^{n} (\gamma_k^2 - \alpha_j^2)}{\prod_{\substack{j=1 \ j \neq k}}^{n} (\gamma_k^2 - \gamma_j^2)}};$$

else modify c_k 's according to the remaining three cases.

5. Define

$$\hat{A} := \begin{cases} [\mathbf{c}^{\top}; \operatorname{diag}(\gamma_1, \cdots, \gamma_{n-1}), \operatorname{zeros}(m-1, 1)], & \text{if } m = n, \\ [\mathbf{c}^{\top}; \operatorname{diag}(\gamma_1, \cdots, \gamma_n)], & \text{if } m = n+1, \\ [\mathbf{c}^{\top}; \operatorname{diag}(\gamma_1, \cdots, \gamma_n); \operatorname{zeros}(m-n-1, n)], & \text{otherwise.} \end{cases}$$

6. Compute the singular value decomposition

$$\hat{A} := U_2 \Sigma V_2^\top.$$

7. Define

$$\mathbf{b} := U_1 U_2 (1, :)^\top,$$

$$V_{\mathbf{b}} := V_1 V_2^\top,$$

$$\mathbf{a}_{\mathbf{b}} := A^\top \mathbf{b} \text{ (or } V_{\mathbf{b}} \mathbf{c}).$$

8. If
$$\gamma_1 > \cdots > \gamma_n > 0$$
, define for each $k = 1, \cdots, n$

$$\hat{f}_k := \sqrt{-\frac{\prod_{j=1}^n (\gamma_k^2 - \beta_j^2)}{\prod_{\substack{j \neq k}}^{n} (\gamma_k^2 - \gamma_j^2)}};$$

else modify \hat{f}_k 's according to the remaining three cases.

9. Define

$$\mathbf{f} := V_{\mathbf{b}}\hat{\mathbf{f}} - \mathbf{a}_{\mathbf{b}}.$$

Numerical Stability

- Many choices in Step 3.
- $\bullet\,$ The computation of c and \hat{f} is numerically unstable.
- Similar remedy for Jacobi inverse eigenvalue problems are available. (de Boor and Golud'78, Gragg and Harrod'86), if so desired.

Minimum Low Rank Approximation

• Given

- $\diamond \text{ A matrix } A \in \mathbb{R}^{m \times n} \ (m \geq n),$
- $\diamond \text{ An integer } n \geq \ell > 0 \text{, and}$
- $\diamond \text{ Real numbers } \beta_1 \geq \beta_2 \geq \cdots \geq \beta_n \geq 0,$
- Find a matrix $F \in \mathbb{R}^{m \times n}$ such that

 $\begin{aligned} \operatorname{rank}(F) &\leq \ell, \\ \sigma(A+F) &= \{\beta_1, \beta_2, \cdots, \beta_n\}, \\ \operatorname{and} & \|F\|_F \text{ is minimized.} \end{aligned}$

Conclusion

- We have provided a rigorous theoretic basis for the singular value reassignment problem.
- A simple yet both necessary and sufficient condition () completely settles the issue of solvability for the ISVPrk.
- Our proof is constructive so it can be exploited to provide a possible means for computing the solution numerically.
- Using the rank one case as the building block, the algorithm features a divide-and-conquer scheme.
- The numerical procedure as it stands now might not be stable when there are close-by singular values. Remedies are available in the literature. We mainly concentrates on the general ideas.