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Syllabus

• Objectives:

� To provide some preliminaries.

� To treat some mathematics.

� To point out some applications.

� To describe some algorithms.

• Topics:

� Lecture I: Introduction

� Lecture II: General Approach

� Lecture III: Distance Geometry and Protein Structure

� Lecture IV: Singular Value Assignment with Low Rank Matrices

� Lecture V: Nonnegative Matrix Factorization

• Assignments:

� Many numerical techniques, but none is superior.

� Proper interpretation of the factorization is needed.

� Perhaps more constraints need to be imposed.
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Lecture V

Nonnegative Matrix Factorization
Joint Work with Fasma Diele, Robert Plemmons, and Stefania Ragni
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Outline

• Some Real Data

� EPA Data on Air Pollution

� Pixels of Irises

• Linear Model

� Mass Balance Equation

� Principle Component Retrieval

• First Order Optimality Condition

� Kuhn-Tucker Condition

� Lagrangian Multiplier

• Numerical Methods

� Newton-type Approach

� Reduced Quadratic Model Approach

� Gradient Approach

• Numerical Experiments
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Air Pollution Data

1970 1975 1980 1985 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Carbon Monoxide 129444 116756 117434 117013 106438 99119 101797 99307 99790 103713 94057 101294 101459 96872 97441
Lead 221 160 74 23 5 5 4 4 4 4 4 4 4 4 4

Nitrogen Oxides 20928 22632 24384 23197 23892 24170 24338 24732 25115 25474 25052 26053 26353 26020 25393
Volatile Organic 30982 26080 26336 24428 22513 21052 21249 11862 21100 21682 20919 19464 19732 18614 18145

PM10 13165 7677 7109 41397 40963 27881 27486 27249 27502 28756 25931 25690 25900 26040 23679
Sulfur Dioxide 31161 28011 25906 23658 23294 23678 23045 22814 22475 21875 19188 18859 19366 19491 18867

PM2.5 7429 7317 7254 7654 7012 6909 7267 7065 6773 6773
Ammonia 4355 4412 4483 4553 4628 4662 4754 4851 4929 4963

Table 1: Annual pollutants estimates (in thousand short tons).

• Who should be blamed for emitting these pollutants?

• How much responsibility should each guilty party bear?
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Iris Data

Figure 1: Intensity image of an iris

• Each iris is a 160 × 120 pixel matrix with entry values between 0 and 1.

• Are there any common features in these irises?

• Can any intrinsic parts that make up these poses be identifies?
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Linear Model

• Let Y = [yij] ∈ R
m×n denote the matrix of “observed” data.

� yij = the score obtained by entity j on variable i.

• Assume that yij is a linearly weighted score by entity j based on several factors.

� Temporarily assume that there are p factors, but it is precisely the point that the factors are to be retrieved in the mining process.

• Assumes the relationship
Y = A︸︷︷︸

m×p

F︸︷︷︸
p×n

.

� aik = influence of factor k on variable i.

� fkj = the response of entity j to factor k.
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Receptor Model

• An observational technique used within the air pollution research community.

• Assume that mass conservation.

� A mass balance analysis can be used to identify and apportion sources of airborne particulate matter in the atmosphere.

• The relationships between p sources which contribute m chemical species to n samples lead to a mass balance displaymath,

yij =

p∑
k=1

aikfkj.

� yij = the elemental concentration of the ith chemical measured in the jth sample.

� aik = the gravimetric concentration of the ith chemical in the kth source.

� fkj = the airborne mass concentration that the kth source has contributed to the jth sample.
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• A typical scenario,

� Only values of yij are observable.

� Neither the sources are known nor the compositions of the local particulate emissions are measured.

• A critical question,

� Estimate the number p.

� Determine the compositions aik, and the contributions fkj of the sources.

� The source compositions aik and the source contributions fkj must all be nonnegative.

• Conventional tools such as principal component analysis, factor analysis, cluster analysis, and other multivariate statistical techniques cannot
guarantee nonnegativity.
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Image Articulation

• Image articulation libraries are made up of images showing a composite object in many articulations and poses.

• Could the factorization enable the identification and classification of intrinsic “parts” that make up the object being imaged by multiple observa-
tions?

� Each column yj of a nonnegative matrix Y represents m pixel values of one image.

� The columns ak of A are basis elements in R
m.

� The columns of F denote coefficient sequences representing the n images in the basis elements.

yj =

p∑
k=1

akfkj,

• Nonnegativity requirement.

� Those basic parts, being images themselves, are necessarily nonnegative.

� The superposition coefficients, each part being present of absent, are also necessarily nonnegative.
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Nonnegative Matrix Factorization

• Need to determine as fewer factors as possible and, hence, a low rank nonnegative matrix factorization of the data matrix Y .

• (NNMF)Given a nonnegative matrix Y ∈ R
m×n and a positive integer p < min{m,n}, find nonnegative matrices U ∈ R

m×p and V ∈ R
p×n so as

to minimize the functional

f(U, V ) :=
1

2
‖Y − UV ‖2

F . (1)

� Because UV = (UD)(D−1V ) for any invertible matrix D ∈ R
p×p, it might be desirable to “normalize” columns of U .
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Literature Search

• Quite a few numerical algorithms proposed in the literature for NNMF. (Hoyer’02, Lee and Seung’01, Liu and Yi’03, Donoho and Stodden’03).

• Current developments seem to lack a firm theoretical foundation in general. (Tropp’03)

• Nonnegative matrices form a cone with many facets.
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Parameterization of Nonnegative Matrices

• Parameterize the cone R
m×p
+ of nonnegative matrices as

R
m×p
+ = {E. ∗ E|E ∈ R

m×p}.

� E. ∗ E = [e2
ij] denotes the Hadamard product.

• The NNMF can be expressed as the minimization of

g(E,F ) :=
1

2
‖Y − (E. ∗ E)(F. ∗ F )‖2

F . (2)

� No constraints imposed on E and F .
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Computing the Gradient

• Equip the space R
m×p × R

p×n with the product Frobenius inner product,

〈(X1, Y1), (X2, Y2)〉 = 〈X1, X2〉 + 〈Y1, Y2〉.

• The Fréchet derivative of g can be calculated component by component.

∂g

∂E
.H = 〈−2H,E. ∗ (

δ(E,F )(F. ∗ F )�
)〉, (3)

∂g

∂F
.K = 〈−2K,F. ∗ (

(E. ∗ E)�δ(E,F )
)〉. (4)

� δ(E,F ) := Y − (E. ∗ E)(F. ∗ F ) denotes the residue.

• By the Riesz representation theorem, the gradient of g at (E,F ) can be expressed as

∇g(E,F ) =
(−2E. ∗ (

δ(E,F )(F. ∗ F )�
)
,−2F. ∗ (

(E. ∗ E)�δ(E,F )
))

.
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First Order Optimality Condition

• If (E,F ) is a local minimizer of the objective functional g in (2), then necessarily the equations

E. ∗ (
δ(E,F )(F. ∗ F )�

)
= 0 ∈ R

m×p, (5)

F. ∗ (
(E. ∗ E)�δ(E,F )

)
= 0 ∈ R

p×n, (6)

are satisfied.

� The corresponding stationary point to the nonnegative matrix factorization problem is given by U = E. ∗ E and V = F. ∗ F .

• The necessary condition for (U, V ) ∈ R
m×p
+ × R

p×n
+ to solve the nonnegative matrix factorization problem is

U. ∗ (
(Y − UV )V �)

= 0 ∈ R
m×p, (7)

V. ∗ (
U�(Y − UV )

)
= 0 ∈ R

p×n. (8)

� Be aware of the complementarity condition.
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Kuhn-Tucker Conditions

• Classical constrained optimization problem:

minimize f(x)

subect to hi(x) = 0, i = 1, . . . , n

gj(x) ≥ 0, j = 1, . . . , �.

• Classical Kuhn-Tucker conditions: At an local minimizer x∗, there exist values λ1, . . . , λn and µ1, . . . , µ� such that

� ∇f(x∗) − ∑n
i=1 λi∇hi(x

∗) − ∑�
j=1 µj∇gi(x

∗) = 0,

� µjgj(x) = 0,

� µj ≥ 0.

• In our case,

� The two matrices −(Y − UV )V � and −U�(Y − UV ) are precisely the Lagrangian multipliers specified in the Kuhn-Tucker condition.

� At a solution (U, V ) of the nonnegative matrix factorization problem, it is necessary that

(Y − UV )V � ≤ 0, (9)

U�(Y − UV ) ≤ 0. (10)
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Numerical Methods

• All numerical methods essentially center around satisfying the first order optimality condition.

• Various additional mechanisms, such as the Hessian information or some descent properties, are built in the different schemes to ensure that a
critical point is a solution to (1).

• Methods are plenty, but no absolutely superior algorithm.

� Newton-type approach.

� Reduced quadratic model approach.

� Gradient approach.

• There is much room for further improvement of any of these methods for the NNMF problem.
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Newton-type Approach

• Centered around implementing the Kuhn-Tucker conditions.

• There has been plenty software developed— 27 computer codes are compared in (Hock and Schittkowski’83).

• Fast convergence, but usually more expensive.
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Constrained Quasi-Newton Methods

• Sequential Quadratic Programming (SQP) methods.

� One of the most efficient techniques.

� Solve successively a sequence of quadratic programming subproblems obtained by linearizing the original nonlinear problems at various
approximate solutions.

� Accumulate second order information via a quasi-Newton updating procedure.

� Superlinear convergence. (Fletcher’87, Gill, Murray and Wright’81).

• In the NNMF application, the Kuhn-Tucker conditions are explicitly given by (7), (8), (9) and (10).

� How to take advantage of the underlying structure?
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ADI Newton Iteration

• Alternating direction iteration.

� Start by fixing V in (7) and solve the system,
U. ∗ [B − UC] = 0,

for a nonnegative matrix U ∈ R
m×p
+ .

� B = Y V � ∈ R
m×p.

� C = V V � ∈ R
p×p.

� Fix U in (8) and solve next the system
V. ∗ [R − SV ] = 0,

for a nonnegative matrix V ∈ R
p×n
+ .

� R = U�Y ∈ R
p×n.

� S = U�U ∈ Rp×p.

• Because p is low, the sizes of the square matrices C and S are relatively small.

� Need to guarantee nonnegativity.

� Need to satisfy (9) and (10).

� Need to show convergence.
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Inner Loop Iteration

• In each sweep of the outer loop iteration, the solution U and V could be solved row by row and column by column, respectively.

� Each row of U gives rise to a nonlinear system of equations of the form

u�. ∗ [b� − u�C] = 0. (11)

� There are m rows for U and n columns for V to be solved, respectively,

� Coefficient matrices C = V V � or S = U�U need to be updated once per sweep.

• To guarantee the nonnegativity of u�, rewrite (11) as the equation

ψ(e) = (C(e. ∗ e) − b). ∗ e = 0.

� e. ∗ e = u in nonnegative.

� The Frèchet of ψ acting on an arbitrary vector h ∈ R
p can be calculated as

ψ′(e).h = {2diag(e)Cdiag(e) + diag(C(e. ∗ e) − b)}h.

• The inner loop algorithm.

� Given e(0) such that C(e(0). ∗ e(0)) − b ≥ 0, do until convergence:

1. Compute r(k) = C(e(k). ∗ e(k)) − b.

2. Solve for h from the linear system {
2diag(e(k))Cdiag(e(k)) + diag(r(k))

}
h = −r(k). ∗ e(k);

3. Update e(k+1) = e(k) + α(k)h.
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Projected Newton Method

• The objective function (1) is separable.

f(U, V ) =
1

2
‖Y − UV ‖2

F =
1

2

n∑
i=1

‖yi − Uvi‖2
2.

� For a fixed U ∈ R
m×p, each single column of V is a nonnegative least squares problem

minimize φ(v) :=
1

2
‖y − Uv‖2

2, (12)

subject to v ≥ 0 ∈ R
p.

� The MATLAB routine lsqnonneg is readily available.

� Use a notion of the projected Newton method. (Lawson and Hansen’74)

• Alternate between U and V

� Employ the projected Newton method or the existing lsqnonneg for each column of V and each row of U .
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Reduced Quadratic Model Approach

• The reduced quadratic model approach is considerably simple to use.

• Replace the quadratic function φ(v) defined in (12) by a sequence of simpler quadratic functions.

� Near any given vc, rewrite φ(v) as

φ(v) = φ(vc) + (v − vc)�∇φ(vc) +
1

2
(v − vc)�U�U(v − vc).

� Approximate φ(v) by a simpler quadratic model

ϕ(v;vc) = φ(vc) + (v − vc)�∇φ(vc) +
1

2
(v − vc)�D(vc)(v − vc), (13)

� D(vc) is a diagonal matrix depending on vc.

� The minimizer of φ(v) is approximated by the minimizer v+ of ϕ(v;vc), near which a new quadratic model is created.

• The definition of D(v(c)) is quite intriguing.
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Lee and Seung Method

• Denote vc = [vc
i ] ∈ R

p, D(vc) = diag{d1(v
c), . . . , dp(v

c)}, and so on.

• Define the diagonal entries is by (Lee and Seung’01)

di(v
c) :=

(U�Uvc)i

vc
i

, i = 1, . . . , p.

• Four important consequences:

1. D(vc) − U�U is positive semi-definite.
(v − vc)�

(
D(vc) − U�U

)
(v − vc) ≥ 0for all v.

� φ(v) ≤ ϕ(v;vc) for all v.
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Figure 2: Reduced quadratic model.
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2. The minimum of any quadratic function always has a closed form solution.

� With D(vc) being diagonal the close form solution is easy.

� The minimum v+ of ϕ(v;vc) is given by
v+ := vc − D−1(vc)(U�Uvc − U�y).

3. The entries of v+ are precisely

v+
i = vc

i

(U�y)i

(U�Uvc)i

, i = 1, . . . , p.

� v+ remains nonnegative if vc is nonnegative.

4. Note that
φ(v+) ≤ ϕ(v+;vc) ≤ ϕ(vc;vc) = φ(vc),

� v+ is an improved update from vc.
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Multiplicatie Rule

• Repeat the above process for each individual column of V and each row of U .

• The updated matrix V + = [v+
ij ] from a given nonnegative matrix V c = [vc

ij] and a fixed nonnegative matrix U can be defined by the multiplicative
rule:

v+
ij := vc

ij

(U�Y )ij

(U�UV c)ij

, i = 1, . . . , p, j = 1, . . . , n.

� In short,
V + := V c. ∗ (U�Y )./(U�UV c).

• Similarly, the update U+ = [u+
ij] from a given nonnegative matrix U c = [uc

ij] and a fixed nonnegative matrix V can be defined by the rule:

U+ := U c. ∗ (Y V �)./(U cV V �).

• Alternating these multiplicative update rules between U and V .

• The objective function f(U, V ) is nonincreasing under the update rules.
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Ellipsoid Method

• There are many other ways to set forth the simpler model (13).

� If all diagonal entries of D are larger than the spectral radius of U�U , then D − U�U is positive definite.

� The larger the D, the smaller the D−1 and, hence, the less difference between v+ and vc according to (2).

• The challenge thus lies in finding a diagonal matrix D that is

� Large enough to make D − U�U positive definite.

� Small enough to signify the difference between v+ and vc.

• Use the semidefinite programming (SDP) technique?
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Barrier Function

• Notation:

� S = U�U ∈ R
p×p.

� gc = [gc
i ] := U�Uvc − U�y ∈ R

p.

� λi(D) = the ith eigenvalue of D − S.

• Barrier function

ω(D) :=

p∑
i=1

ln
1

λi(D)
+

p∑
i=1

ln
1

di

+

p∑
i=1

ln
1

divc
i − gc

i

.

� ω(D) can be defined only for diagonal matrices D such that D − S is positive definite, D has positive diagonal entries, and Dvc − gc is a
positive vector.

� The level curves of ω(D) serve as reasonable approximations to the boundary of the desirable feasible domain.
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Differential Properties of Barrier Function

• The gradient vector of ω(D) with D = diag{d1, . . . , dp} is given by

∇ω(D) = diag
(
(D − S)−1 − D−1

) −
⎡
⎢⎢⎣

vc
1

d1vc
1−gc

1
...

vc
k

dkvc
k−gc

k

⎤
⎥⎥⎦ .

• The Hessian matrix H(D) of ω(D) is given by

H(D) = (D − S)−1. ∗ (D − S)−1 + D−1. ∗ D−1 + diag

{(
vc

1

d1vc
1 − gc

1

)2

, . . . ,

(
vc

k

dkvc
k − gc

k

)2
}

.

� By the Schur product theorem, H(D) is positive definite if D is feasible.

� ω(D) is strictly convex over its feasible domain.
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Ellipsoid

• An ellipsoid E ⊂ R
p can best be characterized by its center γ ∈ R

p and a symmetric and positive definite matrix Γ ∈ R
p×p via

E = E(Γ,γ) :=
{
x ∈ R

p|(x − γ)T Γ−1(x − γ) ≤ 1
}

.

• Suppose Dc = diag(dc) is a strictly feasible point. Then every D+ = diag(d+) with d+ ∈ E(H(Dc)−1,dc) is also strictly feasible.

� From within the feasible domain of ω, approximate its level curves by a sequence of inscribed ellipsoids.
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Choice of Dc

• Given a feasible Dc, any point from the ellipsoid E(H(Dc)−1, dc) will carry the four properties that Lee and Seung’s choice possesses.

� Which point d+ on E(H(Dc)−1, dc) will serve the “goal” better?

• Some possible choices:

� In order to make D+ small, one possible objective is to minimize the trace of D+, i.e.,

minimize 1�d, (14)

subject to d ∈ E(H(Dc)−1,dc). (15)

� Weight the diagonal entries of D differently and end up with different linear objective functional.

• Optimization of linear objective functional over ellipsoids has a closed form solution:

� For p �= 0, the minimal value of the linear functional p�x subject to the condition x ∈ E(Γ,γ) occurs at

x∗ := γ − 1√
pT Γp

Γp.
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Dikin’s Algoritm

• Given d(0) ∈ R
p strictly feasible, do until convergence:

1. If D(k) − S is singular, then stop; otherwise

2. Solve H(D(k))δd = 1 for δd;

3. Update d(k+1) := d(k) − 1√
1�δd

δd.

• DLee&Seung is always on the boundary of the feasible domain because DLee&Seung − S has a zero eigenvalue with eigenvector vc.

• While the Dikin algorithm produces a diagonal matrix that has minimal trace, the Lee and Seung algorithm is remarkably cheap for computation.



33

Gradient Approach

• Gradient information is known explicitly.

• Easy to use, but slow convergence.
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Gradient Flow

• The dynamical system

dE

dt
= E. ∗ (

δ(E,F )(F. ∗ F )�
) ∈ R

m×p, (16)

dF

dt
= F. ∗ (

(E. ∗ E)�δ(E,F )
) ∈ R

p×n, (17)

defines an analytic continuous flow.

� Moves in the space R
m×p × R

p×n along the steepest descent direction of the objective functional g.

� Along the solution flow (E(t), F (t)),

dg(E(t), F (t))

dt
= −〈(δ(E,F )(F. ∗ F )�

)
. ∗ E,

(
δ(E,F )(F. ∗ F )�

)
. ∗ E〉

−〈F. ∗ (
(E. ∗ E)�δ(E,F )

)
, F. ∗ (

(E. ∗ E)�δ(E,F )
)〉 ≤ 0.

� Analytic gradient flow converges to a single point of equilibrium. (�Lojasiewicz’63, Simon’83)

• Employing any available ODE solvers to integrate the system (16) and (17) constitutes a ready-to-go numerical method.
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Steepest Descent Method

• The Euler method with appropriate step size selection is an easy way of utilizing the gradient information.

� Steepest descent update:

E(k+1) := E(k) + µkE
(k). ∗ (

δ(E(k), F (k))(F (k). ∗ F (k))�
)
, (18)

F (k+1) := F (k) + µkF
(k). ∗ ((F (k). ∗ F (k))�δ(E(k), F (k))). (19)

� Shepherd update:

U (k+1) = U (k+1)(µk) := max
{
0, U (k) + µk(Y − U (k)V (k))(V (k))�

}
, (20)

V (k+1) = V (k+1)(µk) := V (k) + µk(U
(k))�(Y − U (k)V (k)). (21)

• The selection of µk is critical.

� In general practice, a backtracking line search using, say, a cubic interpolation and a merit function, is performed to determine the step length
µk.

� For the NNMF problem, the selection of step length is easier.

� The function,
Θ(µ) := F (U (k+1)(µ), V (k+1)(µ)),

with U (k+1)(µ) and V (k+1)(µ) defined by (21) is a quartic polynomial in µ.

� It was suggested to use the Tartaglia formula to compute directly the roots of Θ
′
(µ) and hence locate the optimal µ.
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Numerical Experiments

• Many possible numerical methods.

• Each approach has unique features and wide-ranging degrees of complexities.

� Not easy to make a fair comparison of their performance.

• We shall demonstrate the limits and difficulties in interpreting the factorizations.
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Iris Decomposition

• The NNMF applied to the iris data is meant to seek and identify any intrinsic parts that make up these poses.

� We do not know a priori the number p of parts.

� Can only experiment with different numbers of p.

� Once a factorization UV is found,

� Columns of U are normalized to unit length for uniformity.

� Columns of the normalized U will be considered as the bases of these images.

• The results:

� p = 2 suggests quite clearly that there are two “positions” of the pupils.

� p = 4 indicates that there are two basic images overlaying each other.

� The basic “parts” that make up these irises remain disappointedly complicated.
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Figure 3: Basis images for p = 2.
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Figure 4: Basis images for p = 4.
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Pollutant Decompositin

• Assume four principal sectors across the national economy.

� Fuel combustion

� Industrial Processes:

� Chemical and allied product manufacturing

· Organic chemical manufacturing

· Inorganic chemical manufacturing

· Polymer and resin manufacturing

· Pharmaceutical manufacturing

· ...

� Metals processing

� Petroleum and related industries

� Other industrial processes

� Solvent utilization

� Storage and transport

� Waste disposal and recycling

� Transportation

� Miscellaneous

• Each subsector contributes certain degree of pollution.
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Scenario I: Who Is Doing What Damages?

• Assume total emissions F from each sector is available.

1970 1975 1980 1985 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
Fuel 41754 40544 43512 41661 40659 39815 39605 40051 38926 38447 36138 36018 35507 34885 34187

Industrial 48222 32364 29615 22389 21909 21120 20900 21102 21438 21467 21190 17469 17988 17868 20460
Transportation 125637 121674 117527 119116 107978 100877 106571 105114 106328 108125 99642 106069 104748 103523 100783
Miscellaneous 10289 6733 10589 46550 46560 45877 42572 40438 41501 45105 39752 43829 46487 42467 39836

Table 2: Annual emissions estimates (in thousand short tons) from four sectors.

• Determine a nonnegative matrix A of size 8 × 4 that solves the optimization problem:

minimize 1
2
‖Y − AF‖2

F , (22)

subject to A ≥ 0, and
∑8

i=1 aij = 1, j = 1, . . . 4.

� Each column of A represents the best fitting percentage distribution of pollutants from the emission of the corresponding sector.

� This is a convex programming problem and the global minimizer is unique.
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Comparing NNMF and Averaging Results

• Using existing software, such as fmincon in MATLAB, to find the best fitting distribution Aopt to Problem (22).

• The average distribution Aavg would have to be obtained by extensive efforts in gathering itemized pollutant emissions of each sector per year.

Fuel Industrial Transportation Miscellaneous

Carbon Monoxide 0.1535 0.3116 0.7667 0.3223
Lead 0.0001 0.0002 0.0002 0

Nitrogen Oxides 0.2754 0.0417 0.1177 0.0113
Volatile Organic 0.0265 0.4314 0.0908 0.0347

PM10 0.0368 0.0768 0.0074 0.4911
Sulfur Dioxide 0.4923 0.0996 0.0112 0.0012

PM2.5 0.0148 0.0272 0.0043 0.0761
Ammonia 0.0007 0.0115 0.0016 0.0634

Table 3: Average distribution of pollutants from sectors.

Fuel Industrial Transportation Miscellaneous

Carbon Monoxide 0.1925 0.3400 0.8226 0.0090
Lead 0 0.0000 0 0.0000

Nitrogen Oxides 0.0631 0 0.1503 0.1524
Volatile Organic 0.3270 0.2759 0.0272 0

PM10 0.0000 0.1070 0.0000 0.6198
Sulfur Dioxide 0.4174 0.2771 0.0000 0

PM2.5 0.0000 0.0000 0 0.1326
Ammonia 0.0000 0 0 0.0862

Table 4: Optimal distribution of pollutants from sectors with fixed emission estimates.
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• Several serious discrepancies:

� In Aopt that 32.70% emissions from the fuel burning contribute to the volatile organic compounds whereas Aavg counts only 2.65%.

� In Aopt that only 6.31% emissions from the fuel goes to the nitrogen oxides whereas Aavg count 27.54%.

� Estimates from the best fitting Aopt is inconsistent with the scientific truth.
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Scenario II: Total Factorization

• Assume only Y is available.

� Determine four sectors, not necessarily in any order or any definition.

� The corresponding percentage distributions U .

� The total emission estimates per year V .

• Results from the Lee and Seung algorithm.

Sector 1 Sector 2 Sector 3 Sector 4

Carbon Monoxide 0.2468 0.0002 0.7969 0.0001
Lead 0 0.0008 0 0.0000

Nitrogen Oxides 0.0000 0 0.1641 0.1690
Volatile Organic 0.3281 0.2129 0.0391 0

PM10 0.0000 0.5104 0.0000 0.5532
Sulfur Dioxide 0.4251 0.2757 0.0000 0

PM2.5 0.0000 0.0000 0 0.1680
Ammonia 0.0000 0 0 0.1097

Table 5: NNMF distribution estimates of pollutants from sectors (Lee and Seung algorithm)
.

1970 1975 1980 1985 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
Sector 1 58705 57455 57162 3718 4974 47464 46314 47175 47864 43630 44643 42657 43578 42926 43585
Sector 2 25487 11755 7431 81042 75327 10313 10784 8313 6848 12613 4069 3403 3541 3159 1
Sector 3 143614 128945 130225 145512 132349 109442 113118 109881 110295 116521 104440 113926 113910 108437 108828
Sector 4 0 3139 6254 2 4702 40785 39618 41539 43358 40302 43236 43319 43599 44239 42832

Table 6: NNMF emission estimates (in thousand short tons) (Lee and Seung algorithm).
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• We do not know what each column of U really stand for.

• It requires a careful interpretation to identify what factor is being represented.

� It is likely that a single column could represent a mixture of two or more known economy sectors.

• Improvement in the objective functions.

1

2
‖Y − UV ‖2

F = 1.5873 × 107 < ‖Y − AoptF‖2
F = 2.7017 × 108 <

1

2
‖Y − AavgF‖2 = 7.1548 × 108.

� Unevenness in the NNMF emission estimates per sector, making it more difficult to predict the estimate.
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• Results from the constrained quasi-Newton method.

� A different percentage distribution of pollutants from sectors.

Sector 1 Sector 2 Sector 3 Sector 4

Carbon Monoxide 0.3124 0.4468 0.5426 0.6113
Lead 0 0 0.0000 0.0007

Nitrogen Oxides 0.1971 0.1299 0.0366 0.1412
Volatile Organic 0.0239 0.0654 0.1720 0.1191

PM10 0.1936 0.3101 0.0401 0.0220
Sulfur Dioxide 0.0287 0.0477 0.2087 0.1058

PM2.5 0.1480 0.0000 0 0
Ammonia 0.0963 0 0.0000 0.0000

Table 7: NNMF distribution estimates of pollutants from sectors (constrained quasi-Newton method).

• Computationally more expensive.

� Able to find local solutions that give smaller objective values (1.0645 × 107).

� Not clear how to identify the sectors and to interpret the distributions of pollutants.
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Conclusion

• The nonnegative matrix factorization has been desired by many important applications.

• We have suggested a number of numerical procedures that can be employed to obtain a factorization that is at least locally optimal.

� Not clear which method is superior.

• We have demonstrated by two real-world problems that the factorization itself does not necessarily provide immediate interpretation of the real
data

� The basic parts of the irises are themselves complicated images (and sometimes with overlapped irises).

� The percentage distributions of pollutants from economical sectors are not always consistent with data obtained by other means (and could
represent mixtures across several sectors.)

• Proper interpretations or additional constraints on the factors are needed for NNMF applications.


