Nonlinear Systems

Lecture 2 Dynamics and Controls in Solving Algebraic Equations Oldies and New

Moody T. Chu

North Carolina State University

June 15, 2009 @ MCM, CAS

Nonlinear Systems

Outline

Linear Systems

History Stationary Iteration Krylov Subspace Methods

Nonlinear Systems Continuous Control Discrete Control

Nonlinear Systems

Outline

Linear Systems

History Stationary Iteration Krylov Subspace Methods

Nonlinear Systems

Continuous Control Discrete Control

Nonlinear Systems

Linear System

The problem:

 $A\mathbf{x} = \mathbf{b}.$

- Fundamental in scientific computation.
- Two basic approaches:
 - Direct methods:
 - Decompose A as the product of some easier factors.
 - LU, QR, SVD and so on.
 - Though called a direct method, the series of steps taken to achieve the factorization is itself an iterative process.
 - Iterative methods:
 - Repeat some recursive schemes until convergence.

Nonlinear Systems

A Long Way of Developments

- Some popular techniques:
 - Acceleration of classical iterative schemes (Hageman & Young'81).
 - Krylov subspace approximation (van der Vorst '03).
 - Multi-grid (Briggs '87, Bramble '93).
 - Domain decomposition (Toseli & Widlund '05).
- Some favorite methods:
 - ITPACK (Grimes, Kincaid, Macgregor, & Young '78)
 - PCG (Hestenes & Stiefel '52).
 - GMRES (Saad & Schultz '86).
 - QMR (Freund & Nachtigal'91),

One-step Stationary Sequential Process

The scheme:

$$\mathbf{x}_{k+1} = G\mathbf{x}_k + \mathbf{c}, \quad k = 0, 1, 2, \dots$$

- The *iteration matrix* $G \in \mathbb{R}^{n \times n}$ plays a crucial role.
 - Want convergence of {**x**_{*k*}}.
 - The spectral radius ρ(G) should be strictly less than one (Varga'90).
 - Extensive efforts have been made to construct G.

Splitting and Preconditioning

One possible way of writing G:

$$\begin{aligned} \mathbf{G} &= \mathbf{I} - \mathbf{K}^{-1} \mathbf{A}, \\ \mathbf{c} &= \mathbf{K}^{-1} \mathbf{b}, \end{aligned}$$

for some nonsingular matrix K.

A is "split' by K in the sense that

A=K-KG.

Choose a splitting matrix K of A such that

•
$$\rho(I - K^{-1}A) < 1.$$

• K^{-1} is relatively easy to compute.

Nonlinear Systems

Continuous Generalization

Iterative scheme:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - K^{-1}(A\mathbf{x}_k - \mathbf{b}).$$

• An Euler step wit step size h = 1:

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; K) := -K^{-1}(A\mathbf{x} - \mathbf{b}).$$

Analytic solution:

$$\mathbf{x}(t) = e^{-K^{-1}At}(\mathbf{x}_0 - A^{-1}\mathbf{b}) + A^{-1}\mathbf{b}.$$

Fundamental Difference in K

- By iteration,
 - $|1 \lambda(K^{-1}A)| < 1 \Rightarrow$ convergence.
 - $\lambda(K^{-1}A)$ clustered near 1 \Rightarrow faster convergence.
- By continuation,
 - $\Re(\lambda(K^{-1}A)) > 0 \Rightarrow$ convergence.
 - $\Re(\lambda(K^{-1}A)) >> 1 \Rightarrow$ faster convergence.
 - $\Im(\lambda(K^{-1}A))$ clustered near $0 \Rightarrow$ avoid high oscillation.
 - $\lambda(K^{-1}A)$ clustered \Rightarrow avoid stiffness.
- Continuous methods are much more relaxed than iterative methods.
 - Can a discretization of the continuous system gives rise to a better iterative scheme?

Linear Systems ○ ○○○○●○○ ○○○○○○

Trapezoidal Rule

With step size h,

$$\mathbf{x}_{k+1} = \underbrace{\left(I + \frac{h}{2}K^{-1}A\right)^{-1}\left(I - \frac{h}{2}K^{-1}A\right)}_{(1,1)\text{-pair Padè}} \mathbf{x}_{k} + \underbrace{h\left(I + \frac{h}{2}K^{-1}A\right)^{-1}}_{2nd \text{ order Taylor}} K^{-1}\mathbf{b},$$

Comparing with the analytic solution,

$$\mathbf{x}(t+h) = e^{-hK^{-1}A}\mathbf{x}(t) + \int_{t}^{t+h} e^{-(t+h-s)K^{-1}A}(K^{-1}\mathbf{b}) \, ds.$$

► $\mathbf{x}(t_{k+1}) - \mathbf{x}_{k+1} = (I + \frac{h}{2}K^{-1}A)^{-1} (I - \frac{h}{2}K^{-1}A) (\mathbf{x}(t_k) - \mathbf{x}_k) + O(h^3).$

- An A-stable method.
- Not practical, but better convergence.

Polynomial Acceleration

Three-term recurrence:

$$\mathbf{x}_1 = \epsilon_1 (G \mathbf{x}_0 + \mathbf{c}) + (1 - \epsilon_1) \mathbf{x}_0,$$

$$\mathbf{x}_{k+1} = \alpha_{k+1} [\epsilon_{k+1} (G \mathbf{x}_k + \mathbf{c}) + (1 - \epsilon_{k+1}) \mathbf{x}_k] + (1 - \alpha_{k+1}) \mathbf{x}_{k-1},$$

with some properly defined real numbers α_k and ϵ_k (Hageman & Young '81).

Rewrite as

$$\mathbf{x}_{1} = \mathbf{x}_{0} + \epsilon_{1} \mathbf{f}_{0},$$

$$\mathbf{x}_{k+1} = \alpha_{k+1} \mathbf{x}_{k} + (1 - \alpha_{k+1}) \mathbf{x}_{k-1} + \epsilon_{k+1} \alpha_{k+1} \mathbf{f}_{k},$$

$$:= \mathbf{f}(\mathbf{x}_{k}; \mathbf{k})$$

with $\mathbf{f}_k := \mathbf{f}(\mathbf{x}_k; K)$.

Two-step Stationary Sequential Process

General explicit, linear two-step method (for ODEs):

• Of order 2:

$$\mathbf{x}_{k+1} = \alpha \mathbf{x}_k + (1-\alpha)\mathbf{x}_{k-1} + h\left((2-\frac{\alpha}{2})\mathbf{f}_k - \frac{\alpha}{2}\mathbf{f}_{k-1}\right).$$

• Of order 1:

$$\mathbf{x}_{k+1} = \alpha \mathbf{x}_k + (1 - \alpha) \mathbf{x}_{k-1} + h(2 - \alpha) \mathbf{f}_k.$$

Acceleration from ODE point of view:

- Low order of accuracy, but has a faster rate of convergence.
- Non-stationary sequential process More than just variable step sizes.

Line Search

Rewrite the ODE as

$$\frac{d\mathbf{x}}{dt} = K^{-1}\mathbf{r},$$

with a state feedback (residual) $\mathbf{r} := \mathbf{b} - A\mathbf{x}$.

• Interpret the Euler step with variable step size h_k

$$\mathbf{x}_{k+1} = \mathbf{x}_k + h_k K^{-1} \mathbf{r}_k,$$

as a line search in the $K^{-1}\mathbf{r}_k$ direction for a given K^{-1} .

Not immediately concern about convergence to an equilibrium, but control the flow via some objective values.

Nonlinear Systems

Step Size Selection

• Minimize
$$\mathbf{r}_{k+1}^{\top}\mathbf{r}_{k+1} \Rightarrow$$

$$h_k = \frac{\langle AK^{-1}\mathbf{r}_k, \mathbf{r}_k \rangle}{\langle AK^{-1}\mathbf{r}_k, AK^{-1}\mathbf{r}_k \rangle}.$$

• Minimize $\mathbf{r}_{k+1} A^{-1} \mathbf{r}_{k+1}$ with $A \succ 0 \Rightarrow$

$$h_k = \frac{\langle K^{-1} \mathbf{r}_k, \mathbf{r}_k \rangle}{\langle A K^{-1} \mathbf{r}_k, K^{-1} \mathbf{r}_k \rangle}$$

Nonlinear Systems

Two Steps Again!

Rewrite the explicit, linear two-step method of order 1

$$\mathbf{x}_{k+1} = \alpha \mathbf{x}_k + \underbrace{(1-\alpha)}_{-\epsilon_k \gamma_k} \mathbf{x}_{k-1} + \underbrace{h(2-\alpha)}_{\epsilon_k} \mathbf{f}_k,$$

as

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \epsilon_k \left[\mathbf{K}^{-1} \mathbf{r}_k + \gamma_k (\mathbf{x}_k - \mathbf{x}_{k-1}) \right].$$

• Starting with $\mathbf{p}_0 = K^{-1}\mathbf{r}_0$, define

$$\mathbf{p}_k := \mathbf{K}^{-1}\mathbf{r}_k + \gamma_k(\mathbf{x}_k - \mathbf{x}_{k-1}) = \mathbf{K}^{-1}\mathbf{r}_k + \beta_k\mathbf{p}_{k-1},$$

$$\beta_k := \epsilon_{k-1}\gamma_k.$$

Rewrite

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \epsilon_k \mathbf{p}_k, \mathbf{r}_{k+1} = \mathbf{r}_k - \epsilon_k A \mathbf{p}_k,$$

Suppose
$$A \succ 0$$
,

$$\begin{aligned} \epsilon_k &= \frac{\langle \mathbf{p}_k, \mathbf{r}_k \rangle}{\langle A \mathbf{p}_k, \mathbf{p}_k \rangle}, \\ \beta_{k+1} &= -\frac{\langle K^{-1} \mathbf{r}_{k+1}, A \mathbf{p}_k \rangle}{\langle A \mathbf{p}_k, \mathbf{p}_k \rangle}, \quad k = 0, 1, \dots, \end{aligned}$$

- ► *K* is a symmetric preconditioner.
- ► Laughable accuracy, but $\{\mathbf{x}_k\}$ converges in at most *n* iterations.

Lessons We Have Learned

- A very basic discrete dynamical system ⇒ A very general continuous dynamical system.
- Use the system as a guide to draw up some general procedures that roughly solve the continuous system, but not with great accuracy.
- Aptly tune the parameters which masquerade as the step sizes in the procedures ⇒ Achieve fast convergence to the equilibrium point of the continuous system.
- Eventually accomplish the goal of the original basic discrete dynamical system.

Nonlinear Systems

Mutual Implications

Nonlinear Systems

Nonlinear System

► The problem:

$$\bm{g}(\bm{x})=0,$$

- $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ is nonlinear.
- Various numerical techniques can be cast in an input-output control framework with different control strategies.

Continuous Control

Basic model:

 $\frac{d\mathbf{x}(t)}{dt} = \mathbf{u}(t),$ $\mathbf{y}(t) = -\mathbf{r}(t),$

- State variable **x**(*t*).
- Controller **u**(*t*).
- Output variable **y**(*t*) observed from the residue function

 $\mathbf{r}(t) = -\mathbf{g}(\mathbf{x}(t)).$

 Use both the state and the output as feedback to estimate the control strategy,

$$\mathbf{u}=\phi(\mathbf{x},\mathbf{r}).$$

Control Strategies (Bhaya & Kaszkurewicz '06)

$\phi(\mathbf{x}, \mathbf{r})$	$\frac{dV}{dt}$	$\frac{d\mathbf{x}}{dt}$
g′(x) ⁻¹ r	$-\ \mathbf{r}\ _{2}^{2}$	$-g'(x)^{-1}g(x)$
$\mathbf{g}'(\mathbf{x})^ op \mathbf{r}$	$-\ \mathbf{g}'(\mathbf{x})^{ op}\mathbf{r}\ _2^2$	$-\mathbf{g}'(\mathbf{x})^{ op}\mathbf{g}(\mathbf{x})$
$\mathbf{g}'(\mathbf{x})^{-1}\mathrm{sgn}(\mathbf{r})$	$-\ \mathbf{r}\ _{1}$	$-\mathbf{g}'(\mathbf{x})^{-1}\operatorname{sgn}(\mathbf{g}(\mathbf{x}))$
$\operatorname{sgn}(\mathbf{g}'(\mathbf{x})^{\top}\mathbf{r})$	$-\ \mathbf{g}'(\mathbf{x})^{ op}\mathbf{r}\ _1$	$-\operatorname{sgn}(\mathbf{g}'(\mathbf{x})^{\top}\mathbf{g}(\mathbf{r}))$
$\mathbf{g}'(\mathbf{x})^{ op} \operatorname{sgn}(\mathbf{r})$	$-\ \mathbf{g}'(\mathbf{x})^{\top}\operatorname{sgn}(\mathbf{r})\ _{2}^{2}$	$-\mathbf{g}'(\mathbf{x})^{\top} \operatorname{sgn}(\mathbf{g}(\mathbf{x}))$

Lyapunov function

$$V(t) = \begin{cases} \frac{1}{2} \|\mathbf{r}(t)\|_2^2, & \text{first four cases,} \\ \|\mathbf{r}(t)\|_1, & \text{last case.} \end{cases}$$

Continuous Newton

Closed-loop dynamics for the state variable:

$$\frac{d\mathbf{x}}{dt} = \mathbf{u} = -\mathbf{g}'(\mathbf{x})^{-1}\mathbf{g}(\mathbf{x}).$$

- Sure-fire method \Rightarrow Would fail, only if $\mathbf{g}'(\mathbf{x})$ becomes singular (Smale '76).
- Dynamics for the residual:

$$\frac{d\mathbf{r}}{dt} = -\mathbf{g}'(\mathbf{x})\frac{d\mathbf{x}}{dt} = -\mathbf{r}.$$

Dynamics for the cost function:

$$V(t) := \frac{1}{2} \langle \mathbf{r}(t), \mathbf{r}(t) \rangle,$$

$$\frac{dV}{dt} = -\|\mathbf{r}\|_2^2.$$

Nonlinear Systems ○○○● ○○○○○

Discretization

- Only the continuous Newton method has been extensively studied.
 - An Euler step ⇒ Classical Newton iteration scheme.
- Some of the vector fields for $\mathbf{x}(t)$ are only piecewise continuous.
- A discretizatin of the differential system may not be trivial.
 - Scheme?
 - Convergence analysis?

Nonlinear Systems

Discrete Control

► Basic model:

$$\mathbf{X}_{k+1} = \mathbf{X}_k + \mathbf{U}_k.$$

- ► Controller:
 - Follow the feedback law:

$$\mathbf{u}_k = \epsilon_k \phi(\mathbf{x}_k, \mathbf{r}_k).$$

• Also control the step size ϵ_k .

Informal Inquiries

• Assume $\phi(\mathbf{x}, \mathbf{r})$ is fixed,

$$\mathbf{r}_{k+1} \approx \mathbf{r}_k - \epsilon_k \mathbf{g}'(\mathbf{x}_k) \phi(\mathbf{x}_k, \mathbf{r}_k).$$

· Line search,

$$\epsilon_k = \frac{\langle \mathbf{g}'(\mathbf{x}_k)\phi(\mathbf{x}_k,\mathbf{r}_k),\mathbf{r}_k\rangle}{\langle \mathbf{g}'(\mathbf{x}_k)\phi(\mathbf{x}_k,\mathbf{r}_k),\mathbf{g}'(\mathbf{x}_k)\phi(\mathbf{x}_k,\mathbf{r}_k)\rangle}.$$

Some special cases:

- $\phi(\mathbf{x},\mathbf{r}) = \mathbf{g}'(\mathbf{x})^{-1}\mathbf{r} \Rightarrow \epsilon_k = 1 \Rightarrow$ Classical Newton iteration.
- $\mathbf{g}(\mathbf{x}) = A\mathbf{x} \mathbf{b}$ and $\phi(\mathbf{x}, \mathbf{r}) = K^{-1}\mathbf{r} \Rightarrow \text{ORTHOMIN}(1)$ method.

Limiting Behavior of the Residual

- $\{\mathbf{r}_k\}$ may not be a decreasing sequence.
 - $\mathbf{x}_{k+1} \mathbf{x}_k$ may not be small enough to warrant the Taylor series expansion.
- A dividing line between a discrete dynamical system and a continuous dynamical system is at the behavior of r before reaching convergence.

Nonlinear Systems

Continuity versus Discreteness (Hauser & Nedić '07)

Compare the dynamical systems:

$$\begin{aligned} \mathbf{x}_{k+1} &= \mathbf{x}_k + \nu(\mathbf{x}_k). \\ \frac{d\mathbf{x}}{dt} &= \nu(\mathbf{x}). \end{aligned}$$

• $\nu'(\mathbf{x})$ is continuous at \mathbf{x}^* .

Superlinear Convergence

• $\{\mathbf{x}_k\}$ converges *Q*-superlinearly

$$\Rightarrow \lim_{\mathbf{x} \to \mathbf{x}^*} \frac{\|\mathbf{x} + \nu(\mathbf{x}) - \mathbf{x}^*\|}{\|\mathbf{x} - \mathbf{x}^*\|} = \mathbf{0}.$$

$$\Rightarrow \begin{cases} \nu(\mathbf{x}^*) = \mathbf{0}, \\ \nu'(\mathbf{x}^*) = -\mathbf{1}. \end{cases}$$

x(t) converges exponentially

$$\Leftrightarrow \quad \left\{ \begin{array}{c} \boldsymbol{e}^{-(1+\epsilon)t} \leq \frac{\|\mathbf{x}(t) - \mathbf{x}^*\|}{\|\mathbf{x}_0 - \mathbf{x}^*\|} \leq \boldsymbol{e}^{-(1-\epsilon)t}, \\ \|\frac{\partial}{\partial t} \left(\frac{\mathbf{x}(t) - \mathbf{x}^*}{\|\mathbf{x}(t) - \mathbf{x}^*\|} \right) \| \leq \epsilon. \end{array} \right.$$

• *Q*-superlinear convergence \Leftrightarrow Exponential convergence.

Higher Order Q-convergence

• { \mathbf{x}_k } *Q*-converges at rate p + 1

$$\Leftrightarrow \quad \|\mathbf{X} + \nu(\mathbf{X}) - \mathbf{X}^*\| \le \beta \|\mathbf{X} - \mathbf{X}^*\|^{p+1}.$$

$$\Leftrightarrow \quad \begin{cases} \nu(\mathbf{X}^*) = \mathbf{0}, \\ \nu'(\mathbf{X}^*) = -l, \\ \|\nu'(\mathbf{X}) - \nu'(\mathbf{X}^*)\| \le \alpha \|\mathbf{X} - \mathbf{X}^*\|^p. \end{cases}$$

x(t) converges p-exponentially

$$\Leftrightarrow \quad \left\{ \begin{array}{c} \boldsymbol{e}^{-(1+\epsilon)t} \leq \frac{\|\boldsymbol{\mathbf{x}}(t) - \boldsymbol{\mathbf{x}}^*\|}{\|\boldsymbol{\mathbf{x}}_0 - \boldsymbol{\mathbf{x}}^*\|} \leq \boldsymbol{e}^{-(1-\epsilon)t}, \\ \\ \|\frac{\partial}{\partial t} \left(\frac{\boldsymbol{\mathbf{x}}(t) - \boldsymbol{\mathbf{x}}^*}{\|\boldsymbol{\mathbf{x}}(t) - \boldsymbol{\mathbf{x}}^*\|} \right) \| \leq \gamma \boldsymbol{e}^{-(1-\epsilon)\rho t} \|\boldsymbol{\mathbf{x}}_0 - \boldsymbol{\mathbf{x}}^*\|^{\rho}. \end{array} \right.$$

• *Q*-convergence at rate $p + 1 \Leftrightarrow p$ -exponential convergence.