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Syllabus

e Objectives:

¢ To provide some preliminaries.
¢ To treat some mathematics.
¢ To point out some applications.

¢ To describe some algorithms.
e Topics:

¢ Lecture I: Introduction

o Lecture II: General Approach

¢ Lecture III: Distance Geometry and Protein Structure

¢ Lecture IV: Singular Value Assignment with Low Rank Matrices

¢ Lecture V: Nonnegative Matrix Factorization
e Assignments:

¢ Theory and computation of the approximation problem are yet to be studied.
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Singular Value Assignment with Low Rank Matrices
Joint Work with Delin Chu
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State Feedback Control Pole Assignment Problem

e Given matrices A € R™"™ and B € R™"™ consider the state x(¢) € R" under the dynamic state displaymath:
x(t) = Ax(t) + Bu(t).

o Select the input u(t) € R™ so that the dynamics of the resulting x(¢) is driven into to a certain desired state.

¢ In state feedback control,

u(t) = Fx(t).
o System (1) is changed to a closed-loop dynamical system:
x(t) = (A+ BF)x(t).
e Choose the gain matriz F' € R™*" so as to achieve stability and to speed up response.

¢ The problem can be translated into choosing F' so as to reassign eigenvalues of the matrix A + BF.



Known Results

e Well studied subject. (Byrnes’89, Kautsky, Nichols, and Van Dooren’85, Sun’96, Wonham’85)

e Given any set of n complex numbers {\,..., \,}, closed under complex conjugation, a matrix F' € R™*" exists such that
MA+ BF)={\,..., \}
if and only if
rank [A — pl, B] =n, forall ue C.
¢ Also known as the pair (A, B) being controllable.

o If m =1, the pole assignment problem, if solvable, has a unique solution.

e [t can be proved that
(| MA+BF)={uecAA) | rank [A - pul, B] < n},
FeRm*n

o For a certain peculiar pair (A, B) of matrices the eigenvalues of A cannot be reassigned by any F'.

¢ Unassignable matrix pairs form a zero measure set.



Singular Value Assignment Problem (ISVPrk)

e Given

o A matrix A € R™" (m > n),
¢ An integer n > ¢ > 0, and
¢ Real numbers 6y > Gy > --- > (3, > 0,

e Find a matrix F' € R™*" such that

14

rank(F') :
{ﬁl?ﬁ% e 7ﬁn}

o(A+F)

I IA



Literature Search

The state feedback pole assignment problem is a special case of the inverse eigenvalue problems.

¢ See the book by Chu and Golub’04.
o http://www4d.ncsu.edu/ mtchu/Research/Lectures/lecture.html

The inverse singular value problems have not received as many studies.
Some related inverse problems:

¢ The de Oliveira theorem (de Oliveira’71) on the principal elements and singular values.
¢ The Weyl-Horn theorem (Horn’54, Weyl’49) on the relationship between singular values and eigenvalues.

¢ The Sing-Thompson theorem (Sing’76, Thompson’77) on the majorization between the diagonal elements and singular values.
An inverse singular value problem can be recast as a specially structured inverse eigenvalue problem.

¢ The existing theory does not provide us a clue on when the ISVPrk is solvable.



Our Contributions

e We completely characterize the necessary and sufficient condition under which the above ISVPrk is solvable.

e We offer a constructive proof which can be implemented as a numerical means to find the solution.
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Rank One Update — the Building Block

e A rank one update is of the form F' = bf.
o Two controls, b € R™*! and f € R™*!,
e Assume the scenario where

¢ The column vector b € R™ is temporarily given and fixed.
¢ The column vector f € R™ is to be determined.

o What conditions must be imposed on 3y > (3 > --- > 3, > 0 for existence?

e How the vector b could be adjusted to maximally relax the condition?



First Scenario Where b Is Fixed
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Let @y, € R™*™ be the Householder transformation such that that
b
T | Yo
where by = ||b]|2 € R.

Write

with a, € R™ and Ay, € R(m=1)xn

Denote the SVD of Ay:

" 0 4!
V2 0 "2
Ab = Ub . . VbT or Ab = Ub e VbT .
. : -
. L K 0 |
men m;n

For any f € R”, denote
(a;or + bOfT)Vb - [fh f27 ot 7fn] .
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Equivalence
e Define A(f) € RHxm by )
i fa Jn1 In
71
ap=1| " ,
Yn—1
- ’yn

o vy, =0if m=n.

e Obtain the equivalence

o(A+bf") ={B1, B, , B} == o(A(f)) = {5, Pa,-

e For each given b the matrix Ay, is known and hence values of 7;’s are also known.

e To solve the ISVPrk for the case of F = bf ', it suffices to determine the values of fi,. ..

7fn'



First Necessary and Sufficient Condition
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e Given any fixed b € R™, there exists a vector f € R" such that

o(A(f)) = {61, Ba, -+, B}

if and only if
Bi 2% 2 Biy1, 1=1,2,---n,

where (3,11 := 0.



Ideas of Proof

e The necessity of the interlacing inequality (2) is a well known property of singular value decompositions. (Golub and Van Loan’96)

e Observe that

[ Z?:l fi2 f171 f272 e fnflvnfl ann |
Sim 7% ,
A= AmagT— | E
fn—l’yn—l 7,%_1
Ftn Tn

is a bordered matrix in R®+1)x(n+1)

e Consider the fact
J(A<f)) = {ﬁla"' 7ﬁn} — )‘(Af> = {ﬁ%a ) 12170}

= pl) = p] ] = 57) = det(ul — A = 0.



e Note that
p(p) = (trace(Af) - Zﬁf) p" + low degree terms in p

i=1

is a polynomial of degree at most n in p.

e Note also that we can expand the determinant of A and solve the equation,

“H(“_ﬁ?) - (N_Zf;)n(ﬂ—%z)—z (fin)? H (1 —
Jj=1 i=1 j=1 i=1 ;;1

e Need to consider four cases:

o That all v, k =1,...n, are distinct and nonzero.
o That 74 > -+ >y > Y41 =+ =7, = 0 for some integer ¢.
o That the set {71,792, -+ ,Va} consists of ¢ many distinct non-zero elements.

o That the set {71,792, -+ ,vn} consists of £ + 1 distinct elements including one zero.

oA

)

15
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e Will illustrate only the first case. (Boley and Golub’87)

o For each k, set =~ in (3) to obtain

wll0r =80 == TI (k=)

J=1 j=1

o f?# is uniquely determined by
2 H;L:1<713 - 612)
fk;:_ n B} o\’ ]{:1,"',71,.
11 j=1 (’Yk - ’Yj)
i#k

¢ The interlacing property (2) guarantees that the right hand side of (4) is nonnegative and hence real-valued f;. can be defined.
o With this choice of fi,- -, fn, we see that p(u) has n + 1 zeros at u = 0,77, ,v2 and hence p(u) = 0.

e For other cases, fi can be defined slightly differently. (Chu and Chu’04)



Second Scenario Where b Is Relaxed
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e Recall 0(Ap) = {71,...,7} are determined by @, associated with the vector b.
e If b is changed, then is the interlacing inequality (2).

o How much room can the inequality be adjusted by changing b?
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The Effect of b

o Let A€ R™™ (m >n) be given and fixed.

¢ Denote
o(A) ={o, - ,an}, g >ay>---

e There exist a unit vector b € R™ and an orthogonal matrix (), € R™*™ such that
1 a,
Tho TA_ b
bb_|:0:|7 bA_|:Ab:|a

) Em=n,
O'(Ab): {717 , Y 1} 1 m n
{7, Y} if m > n.

with

if and only if values ~; satisfy the interlacing inequality
OéiZ%ZOéi+1-/ Z-:]w..'anu

where o, 1 = 0 and v, = 0 if m = n.

>«

n-



[deas of Proof (Constructive)
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e The necessity of (5) is due to the fact that Ay is a submatrix of A.

e Define

o Pad the last row with 0’s, if m > n + 1.

0 0 0 0 0
M n -
A= Y2 or A=
Yn
L o 0. [0 0 0
e mtn
1 m
ewe

Consider the first scenario with A and b = [

¢ There exists ¢ € R™ such that

Denote

Define

Observe the partition

a(fl + f)cT) ={ay, a9, -, a,}.

A = UV,
A+be’ = U2V,
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e The desired properties are built in.

and

Y1

V2

a,=A'b (=ViV,¢)

V' or

Tn—1 0

Y1

V2

ATAN



Complete Characterization
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e The following three statements are equivalent:

1. The ISVPrk with ¢ = 1 is solvable.

2. For each i = 1,--- | n, there exists a value ~; satisfying both inequalities

o > Y 2 Qg
Bi > v = Bit1,

where a,,11 := 0 and (3,1 := 0.
3. Foreachi=1,--- ,n—1,

Bit1 < oy

and a1 < B

e Note that o;’s and ;’s do not necessarily satisfy any interlacing property.

o8

o

5

(&%}

(%)

&3]

Figure 1: Feasible range of a;’s and 3;’s for the case n = 3.
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Proof

e By keeping the ordering ay > ay > -+ > v, and 1 > By > - -+ > 3,,, the equivalence of Statements 2 and 3 is obvious.
e Assume the ISVPrk has a rank one solution F' € R™*™,

¢ There exists orthogonal matrix () such that

with f € R"™.
o Write

with ar € R" and Ap € Rm=1xn,
o Let
amw:{“““””%l}#m:“
{v,%, y W}, ifm>n,
with the descending order v; > v > -+ -.
o Ap is a submatrix of both QA and QL(A + F), the singular values of A interlace with those of both Q1A and Q. (A + F).

¢ The interlacing properties follow.



e Assume the interlacing inequality (6) holds.
1
o By relaxation, there exist b € R™ and @}, € R™*™ such that Qb = [ 0 ], QLA = [

e With this b, by the first scenario, a vector f € R" can be constructed such that

o(A+Dbf") = {31, B2, Bu}-

-
ap

Ap

}, and o(Ap) = {1, .-, fin}-

23
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Unsolvability

e When is the case of A where its singular values absolutely cannot be reassigned by any rank one matrices?

e Denote the multiplicity of distinct singular values ay(A) , -+, a(A) of A as sy, ---, ;. Then

ﬂ o(A+ F) = {ai(A) with algebraic multiplicity (s —2) |[sx > 2, 1 < k < t}.

rank(r<i
e Values in mrank( <1 o(A+ F) are those which are invariant under rank one update.

(| c(A+F)=0 <= s,<2 k=1t

rank(r<i



Main Result
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e Recall the problem.

o Given

> A matrix A € R™"™ (m > n),
> An integer n > ¢ > 0, and
> Real numbers 61 > 35 > -+ > 3, > 0,

¢ Find a matrix F' € R™*"™ such that

rank(F) < ¢,
O-(A+F) - {517&%"'7571}‘

e The ISVPrk is solvable if and only if for each i =1,---n — ¢,

Bite < o, and o < G

e The necessary condition is related to the classical Weyl inequality for singular values of sums of matrices.

e The simplicity of the condition is surprisingly pleasant.
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Proof

e The case for £ = 1 has already been established.
e Assume that the assertion is true for ¢ = k.

o Want to establish the case / =k + 1 < n.
e The necessity.

o Any F' € R™" with rank(F) < k + 1 can be factorized as
F = Fl + F27

with rank(F;) < k and rank(Fy) < 1.

¢ Denote

O-(A+F1) :{717727'”

> By assumption,
Yivk < and - air <
> As a rank one update of A+ F,
Bit1 <7y and 7y < B,
o Together,
Bivkr1 < o and  qipq < G,

i=1,--

i=1,--

i=1,---

7/777«}



e The sufficiency.

¢ Note that

o By inspection that there exist v;, 7 =1,---

such that

or

(

\

max{ay, 31}
ma‘X{ak—FQ? 53}
max{ 43, 01}

HlaX{Oézk, ﬁk+1}
max{a2k+17 ﬁk+2}
maX{a2k+2a 6k+3}

maX{Oén, 5k+J+2}
Brtg+3
Brt 14

Y

Bret2
Brt3

B

,n, with

([ max{f,aq}
max{agy2, 33}
max{agys, 34}

maX{Oém 5n7k+1}

ﬁn—k

Brt1
Bret2

ﬁk+3

Bn

4!
V2
V3

INIA A

Yk
Vk+1
Vk+2

IAIAIA

Ve+J+1
VE+J42
Yk+J+3

IAIA A

IAINA

INIA A

VARIVANIVAN IAIN

IAINA A

AN A

VAIVANIVA

aq

(&%)
and

Op—k—1

Qpr2 < B
aprs < B
(079 S /ankfl

MY 2 Ty

7
V2 < o3}
Y3 < Ba
Yn—k S 6n7k71
Vntl—k < Br—k
j , ifn—k<k+1,
Yk < Br-1
Ter1 < min{ 3, a1}
Vir2 < min{ﬁkﬂ» 042}
Yn—1 S min{ﬁnf% anflfk}
Tn = 0
B
B2
Br-1
min{ala ﬁk}

min{ay, Bri1}

min{o 1, Brrs}
min{a 42, Bx+y41}
min{o .3, Gersia}

ifn—k>k+1withJ=(mn-k)—(k+1).

27
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¢ These values of ~; satisfy
Virk <y Qi <, t=1,- n—k,

and
Biv1 <vi, Y1 <G, i=1,---,n—1

¢ By the inductive assumption, there exists a matrix F; € R™*" such that

rank(Fl) S k’ U(A + Fl) = {’717’}/27 e 7771}

o By rank one update, there exists a matrix F» € R"*™ such that

rank(Fy) <1, o((A+ F)+ Fy) ={01,0s, -
F

’/871}'
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Numerical Algorithm

e The proofs given above can be implemented as numerical means to compute a solution for the ISVPrk.

e Once a rank one update algorithm is available, the entire induction process can easily be implemented in any programming language that supports
a routine to call itself recursively.

¢ The main feature in the routine should be a single divide and conquer mechanism.

¢ See the pseudo-code.
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function [F]=svd_update(A,alpha,beta,ell);

% The rank one case

if ell ==
[b,f] = svd_update_rank_one(A,alpha,beta); % Algorithm 4.1
F = bxf’;
else
k = ell-1; % The general case
choose gamma(1l) >= gamma(2) >= ... >= gamma(n) such that
gamma (i+k) <= alpha(i); alpha(i+k) <= gamma(i); i =1, ..., n-k
=1, ..., n-1

beta(i+l) <= gamma(i); gamma(i+1) <= beta(i); i
[F1] = svd_update(A,alpha,gamma,k) ;

[b,f] = svd_update_rank_one(A+F1,gamma,beta);
F2 = b*f’;

F = F1+F2;

end

Table 1: A pseudo-MATLAB program for the recursive algorithm.




Singular Value Reassignment with Rank One Update
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. Compute the singular value decomposition

A=UxV,"
and denote 0(A) = {aq, -+ ,a,} with ag > -+ > a,.
. Fori=1,--- ,n—1, check to see if
fiy1 <a; and ;1 < 5
If not, stop.

. Fori=1,---,n—1, define

o min{«;, i} + max{a; 1, Bir1}
i 2 '

a 07 if m= n,
Vn 1= % ., otherwise.

and

Iy > oo >y, >0, define for each k=1,--- |n

H?:l (v — O‘?)

Hnjzl (713_7]2)7
i#k

Cr ‘= -

else modify ¢’s according to the remaining three cases.
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. Compute the singular value decomposition

. Define

A:=TU,%V,

b = UlUQ(]_, I)T,
Vb = ‘/1‘/2T7
ap, = A'b (or Vye).

Iy > oo >, >0, define for each k=1,--- . n

fiim

else modify fk’s according to the remaining three cases.

. Define

1= (i = 55)

Hnjzl (’Y;%"sz)’
i#k

~

f.= be — ap.

. Define
[c":diag(y1, -, Yno1), zeros(m — 1,1)], if m =n,
A= [eTidiag(n, 7)), ifm=n+1,
[c";diag(yi, -+ ,7n); zeros(m —n —1,n)], otherwise.



Numerical Stability
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e Many choices in Step 3.
e The computation of ¢ and fis numerically unstable.

e Similar remedy for Jacobi inverse eigenvalue problems are available. (de Boor and Golud’78, Gragg and Harrod’86), if so desired.
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Minimum Low Rank Approximation

e (Given

o A matrix A € R™"™ (m > n),
o An integer n > ¢ > 0, and
o Real numbers 6; > 6, > --- > 3, > 0,

e Find a matrix F' € R™*" such that

rank (F') l,
O-(A+F) {ﬁlaﬁ?a"' 7571}7

and | F'||p is minimized.

IN
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Conclusion

We have provided a rigorous theoretic basis for the singular value reassignment problem.

A simple yet both necessary and sufficient condition () completely settles the issue of solvability for the ISVPrk.
Our proof is constructive so it can be exploited to provide a possible means for computing the solution numerically.
Using the rank one case as the building block, the algorithm features a divide-and-conquer scheme.

The numerical procedure as it stands now might not be stable when there are close-by singular values. Remedies are available in the literature.
We mainly concentrates on the general ideas.



