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Linear System

I The problem:
Ax = b.

• Fundamental in scientific computation.
I Two basic approaches:

• Direct methods:
• Decompose A as the product of some easier factors.
• LU, QR, SVD and so on.
• Though called a direct method, the series of steps taken to achieve

the factorization is itself an iterative process.
• Iterative methods:

• Repeat some recursive schemes until convergence.
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A Long Way of Developments

I Some popular techniques:
• Acceleration of classical iterative schemes (Hageman & Young’81).
• Krylov subspace approximation (van der Vorst ’03).
• Multi-grid (Briggs ’87, Bramble ’93).
• Domain decomposition (Toseli & Widlund ’05).

I Some favorite methods:
• ITPACK (Grimes, Kincaid, Macgregor, & Young ’78)
• PCG (Hestenes & Stiefel ’52).
• GMRES (Saad & Schultz ’86).
• QMR (Freund & Nachtigal’91),
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One-step Stationary Sequential Process

I The scheme:

xk+1 = Gxk + c, k = 0, 1, 2, . . . .

I The iteration matrix G ∈ Rn×n plays a crucial role.
• Want convergence of {xk}.
• The spectral radius ρ(G) should be strictly less than one

(Varga’90).
• Extensive efforts have been made to construct G.
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Splitting and Preconditioning

I One possible way of writing G:

G = I − K−1A,

c = K−1b,

for some nonsingular matrix K .
I A is “split’ by K in the sense that

A = K − KG.

I Choose a splitting matrix K of A such that
• ρ(I − K−1A) < 1.
• K−1 is relatively easy to compute.
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Continuous Generalization

I Iterative scheme:

xk+1 = xk − K−1(Axk − b).

I An Euler step wit step size h = 1:

dx
dt

= f(x; K ) := −K−1(Ax− b).

I Analytic solution:

x(t) = e−K−1At(x0 − A−1b) + A−1b.
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Fundamental Difference in K

I By iteration,
• |1− λ(K−1A)| < 1 ⇒ convergence.
• λ(K−1A) clustered near 1 ⇒ faster convergence.

I By continuation,
• <(λ(K−1A)) > 0 ⇒ convergence.
• <(λ(K−1A)) >> 1 ⇒ faster convergence.
• =(λ(K−1A)) clustered near 0 ⇒ avoid high oscillation.
• λ(K−1A) clustered ⇒ avoid stiffness.

I Continuous methods are much more relaxed than iterative
methods.

• Can a discretization of the continuous system gives rise to a better
iterative scheme?
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Trapezoidal Rule

I With step size h,

xk+1 =

(
I +

h
2

K−1A
)−1(

I − h
2

K−1A
)

︸ ︷︷ ︸
(1,1)-pair Padè

xk+h
(

I +
h
2

K−1A
)−1

︸ ︷︷ ︸
2nd order Taylor

K−1b,

I Comparing with the analytic solution,

x(t + h) = e−hK−1Ax(t) +

∫ t+h

t
e−(t+h−s)K−1A(K−1b) ds.

I x(tk+1)−xk+1 =
(
I + h

2 K−1A
)−1(

I − h
2 K−1A

)
(x(tk )−xk )+O(h3).

• An A-stable method.
• Not practical, but better convergence.
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Polynomial Acceleration

I Three-term recurrence:

x1 = ε1(Gx0 + c) + (1− ε1)x0,

xk+1 = αk+1 [εk+1(Gxk + c) + (1− εk+1)xk ] + (1− αk+1)xk−1,

with some properly defined real numbers αk and εk (Hageman &
Young ’81).

I Rewrite as

x1 = x0 + ε1f0,

xk+1 = αk+1xk + (1− αk+1)xk−1 + εk+1αk+1fk ,

with fk := f(xk ; K ).
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Two-step Stationary Sequential Process

I General explicit, linear two-step method (for ODEs):
• Of order 2:

xk+1 = αxk + (1− α)xk−1 + h
“
(2− α

2
)fk −

α

2
fk−1

”
.

• Of order 1:

xk+1 = αxk + (1− α)xk−1 + h(2− α)fk .

I Acceleration from ODE point of view:
• Low order of accuracy, but has a faster rate of convergence.
• Non-stationary sequential process — More than just variable step

sizes.
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Line Search

I Rewrite the ODE as
dx
dt

= K−1r,

with a state feedback (residual) r := b− Ax.
I Interpret the Euler step with variable step size hk

xk+1 = xk + hk K−1rk ,

as a line search in the K−1rk direction for a given K−1.
I Not immediately concern about convergence to an equilibrium,

but control the flow via some objective values.
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Step Size Selection

I Minimize r>k+1rk+1 ⇒

hk =
〈AK−1rk , rk 〉

〈AK−1rk , AK−1rk 〉
.

I Minimize rk+1A−1rk+1 with A � 0 ⇒

hk =
〈K−1rk , rk 〉

〈AK−1rk , K−1rk 〉
.
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Two Steps Again!

I Rewrite the explicit, linear two-step method of order 1

xk+1 = αxk + (1− α)︸ ︷︷ ︸
−εk γk

xk−1 + h(2− α)︸ ︷︷ ︸
εk

fk ,

as
xk+1 = xk + εk

[
K−1rk + γk (xk − xk−1)

]
.

I Starting with p0 = K−1r0, define

pk := K−1rk + γk (xk − xk−1) = K−1rk + βk pk−1,

βk := εk−1γk .

I Rewrite

xk+1 = xk + εk pk ,

rk+1 = rk − εk Apk ,
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PCG

I Suppose A � 0,

εk =
〈pk , rk 〉
〈Apk , pk 〉

,

βk+1 = −〈K
−1rk+1, Apk 〉
〈Apk , pk 〉

, k = 0, 1, . . . ,

I K is a symmetric preconditioner.
I Laughable accuracy, but {xk} converges in at most n iterations.



Linear Systems Nonlinear Systems

Lessons We Have Learned

I A very basic discrete dynamical system ⇒ A very general
continuous dynamical system.

I Use the system as a guide to draw up some general procedures
that roughly solve the continuous system, but not with great
accuracy.

I Aptly tune the parameters which masquerade as the step sizes
in the procedures ⇒ Achieve fast convergence to the equilibrium
point of the continuous system.

I Eventually accomplish the goal of the original basic discrete
dynamical system.
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Mutual Implications

Iterative
Scheme

Differential 
System

Time-1
Sampling

Discrete
Approximation
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Nonlinear System

I The problem:
g(x) = 0,

• g : Rn → Rn is nonlinear.
I Various numerical techniques can be cast in an input-output

control framework with different control strategies.
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Continuous Control

I Basic model:

dx(t)
dt

= u(t),

y(t) = −r(t),

• State variable x(t).
• Controller u(t).
• Output variable y(t) observed from the residue function

r(t) = −g(x(t)).

I Use both the state and the output as feedback to estimate the
control strategy,

u = φ(x, r).
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Control Strategies
(Bhaya & Kaszkurewicz ’06)

φ(x, r) dV
dt

dx
dt

g′(x)−1r −‖r‖2
2 −g′(x)−1g(x)

g′(x)>r −‖g′(x)>r‖2
2 −g′(x)>g(x)

g′(x)−1sgn(r) −‖r‖1 −g′(x)−1sgn(g(x))

sgn(g′(x)>r) −‖g′(x)>r‖1 −sgn(g′(x)>g(r))

g′(x)>sgn(r) −‖g′(x)>sgn(r)‖2
2 −g′(x)>sgn(g(x))

I Lyapunov function

V (t) =

{ 1
2‖r(t)‖

2
2, first four cases,

‖r(t)‖1, last case.
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Continuous Newton
I Closed-loop dynamics for the state variable:

dx
dt

= u = −g′(x)−1g(x).

• Sure-fire method ⇒ Would fail, only if g′(x) becomes singular
(Smale ’76).

I Dynamics for the residual:

dr
dt

= −g′(x)
dx
dt

= −r.

I Dynamics for the cost function:

V (t) :=
1
2
〈r(t), r(t)〉,

dV
dt

= −‖r‖2
2.
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Discretization

I Only the continuous Newton method has been extensively
studied.

• An Euler step ⇒ Classical Newton iteration scheme.
I Some of the vector fields for x(t) are only piecewise continuous.
I A discretizatin of the differential system may not be trivial.

• Scheme?
• Convergence analysis?
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Discrete Control

I Basic model:
xk+1 = xk + uk .

I Controller:
• Follow the feedback law:

uk = εkφ(xk , rk ).

• Also control the step size εk .
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Informal Inquiries

I Assume φ(x, r) is fixed,

rk+1 ≈ rk − εk g′(xk )φ(xk , rk ).

• Line search,

εk =
〈g′(xk )φ(xk , rk ), rk 〉

〈g′(xk )φ(xk , rk ), g′(xk )φ(xk , rk )〉
.

I Some special cases:
• φ(x,r) = g′(x)−1r ⇒ εk = 1 ⇒ Classical Newton iteration.
• g(x) = Ax− b and φ(x, r) = K−1r ⇒ ORTHOMIN(1) method.
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Limiting Behavior of the Residual

I {rk} may not be a decreasing sequence.
• xk+1 − xk may not be small enough to warrant the Taylor series

expansion.
• The Newton iteration with εk ≡ 1 does not necessarily give rise to a

descent step.
I A dividing line between a discrete dynamical system and a

continuous dynamical system is at the behavior of r before
reaching convergence.
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Continuity versus Discreteness
(Hauser & Nedić ’07)

I Compare the dynamical systems:

xk+1 = xk + ν(xk ).

dx
dt

= ν(x).

I ν′(x) is continuous at x∗.
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Superlinear Convergence

I {xk} converges Q-superlinearly

⇔ lim
x→x∗

‖x + ν(x)− x∗‖
‖x− x∗‖

= 0.

⇔
{

ν(x∗) = 0,
ν′(x∗) = −I.

I x(t) converges exponentially

⇔

 e−(1+ε)t ≤ ‖x(t)−x∗‖
‖x0−x∗‖ ≤ e−(1−ε)t ,

‖ ∂
∂t

(
x(t)−x∗

‖x(t)−x∗‖

)
‖ ≤ ε.

I Q-superlinear convergence ⇔ Exponential convergence.
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Higher Order Q-convergence

I {xk} Q-converges at rate p + 1

⇔ ‖x + ν(x)− x∗‖ ≤ β‖x− x∗‖p+1.

⇔

 ν(x∗) = 0,
ν′(x∗) = −I,
‖ν′(x)− ν′(x∗)‖ ≤ α‖x− x∗‖p.

I x(t) converges p-exponentially

⇔

 e−(1+ε)t ≤ ‖x(t)−x∗‖
‖x0−x∗‖ ≤ e−(1−ε)t ,

‖ ∂
∂t

(
x(t)−x∗

‖x(t)−x∗‖

)
‖ ≤ γe−(1−ε)pt‖x0 − x∗‖p.

I Q-convergence at rate p + 1 ⇔ p-exponential convergence.
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