[Linear Systems](#page-3-0) [Nonlinear Systems](#page-18-0) 0000 000000

Lecture 2 Dynamics and Controls in Solving Algebraic Equations Oldies and New

Moody T. Chu

North Carolina State University

June 15, 2009 @ MCM, CAS

[Linear Systems](#page-3-0) [Nonlinear Systems](#page-18-0) 000000

Outline

[Linear Systems](#page-3-0)

[History](#page-4-0) [Stationary Iteration](#page-5-0) [Krylov Subspace Methods](#page-12-0)

[Nonlinear Systems](#page-18-0) [Continuous Control](#page-19-0) [Discrete Control](#page-23-0)

[Linear Systems](#page-3-0) [Nonlinear Systems](#page-18-0) 000000

Outline

[Linear Systems](#page-3-0)

[History](#page-4-0) [Stationary Iteration](#page-5-0) [Krylov Subspace Methods](#page-12-0)

[Nonlinear Systems](#page-18-0)

[Continuous Control](#page-19-0) [Discrete Control](#page-23-0)

Linear System

 \blacktriangleright The problem:

 $A**x** = **b**$.

- Fundamental in scientific computation.
- \blacktriangleright Two basic approaches:
	- Direct methods:
		- Decompose *A* as the product of some easier factors.
		- *LU*, *QR*, *SVD* and so on.
		- Though called a direct method, the series of steps taken to achieve the factorization is itself an iterative process.
	- Iterative methods:
		- Repeat some recursive schemes until convergence.

[Linear Systems](#page-3-0) [Nonlinear Systems](#page-18-0) 0000 000000

A Long Way of Developments

- \triangleright Some popular techniques:
	- Acceleration of classical iterative schemes (Hageman & Young'81).
	- Krylov subspace approximation (van der Vorst '03).
	- Multi-grid (Briggs '87, Bramble '93).
	- Domain decomposition (Toseli & Widlund '05).
- \blacktriangleright Some favorite methods:
	- ITPACK (Grimes, Kincaid, Macgregor, & Young '78)
	- PCG (Hestenes & Stiefel '52).
	- GMRES (Saad & Schultz '86).
	- QMR (Freund & Nachtigal'91),

One-step Stationary Sequential Process

 \blacktriangleright The scheme:

$$
\boldsymbol{x}_{k+1} = \boldsymbol{G}\boldsymbol{x}_k + \boldsymbol{c}, \quad k = 0, 1, 2, \dots
$$

- The *iteration matrix* $G \in \mathbb{R}^{n \times n}$ plays a crucial role.
	- Want convergence of $\{x_k\}$.
	- The spectral radius $\rho(G)$ should be strictly less than one (Varga'90).
	- Extensive efforts have been made to construct *G*.

Splitting and Preconditioning

▶ One possible way of writing *G*:

$$
G = I - K^{-1}A,
$$

$$
c = K^{-1}b,
$$

for some nonsingular matrix *K*.

 \blacktriangleright *A* is "split" by *K* in the sense that

 $A = K - KG$

 \triangleright Choose a splitting matrix *K* of *A* such that

$$
\bullet \ \rho(I-K^{-1}A)<1.
$$

• K^{-1} is relatively easy to compute.

[Linear Systems](#page-3-0) [Nonlinear Systems](#page-18-0) 0000 000000

Continuous Generalization

 \blacktriangleright Iterative scheme:

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - K^{-1}(\mathbf{A}\mathbf{x}_k - \mathbf{b}).
$$

An Euler step wit step size $h = 1$:

$$
\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; K) := -K^{-1}(A\mathbf{x} - \mathbf{b}).
$$

 \blacktriangleright Analytic solution:

$$
\mathbf{x}(t) = e^{-K^{-1}At}(\mathbf{x}_0 - A^{-1}\mathbf{b}) + A^{-1}\mathbf{b}.
$$

Fundamental Difference in *K*

- \blacktriangleright By iteration,
	- $|1 \lambda(K^{-1}A)| < 1 \Rightarrow$ convergence.
	- λ(*K* [−]¹*A*) clustered near 1 ⇒ faster convergence.
- \blacktriangleright By continuation,
	- $\Re(\lambda(K^{-1}A)) > 0 \Rightarrow$ convergence.
	- $\Re(\lambda(K^{-1}A)) >> 1 \Rightarrow$ faster convergence.
	- $\Im(\lambda(K^{-1}A))$ clustered near 0 \Rightarrow avoid high oscillation.
	- $\lambda(K^{-1}A)$ clustered \Rightarrow avoid stiffness.
- \triangleright Continuous methods are much more relaxed than iterative methods.
	- Can a discretization of the continuous system gives rise to a better iterative scheme?

Trapezoidal Rule

 \triangleright With step size *h*,

$$
\mathbf{x}_{k+1} = \underbrace{\left(I + \frac{h}{2}K^{-1}A\right)^{-1}\left(I - \frac{h}{2}K^{-1}A\right)}_{\text{(1,1)-pair Padè}}\mathbf{x}_{k} + \underbrace{h\left(I + \frac{h}{2}K^{-1}A\right)^{-1}}_{\text{2nd order Taylor}}K^{-1}\mathbf{b},
$$

 \triangleright Comparing with the analytic solution,

$$
\mathbf{x}(t+h) = e^{-hK^{-1}A}\mathbf{x}(t) + \int_{t}^{t+h} e^{-(t+h-s)K^{-1}A}(K^{-1}\mathbf{b}) ds.
$$

► **x**(t_{k+1}) – **x**_{*k*+1} = ($I + \frac{h}{2}K^{-1}A$)⁻¹($I - \frac{h}{2}K^{-1}A$) (**x**(t_k) – **x**_{*k*}) + *O*(h^3).

- An *A*-stable method.
- Not practical, but better convergence.

Polynomial Acceleration

 \blacktriangleright Three-term recurrence:

$$
\mathbf{x}_1 = \epsilon_1(\mathbf{G}\mathbf{x}_0 + \mathbf{c}) + (1 - \epsilon_1)\mathbf{x}_0,
$$

$$
\mathbf{x}_{k+1} = \alpha_{k+1} [\epsilon_{k+1}(\mathbf{G}\mathbf{x}_k + \mathbf{c}) + (1 - \epsilon_{k+1})\mathbf{x}_k] + (1 - \alpha_{k+1})\mathbf{x}_{k-1},
$$

with some properly defined real numbers α*^k* and *^k* (Hageman & Young '81).

 \blacktriangleright Rewrite as

$$
\mathbf{x}_1 = \mathbf{x}_0 + \epsilon_1 \mathbf{f}_0,
$$

\n
$$
\mathbf{x}_{k+1} = \alpha_{k+1} \mathbf{x}_k + (1 - \alpha_{k+1}) \mathbf{x}_{k-1} + \epsilon_{k+1} \alpha_{k+1} \mathbf{f}_k,
$$

\nwith $\mathbf{f}_k := \mathbf{f}(\mathbf{x}_k; K).$

Two-step Stationary Sequential Process

 \triangleright General explicit, linear two-step method (for ODEs):

• Of order 2:

$$
\mathbf{x}_{k+1} = \alpha \mathbf{x}_k + (1 - \alpha) \mathbf{x}_{k-1} + h\left((2 - \frac{\alpha}{2})\mathbf{f}_k - \frac{\alpha}{2}\mathbf{f}_{k-1}\right).
$$

• Of order 1:

$$
\mathbf{x}_{k+1} = \alpha \mathbf{x}_k + (1-\alpha) \mathbf{x}_{k-1} + h(2-\alpha) \mathbf{f}_k.
$$

 \triangleright Acceleration from ODE point of view:

- Low order of accuracy, but has a faster rate of convergence.
- Non-stationary sequential process More than just variable step sizes.

Line Search

 \blacktriangleright Rewrite the ODE as

$$
\frac{d\mathbf{x}}{dt} = K^{-1}\mathbf{r},
$$

with a state feedback (residual) $\mathbf{r} := \mathbf{b} - A\mathbf{x}$.

Interpret the Euler step with variable step size h_k

$$
\mathbf{x}_{k+1} = \mathbf{x}_k + h_k K^{-1} \mathbf{r}_k,
$$

as a line search in the K^{-1} **r** $_{k}$ direction for a given K^{-1} .

 \triangleright Not immediately concern about convergence to an equilibrium, but control the flow via some objective values.

[Linear Systems](#page-3-0) [Nonlinear Systems](#page-18-0)

Step Size Selection

► Minimize
$$
\mathbf{r}_{k+1}^{\top} \mathbf{r}_{k+1} \Rightarrow
$$

$$
h_k = \frac{\langle AK^{-1}\mathbf{r}_k,\mathbf{r}_k\rangle}{\langle AK^{-1}\mathbf{r}_k, AK^{-1}\mathbf{r}_k\rangle}.
$$

► Minimize $\mathbf{r}_{k+1}A^{-1}\mathbf{r}_{k+1}$ with $A \succ 0 \Rightarrow$

$$
h_k = \frac{\langle K^{-1} \mathbf{r}_k, \mathbf{r}_k \rangle}{\langle AK^{-1} \mathbf{r}_k, K^{-1} \mathbf{r}_k \rangle}.
$$

Two Steps Again!

 \triangleright Rewrite the explicit, linear two-step method of order 1

$$
\mathbf{x}_{k+1} = \alpha \mathbf{x}_k + \underbrace{(1-\alpha)}_{-\epsilon_k \gamma_k} \mathbf{x}_{k-1} + \underbrace{h(2-\alpha)}_{\epsilon_k} \mathbf{f}_k,
$$

as

$$
\mathbf{x}_{k+1} = \mathbf{x}_k + \epsilon_k \left[K^{-1} \mathbf{r}_k + \gamma_k (\mathbf{x}_k - \mathbf{x}_{k-1}) \right].
$$

► Starting with $\mathbf{p}_0 = K^{-1} \mathbf{r}_0$, define

$$
\begin{array}{rcl}\mathbf{p}_k & := & K^{-1}\mathbf{r}_k + \gamma_k(\mathbf{x}_k - \mathbf{x}_{k-1}) = K^{-1}\mathbf{r}_k + \beta_k \mathbf{p}_{k-1}, \\
\beta_k & := & \epsilon_{k-1}\gamma_k.\n\end{array}
$$

 \blacktriangleright Rewrite

$$
\begin{array}{rcl}\n\mathbf{x}_{k+1} & = & \mathbf{x}_k + \epsilon_k \mathbf{p}_k, \\
\mathbf{r}_{k+1} & = & \mathbf{r}_k - \epsilon_k A \mathbf{p}_k,\n\end{array}
$$

$$
\blacktriangleright \text{ Suppose } A \succ 0,
$$

$$
\epsilon_k = \frac{\langle \mathbf{p}_k, \mathbf{r}_k \rangle}{\langle A\mathbf{p}_k, \mathbf{p}_k \rangle},
$$
\n
$$
\beta_{k+1} = -\frac{\langle K^{-1}\mathbf{r}_{k+1}, A\mathbf{p}_k \rangle}{\langle A\mathbf{p}_k, \mathbf{p}_k \rangle}, \quad k = 0, 1, ...,
$$

- \triangleright *K* is a symmetric preconditioner.
- Example accuracy, but $\{x_k\}$ converges in at most *n* iterations.

Lessons We Have Learned

- ► A very basic discrete dynamical system \Rightarrow A very general continuous dynamical system.
- \triangleright Use the system as a quide to draw up some general procedures that roughly solve the continuous system, but not with great accuracy.
- \triangleright Aptly tune the parameters which masquerade as the step sizes in the procedures \Rightarrow Achieve fast convergence to the equilibrium point of the continuous system.
- \triangleright Eventually accomplish the goal of the original basic discrete dynamical system.

[Linear Systems](#page-3-0) [Nonlinear Systems](#page-18-0) 000000

Mutual Implications

[Linear Systems](#page-3-0) [Nonlinear Systems](#page-18-0) 0000 000000

Nonlinear System

 \blacktriangleright The problem:

$$
\bm{g}(\bm{x})=0,
$$

- $\mathbf{g} : \mathbb{R}^n \to \mathbb{R}^n$ is nonlinear.
- \triangleright Various numerical techniques can be cast in an input-output control framework with different control strategies.

[Linear Systems](#page-3-0) [Nonlinear Systems](#page-18-0) \bullet 000 000000

Continuous Control

 \blacktriangleright Basic model:

$$
\frac{d\mathbf{x}(t)}{dt} = \mathbf{u}(t),
$$

$$
\mathbf{y}(t) = -\mathbf{r}(t),
$$

- State variable **x**(*t*).
- Controller **u**(*t*).
- Output variable **y**(*t*) observed from the residue function

 $\mathbf{r}(t) = -\mathbf{g}(\mathbf{x}(t)).$

 \triangleright Use both the state and the output as feedback to estimate the control strategy,

$$
\mathbf{u}=\phi(\mathbf{x},\mathbf{r}).
$$

 \circ 0000000

Control Strategies (Bhaya & Kaszkurewicz '06)

 \blacktriangleright Lyapunov function

$$
V(t) = \begin{cases} \frac{1}{2} ||\mathbf{r}(t)||_2^2, & \text{first four cases,} \\ ||\mathbf{r}(t)||_1, & \text{last case.} \end{cases}
$$

Continuous Newton

 \triangleright Closed-loop dynamics for the state variable:

$$
\frac{d\mathbf{x}}{dt} = \mathbf{u} = -\mathbf{g}'(\mathbf{x})^{-1}\mathbf{g}(\mathbf{x}).
$$

- Sure-fire method \Rightarrow Would fail, only if **g**'(**x**) becomes singular (Smale '76).
- \blacktriangleright Dynamics for the residual:

$$
\frac{d\mathbf{r}}{dt} = -\mathbf{g}'(\mathbf{x})\frac{d\mathbf{x}}{dt} = -\mathbf{r}.
$$

 \blacktriangleright Dynamics for the cost function:

$$
V(t) := \frac{1}{2} \langle \mathbf{r}(t), \mathbf{r}(t) \rangle,
$$

\n
$$
\frac{dV}{dt} = -\|\mathbf{r}\|_2^2.
$$

[Linear Systems](#page-3-0) [Nonlinear Systems](#page-18-0) 000 000000

Discretization

- \triangleright Only the continuous Newton method has been extensively studied.
	- An Euler step \Rightarrow Classical Newton iteration scheme.
- Some of the vector fields for $\mathbf{x}(t)$ are only piecewise continuous.
- \triangleright A discretizatin of the differential system may not be trivial.
	- Scheme?
	- Convergence analysis?

[Linear Systems](#page-3-0) [Nonlinear Systems](#page-18-0) $•00000$

Discrete Control

 \blacktriangleright Basic model:

$$
\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{u}_k.
$$

- \triangleright Controller:
	- Follow the feedback law:

$$
\mathbf{u}_k = \epsilon_k \phi(\mathbf{x}_k, \mathbf{r}_k).
$$

• Also control the step size ϵ_k .

Informal Inquiries

• Assume $\phi(\mathbf{x}, \mathbf{r})$ is fixed,

$$
\mathbf{r}_{k+1} \approx \mathbf{r}_k - \epsilon_k \mathbf{g}'(\mathbf{x}_k) \phi(\mathbf{x}_k, \mathbf{r}_k).
$$

• Line search,

$$
\epsilon_k = \frac{\langle \mathbf{g}'(\mathbf{x}_k) \phi(\mathbf{x}_k, \mathbf{r}_k), \mathbf{r}_k \rangle}{\langle \mathbf{g}'(\mathbf{x}_k) \phi(\mathbf{x}_k, \mathbf{r}_k), \mathbf{g}'(\mathbf{x}_k) \phi(\mathbf{x}_k, \mathbf{r}_k) \rangle}.
$$

 \triangleright Some special cases:

- $\phi(\mathbf{x}, \mathbf{r}) = \mathbf{g}'(\mathbf{x})^{-1} \mathbf{r} \Rightarrow \epsilon_k = 1 \Rightarrow$ Classical Newton iteration.
- $g(x) = Ax b$ and $\phi(x, r) = K^{-1}r \Rightarrow$ ORTHOMIN(1) method.

Limiting Behavior of the Residual

- \blacktriangleright { \mathbf{r}_k } may not be a decreasing sequence.
	- **x***k*+¹ − **x***^k* may not be small enough to warrant the Taylor series expansion.
	- The Newton iteration with $\epsilon_k \equiv 1$ does not necessarily give rise to a descent step.
- \triangleright A dividing line between a discrete dynamical system and a continuous dynamical system is at the behavior of **r** before reaching convergence.

[Linear Systems](#page-3-0) [Nonlinear Systems](#page-18-0) 0000 000000

Continuity versus Discreteness (Hauser & Nedic '07) ´

 \triangleright Compare the dynamical systems:

$$
\mathbf{x}_{k+1} = \mathbf{x}_k + \nu(\mathbf{x}_k).
$$

\n
$$
\frac{d\mathbf{x}}{dt} = \nu(\mathbf{x}).
$$

► $\nu'(\mathbf{x})$ is continuous at \mathbf{x}^* .

Superlinear Convergence

 \blacktriangleright { \mathbf{x}_k } converges *Q*-superlinearly

$$
\Leftrightarrow \lim_{\mathbf{x}\to\mathbf{x}^*}\frac{\|\mathbf{x}+\nu(\mathbf{x})-\mathbf{x}^*\|}{\|\mathbf{x}-\mathbf{x}^*\|}=0.
$$

$$
\Leftrightarrow \begin{cases} \nu(\mathbf{x}^*)=0, \\ \nu'(\mathbf{x}^*)=-l. \end{cases}
$$

 \triangleright **x**(*t*) converges exponentially

$$
\Leftrightarrow \quad \left\{ \begin{array}{c} e^{-(1+\epsilon)t} \leq \frac{\|\mathbf{x}(t) - \mathbf{x}^*\|}{\|\mathbf{x}_0 - \mathbf{x}^*\|} \leq e^{-(1-\epsilon)t}, \\qquad \qquad \qquad \|\frac{\partial}{\partial t} \left(\frac{\mathbf{x}(t) - \mathbf{x}^*}{\|\mathbf{x}(t) - \mathbf{x}^*\|}\right) \|\leq \epsilon. \end{array} \right.
$$

^I *Q*-superlinear convergence ⇔ Exponential convergence.

Higher Order Q-convergence

 \blacktriangleright { \mathbf{x}_k } *Q*-converges at rate $p+1$

$$
\Leftrightarrow \|\mathbf{x} + \nu(\mathbf{x}) - \mathbf{x}^*\| \le \beta \|\mathbf{x} - \mathbf{x}^*\|^{p+1}.
$$

$$
\Leftrightarrow \begin{cases} \nu(\mathbf{x}^*) = 0, \\ \nu'(\mathbf{x}^*) = -l, \\ \|\nu'(\mathbf{x}) - \nu'(\mathbf{x}^*)\| \le \alpha \|\mathbf{x} - \mathbf{x}^*\|^p. \end{cases}
$$

 \triangleright **x**(*t*) converges *p*-exponentially

$$
\Leftrightarrow \quad \left\{ \begin{array}{c} \qquad e^{-(1+\epsilon)t}\leq \frac{\|{\bf x}(t)-{\bf x}^*\|}{\|{\bf x}_0-{\bf x}^*\|}\leq e^{-(1-\epsilon)t}, \\[10pt] \qquad \qquad \|\frac{\partial}{\partial t}\left(\frac{{\bf x}(t)-{\bf x}^*}{\|{\bf x}(t)-{\bf x}^*\|}\right)\|\leq \gamma e^{-(1-\epsilon)\rho t}\|{\bf x}_0-{\bf x}^*\|^{p}.\end{array} \right.
$$

 \triangleright *Q*-convergence at rate $p + 1 \Leftrightarrow p$ -exponential convergence.