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Syllabus

• Objectives:

� To provide some preliminaries.

� To treat some mathematics.

� To point out some applications.

� To describe some algorithms.

• Topics:

� Lecture I: Introduction

� Lecture II: General Approach

� Lecture III: Distance Geometry and Protein Structure

� Lecture IV: Singular Value Assignment with Low Rank Matrices

� Lecture V: Nonnegative Matrix Factorization

• Assignments:

� Theory and computation of the approximation problem are yet to be studied.
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Lecture IV

Singular Value Assignment with Low Rank Matrices
Joint Work with Delin Chu
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Outline

• Introduction

� Pole Assignment Problem

� Singular Value Assignment Problem

• Rank One Update — the Building Block

� Necessary and Sufficient Condition

� Complete Characterization

� Unsolvability

• Main Result

• Recursive Algorithm

• Minimum Low Rank Approximation
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State Feedback Control Pole Assignment Problem

• Given matrices A ∈ R
n×n and B ∈ R

n×m, consider the state x(t) ∈ R
n under the dynamic state displaymath:

ẋ(t) = Ax(t) + Bu(t). (1)

� Select the input u(t) ∈ R
m so that the dynamics of the resulting x(t) is driven into to a certain desired state.

� In state feedback control,
u(t) = Fx(t).

� System (1) is changed to a closed-loop dynamical system:

ẋ(t) = (A + BF )x(t).

• Choose the gain matrix F ∈ R
m×n so as to achieve stability and to speed up response.

� The problem can be translated into choosing F so as to reassign eigenvalues of the matrix A + BF .
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Known Results

• Well studied subject. (Byrnes’89, Kautsky, Nichols, and Van Dooren’85, Sun’96, Wonham’85)

• Given any set of n complex numbers {λ1, . . . , λn}, closed under complex conjugation, a matrix F ∈ R
m×n exists such that

λ(A + BF ) = {λ1, . . . , λn}

if and only if
rank [A − µI,B] = n, for all µ ∈ C.

� Also known as the pair (A,B) being controllable.

� If m = 1, the pole assignment problem, if solvable, has a unique solution.

• It can be proved that ⋂
F∈Rm×n

λ(A + BF ) = {µ ∈ λ(A) | rank [A − µI,B] < n},

� For a certain peculiar pair (A,B) of matrices the eigenvalues of A cannot be reassigned by any F .

� Unassignable matrix pairs form a zero measure set.
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Singular Value Assignment Problem (ISVPrk)

• Given

� A matrix A ∈ R
m×n (m ≥ n),

� An integer n ≥ � > 0, and

� Real numbers β1 ≥ β2 ≥ · · · ≥ βn ≥ 0,

• Find a matrix F ∈ R
m×n such that

rank(F ) ≤ �,

σ(A + F ) = {β1, β2, · · · , βn}.
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Literature Search

• The state feedback pole assignment problem is a special case of the inverse eigenvalue problems.

� See the book by Chu and Golub’04.

� http://www4.ncsu.edu/ mtchu/Research/Lectures/lecture.html

• The inverse singular value problems have not received as many studies.

• Some related inverse problems:

� The de Oliveira theorem (de Oliveira’71) on the principal elements and singular values.

� The Weyl-Horn theorem (Horn’54, Weyl’49) on the relationship between singular values and eigenvalues.

� The Sing-Thompson theorem (Sing’76, Thompson’77) on the majorization between the diagonal elements and singular values.

• An inverse singular value problem can be recast as a specially structured inverse eigenvalue problem.

� The existing theory does not provide us a clue on when the ISVPrk is solvable.
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Our Contributions

• We completely characterize the necessary and sufficient condition under which the above ISVPrk is solvable.

• We offer a constructive proof which can be implemented as a numerical means to find the solution.
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Rank One Update — the Building Block

• A rank one update is of the form F = bf�.

� Two controls, b ∈ R
m×1 and f ∈ R

n×1.

• Assume the scenario where

� The column vector b ∈ R
m is temporarily given and fixed.

� The column vector f ∈ R
n is to be determined.

� What conditions must be imposed on β1 ≥ β2 ≥ · · · ≥ βn ≥ 0 for existence?

• How the vector b could be adjusted to maximally relax the condition?
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First Scenario Where b Is Fixed

• Let Qb ∈ R
m×m be the Householder transformation such that that

Q�
bb =

[
b0

0

]
,

where b0 = ‖b‖2 ∈ R.

• Write

Q�
bA =

[
a�

b

Ab

]
,

with ab ∈ R
n and Ab ∈ R

(m−1)×n.

• Denote the SVD of Ab:

Ab = Ub

⎡
⎢⎢⎢⎣

γ1 0
γ2 0

. . .
...

γn−1 0

⎤
⎥⎥⎥⎦V �

b

︸ ︷︷ ︸
m=n

or Ab = Ub

⎡
⎢⎢⎢⎢⎢⎣

γ1

γ2

. . .

γn

0 0

⎤
⎥⎥⎥⎥⎥⎦V �

b

︸ ︷︷ ︸
m>n

.

• For any f ∈ R
n, denote

(a�
b + b0f

�)Vb = [f1, f2, · · · , fn] .
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Equivalence

• Define A(f) ∈ R
(n+1)×n by

A(f) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f1 f2 · · · fn−1 fn

γ1

γ2

. . .

γn−1

γn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

� γn = 0 if m = n.

• Obtain the equivalence
σ(A + bf�) = {β1, β2, · · · , βn} ⇐⇒ σ(A(f)) = {β1, β2, · · · , βn}.

• For each given b the matrix Ab is known and hence values of γi’s are also known.

• To solve the ISVPrk for the case of F = bf�, it suffices to determine the values of f1, . . . , fn.
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First Necessary and Sufficient Condition

• Given any fixed b ∈ R
m, there exists a vector f ∈ R

n such that

σ(A(f)) = {β1, β2, · · · , βn}

if and only if
βi ≥ γi ≥ βi+1, i = 1, 2, · · · , n, (2)

where βn+1 := 0.
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Ideas of Proof

• The necessity of the interlacing inequality (2) is a well known property of singular value decompositions. (Golub and Van Loan’96)

• Observe that

Af := A(f)A(f)� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑n
i=1 f 2

i f1γ1 f2γ2 · · · fn−1γn−1 fnγn

f1γ1 γ2
1

f2γ2 γ2
2

...
. . .

fn−1γn−1 γ2
n−1

fnγn γ2
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is a bordered matrix in R
(n+1)×(n+1).

• Consider the fact

σ(A(f)) = {β1, · · · , βn} ⇐⇒ λ(Af ) = {β2
1 , · · · , β2

n, 0}

⇐⇒ p(µ) := µ

n∏
i=1

(µ − β2
i ) − det(µI −Af ) ≡ 0.
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• Note that

p(µ) =

(
trace(Af ) −

n∑
i=1

β2
i

)
µn + low degree terms in µ

is a polynomial of degree at most n in µ.

• Note also that we can expand the determinant of Af and solve the equation,

µ
n∏

j=1

(µ − β2
j ) = (µ −

n∑
i=1

f 2
i )

n∏
j=1

(µ − γ2
j ) −

n∑
i=1

⎛
⎜⎜⎜⎝(fiγi)

2

n∏
j = 1
j �= i

(µ − γ2
j )

⎞
⎟⎟⎟⎠ . (3)

• Need to consider four cases:

� That all γk, k = 1, . . . n, are distinct and nonzero.

� That γ1 > · · · > γt > γt+1 = · · · = γn = 0 for some integer t.

� That the set {γ1, γ2, · · · , γn} consists of t many distinct non-zero elements.

� That the set {γ1, γ2, · · · , γn} consists of t + 1 distinct elements including one zero.
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• Will illustrate only the first case. (Boley and Golub’87)

� For each k, set µ = γ2
k in (3) to obtain

γ2
k

n∏
j=1

(γ2
k − β2

j ) = −(fkγk)
2

n∏
j = 1
j �= k

(γ2
k − γ2

j ).

� f 2
k is uniquely determined by

f 2
k = −

∏n
j=1(γ

2
k − β2

j )∏n
j = 1
j �= k

(γ2
k − γ2

j )
, k = 1, · · · , n. (4)

� The interlacing property (2) guarantees that the right hand side of (4) is nonnegative and hence real-valued fk can be defined.

� With this choice of f1, · · · , fn, we see that p(µ) has n + 1 zeros at µ = 0, γ2
1 , · · · , γ2

n and hence p(µ) ≡ 0.

• For other cases, fk can be defined slightly differently. (Chu and Chu’04)
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Second Scenario Where b Is Relaxed

• Recall σ(Ab) = {γ1, . . . , γn} are determined by Qb associated with the vector b.

• If b is changed, then is the interlacing inequality (2).

� How much room can the inequality be adjusted by changing b?
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The Effect of b

• Let A ∈ R
m×n (m ≥ n) be given and fixed.

� Denote
σ(A) = {α1, · · · , αn}, α1 ≥ α2 ≥ · · · ≥ αn.

• There exist a unit vector b ∈ R
m and an orthogonal matrix Qb ∈ R

m×m such that

Q�
bb =

[
1
0

]
, Q�

bA =

[
a�

b

Ab

]
,

with

σ(Ab) =

{
{γ1, · · · , γn−1}, if m = n,

{γ1, · · · , γn}, if m > n.

if and only if values γi satisfy the interlacing inequality

αi ≥ γi ≥ αi+1, i = 1, · · · , n, (5)

where αn+1 = 0 and γn = 0 if m = n.
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Ideas of Proof (Constructive)

• The necessity of (5) is due to the fact that Ab is a submatrix of A.

• Define

Ã =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0
γ1

γ2

. . .
...

γn−1 0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
m=n

or Ã =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
γ1

γ2

. . .

γn

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
m>n

.

� Pad the last row with 0’s, if m > n + 1.

• Consider the first scenario with Ã and b̃ =

[
1
0

]
∈ R

m,

� There exists c ∈ R
n such that

σ(Ã + b̃c�) = {α1, α2, · · · , αn}.
• Denote

A = U1ΣV �
1 ,

Ã + b̃c� = U2ΣV �
2 .

• Define
Qb := U1U

�
2 and b := Qbb̃.

• Observe the partition

Q�
bA = (Ã + b̃c�)(V2V

�
1 ) =

[
a�

b

Ab

]
.
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• The desired properties are built in.
ab = A�b (= V1V

�
2 c)

and

Ab =

⎡
⎢⎢⎢⎣

γ1 0
γ2

. . .
...

γn−1 0

⎤
⎥⎥⎥⎦V2V

�
1 or

⎡
⎢⎢⎢⎢⎢⎣

γ1

γ2

. . .

γn

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦V2V

�
1 .
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Complete Characterization

• The following three statements are equivalent:

1. The ISVPrk with � = 1 is solvable.

2. For each i = 1, · · · , n, there exists a value γi satisfying both inequalities

αi ≥ γi ≥ αi+1, (6)

βi ≥ γi ≥ βi+1, (7)

where αn+1 := 0 and βn+1 := 0.

3. For each i = 1, · · · , n − 1,
βi+1 ≤ αi and αi+1 ≤ βi.

• Note that αi’s and βi’s do not necessarily satisfy any interlacing property.

�

α3
�

α2
�

α1

� β1β2

�β3

Figure 1: Feasible range of αi’s and βi’s for the case n = 3.
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Proof

• By keeping the ordering α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn, the equivalence of Statements 2 and 3 is obvious.

• Assume the ISVPrk has a rank one solution F ∈ R
m×n.

� There exists orthogonal matrix QF such that

Q�
F F =

[
f�

O

]
,

with f ∈ R
n.

� Write

Q�
F A =

[
a�

f

AF

]
,

with af ∈ R
n and AF ∈ R

(m−1)×n.

� Let

σ(AF ) =

{
{γ1, γ2, · · · , γn−1} if m = n,

{γ1, γ2, · · · , γn}, if m > n,

with the descending order γ1 ≥ γ2 ≥ · · · .
� AF is a submatrix of both Q�

F A and Q�
F (A + F ), the singular values of AF interlace with those of both Q�

F A and Q�
F (A + F ).

� The interlacing properties follow.
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• Assume the interlacing inequality (6) holds.

� By relaxation, there exist b ∈ R
m and Qb ∈ R

m×m such that Q�
bb =

[
1
0

]
, Q�

bA =

[
a�

b

Ab

]
, and σ(Ab) = {µ1, . . . , µn}.

• With this b, by the first scenario, a vector f ∈ R
n can be constructed such that

σ(A + bf�) = {β1, β2, · · · , βn}.
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Unsolvability

• When is the case of A where its singular values absolutely cannot be reassigned by any rank one matrices?

• Denote the multiplicity of distinct singular values α1(A) , · · · , αt(A) of A as s1, · · · , st. Then⋂
rank(F )≤1

σ(A + F ) = {αk(A) with algebraic multiplicity (sk − 2) |sk > 2, 1 ≤ k ≤ t}.

• Values in
⋂

rank(F )≤1
σ(A + F ) are those which are invariant under rank one update.

⋂
rank(F )≤1

σ(A + F ) = ∅ ⇐⇒ sk ≤ 2, k = 1, · · · , t.
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Main Result

• Recall the problem.

� Given

� A matrix A ∈ R
m×n (m ≥ n),

� An integer n ≥ � > 0, and

� Real numbers β1 ≥ β2 ≥ · · · ≥ βn ≥ 0,

� Find a matrix F ∈ R
m×n such that

rank(F ) ≤ �,

σ(A + F ) = {β1, β2, · · · , βn}.

• The ISVPrk is solvable if and only if for each i = 1, · · ·n − �,

βi+� ≤ αi, and αi+� ≤ βi.

• The necessary condition is related to the classical Weyl inequality for singular values of sums of matrices.

• The simplicity of the condition is surprisingly pleasant.
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Proof

• The case for � = 1 has already been established.

• Assume that the assertion is true for � = k.

� Want to establish the case � = k + 1 ≤ n.

• The necessity.

� Any F ∈ R
m×n with rank(F ) ≤ k + 1 can be factorized as

F = F1 + F2,

with rank(F1) ≤ k and rank(F2) ≤ 1.

� Denote
σ(A + F1) = {γ1, γ2, · · · , γn}.

� By assumption,
γi+k ≤ αi and αi+k ≤ γi, i = 1, · · · , n − k.

� As a rank one update of A + F1,
βi+1 ≤ γi and γi+1 ≤ βi, i = 1, · · · , n − 1.

� Together,
βi+k+1 ≤ αi and αi+k+1 ≤ βi, i = 1, · · · , n − k − 1.
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• The sufficiency.

� Note that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βk+2 ≤ α1

βk+3 ≤ α2
...

βn ≤ αn−k−1

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αk+2 ≤ β1

αk+3 ≤ β2
...

αn ≤ βn−k−1

.

� By inspection that there exist γi, i = 1, · · · , n, with
γ1 ≥ γ2 ≥ · · · ≥ γn,

such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max{β1, α1} < γ1

max{αk+2, β3} ≤ γ2 ≤ β1

max{αk+3, β4} ≤ γ3 ≤ β2
...

max{αn, βn−k+1} ≤ γn−k ≤ βn−k−1

βn−k ≤ γn+1−k ≤ βn−k
...

βk+1 ≤ γk ≤ βk−1

βk+2 ≤ γk+1 ≤ min{βk, α1}
βk+3 ≤ γk+2 ≤ min{βk+1, α2}

...
βn ≤ γn−1 ≤ min{βn−2, αn−1−k}

γn = 0

, if n − k < k + 1,

or ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

max{α1, β1} < γ1

max{αk+2, β3} ≤ γ2 ≤ β1

max{αk+3, β4} ≤ γ3 ≤ β2
...

max{α2k, βk+1} ≤ γk ≤ βk−1

max{α2k+1, βk+2} ≤ γk+1 ≤ min{α1, βk}
max{α2k+2, βk+3} ≤ γk+2 ≤ min{α2, βk+1}

...
max{αn, βk+J+2} ≤ γk+J+1 ≤ min{αJ+1, βk+J}

βk+J+3 ≤ γk+J+2 ≤ min{αJ+2, βK+J+1}
βk+J+4 ≤ γk+J+3 ≤ min{αJ+3, βk+J+2}

if n − k ≥ k + 1 with J = (n − k) − (k + 1).
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� These values of γi satisfy
γi+k ≤ αi, αi+k ≤ γi, i = 1, · · · , n − k,

and
βi+1 ≤ γi, γi+1 ≤ βi, i = 1, · · · , n − 1.

� By the inductive assumption, there exists a matrix F1 ∈ R
m×n such that

rank(F1) ≤ k, σ(A + F1) = {γ1, γ2, · · · , γn}.

� By rank one update, there exists a matrix F2 ∈ R
m×n such that

rank(F2) ≤ 1, σ((A + F1) + F2︸ ︷︷ ︸
F

) = {β1, β2, · · · , βn}.
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Numerical Algorithm

• The proofs given above can be implemented as numerical means to compute a solution for the ISVPrk.

• Once a rank one update algorithm is available, the entire induction process can easily be implemented in any programming language that supports
a routine to call itself recursively.

� The main feature in the routine should be a single divide and conquer mechanism.

� See the pseudo-code.
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function [F]=svd_update(A,alpha,beta,ell);

if ell == 1 % The rank one case

[b,f] = svd_update_rank_one(A,alpha,beta); % Algorithm 4.1

F = b*f’;

else

k = ell-1; % The general case

choose gamma(1) >= gamma(2) >= ... >= gamma(n) such that

gamma(i+k) <= alpha(i); alpha(i+k) <= gamma(i); i = 1, ..., n-k

beta(i+1) <= gamma(i); gamma(i+1) <= beta(i); i = 1, ..., n-1

[F1] = svd_update(A,alpha,gamma,k);

[b,f] = svd_update_rank_one(A+F1,gamma,beta);

F2 = b*f’;

F = F1+F2;

end

Table 1: A pseudo-MATLAB program for the recursive algorithm.
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Singular Value Reassignment with Rank One Update

1. Compute the singular value decomposition
A = U1ΣV �

1

and denote σ(A) = {α1, · · · , αn} with α1 ≥ · · · ≥ αn.

2. For i = 1, · · · , n − 1, check to see if
βi+1 ≤ αi and αi+1 ≤ βi.

If not, stop.

3. For i = 1, · · · , n − 1, define

γi :=
min{αi, βi} + max{αi+1, βi+1}

2
.

and

γn :=

{
0, if m = n,
min{αn,βn}

2
, otherwise.

4. If γ1 > · · · > γn > 0, define for each k = 1, · · · , n

ck :=

√√√√√−
∏n

j=1(γ
2
k − α2

j )∏n
j = 1
j �= k

(γ2
k − γ2

j )
;

else modify ck’s according to the remaining three cases.
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5. Define

Â :=

⎧⎪⎨
⎪⎩

[c�; diag(γ1, · · · , γn−1), zeros(m − 1, 1)], if m = n,

[c�; diag(γ1, · · · , γn)], if m = n + 1,

[c�; diag(γ1, · · · , γn); zeros(m − n − 1, n)], otherwise.

6. Compute the singular value decomposition
Â := U2ΣV �

2 .

7. Define

b := U1U2(1, :)
�,

Vb := V1V
�
2 ,

ab := A�b (or Vbc).

8. If γ1 > · · · > γn > 0, define for each k = 1, · · · , n

f̂k :=

√√√√√−
∏n

j=1(γ
2
k − β2

j )∏n
j = 1
j �= k

(γ2
k − γ2

j )
;

else modify f̂k’s according to the remaining three cases.

9. Define
f := Vbf̂ − ab.
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Numerical Stability

• Many choices in Step 3.

• The computation of c and f̂ is numerically unstable.

• Similar remedy for Jacobi inverse eigenvalue problems are available. (de Boor and Golud’78, Gragg and Harrod’86), if so desired.
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Minimum Low Rank Approximation

• Given

� A matrix A ∈ R
m×n (m ≥ n),

� An integer n ≥ � > 0, and

� Real numbers β1 ≥ β2 ≥ · · · ≥ βn ≥ 0,

• Find a matrix F ∈ R
m×n such that

rank(F ) ≤ �,

σ(A + F ) = {β1, β2, · · · , βn},
and ‖F‖F is minimized.
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Conclusion

• We have provided a rigorous theoretic basis for the singular value reassignment problem.

• A simple yet both necessary and sufficient condition () completely settles the issue of solvability for the ISVPrk.

• Our proof is constructive so it can be exploited to provide a possible means for computing the solution numerically.

• Using the rank one case as the building block, the algorithm features a divide-and-conquer scheme.

• The numerical procedure as it stands now might not be stable when there are close-by singular values. Remedies are available in the literature.
We mainly concentrates on the general ideas.


