Lecture 2
Dynamics and Controls in Solving Algebraic Equations
Oldies and New

Moody T. Chu

North Carolina State University

June 15, 2009 @ MCM, CAS
Outline

Linear Systems
- History
- Stationary Iteration
- Krylov Subspace Methods

Nonlinear Systems
- Continuous Control
- Discrete Control
Outline

Linear Systems
- History
- Stationary Iteration
- Krylov Subspace Methods

Nonlinear Systems
- Continuous Control
- Discrete Control
Linear System

- The problem:
 \[Ax = b. \]

 - Fundamental in scientific computation.

- Two basic approaches:
 - Direct methods:
 - Decompose \(A \) as the product of some easier factors.
 - \(LU, \ QR, \ SVD \) and so on.
 - Though called a direct method, the series of steps taken to achieve the factorization is itself an iterative process.
 - Iterative methods:
 - Repeat some recursive schemes until convergence.
A Long Way of Developments

Some popular techniques:
- Acceleration of classical iterative schemes (Hageman & Young’81).
- Krylov subspace approximation (van der Vorst ’03).
- Multi-grid (Briggs ’87, Bramble ’93).
- Domain decomposition (Toselli & Widlund ’05).

Some favorite methods:
- ITPACK (Grimes, Kincaid, Macgregor, & Young ’78)
- PCG (Hestenes & Stiefel ’52).
- GMRES (Saad & Schultz ’86).
- QMR (Freund & Nachtigal’91),
One-step Stationary Sequential Process

- The scheme:
 \[x_{k+1} = Gx_k + c, \quad k = 0, 1, 2, \ldots. \]

- The iteration matrix \(G \in \mathbb{R}^{n \times n} \) plays a crucial role.
 - Want convergence of \(\{x_k\} \).
 - The spectral radius \(\rho(G) \) should be strictly less than one (Varga’90).
 - Extensive efforts have been made to construct \(G \).
Splitting and Preconditioning

- One possible way of writing G:
 \[
 G = I - K^{-1}A,
 \]
 \[
 c = K^{-1}b,
 \]
 for some nonsingular matrix K.
- A is “split’ by K in the sense that
 \[
 A = K - KG.
 \]
- Choose a splitting matrix K of A such that
 - $\rho(I - K^{-1}A) < 1$.
 - K^{-1} is relatively easy to compute.
Continuous Generalization

- **Iterative scheme:**
 \[x_{k+1} = x_k - K^{-1}(Ax_k - b). \]

- **An Euler step with step size** \(h = 1 \):
 \[\frac{dx}{dt} = f(x; K) := -K^{-1}(Ax - b). \]

- **Analytic solution:**
 \[x(t) = e^{-K^{-1}At}(x_0 - A^{-1}b) + A^{-1}b. \]
Fundamental Difference in K

- By iteration,
 - $|1 - \lambda(K^{-1}A)| < 1 \Rightarrow$ convergence.
 - $\lambda(K^{-1}A)$ clustered near 1 \Rightarrow faster convergence.

- By continuation,
 - $\Re(\lambda(K^{-1}A)) > 0 \Rightarrow$ convergence.
 - $\Re(\lambda(K^{-1}A)) >> 1 \Rightarrow$ faster convergence.
 - $\Im(\lambda(K^{-1}A))$ clustered near 0 \Rightarrow avoid high oscillation.
 - $\lambda(K^{-1}A)$ clustered \Rightarrow avoid stiffness.

- Continuous methods are much more relaxed than iterative methods.
 - Can a discretization of the continuous system gives rise to a better iterative scheme?
Trapezoidal Rule

With step size h,

$$\mathbf{x}_{k+1} = \left(I + \frac{h}{2} K^{-1} A \right)^{-1} \left(I - \frac{h}{2} K^{-1} A \right) \mathbf{x}_k + h \left(I + \frac{h}{2} K^{-1} A \right)^{-1} K^{-1} \mathbf{b},$$

$(1,1)$-pair Padé

2nd order Taylor

Comparing with the analytic solution,

$$\mathbf{x}(t + h) = e^{-hK^{-1}A} \mathbf{x}(t) + \int_t^{t+h} e^{-(t+h-s)K^{-1}A} (K^{-1} \mathbf{b}) ~ ds.$$

$$\mathbf{x}(t_{k+1}) - \mathbf{x}_{k+1} = (I + \frac{h}{2} K^{-1} A)^{-1} (I - \frac{h}{2} K^{-1} A) \left(\mathbf{x}(t_k) - \mathbf{x}_k \right) + O(h^3).$$

- An A-stable method.
- Not practical, but better convergence.
Polynomial Acceleration

- Three-term recurrence:

\[x_1 = \epsilon_1 (Gx_0 + c) + (1 - \epsilon_1)x_0, \]
\[x_{k+1} = \alpha_{k+1} [\epsilon_{k+1}(Gx_k + c) + (1 - \epsilon_{k+1})x_k] + (1 - \alpha_{k+1})x_{k-1}, \]

with some properly defined real numbers α_k and ϵ_k (Hageman & Young '81).

- Rewrite as

\[x_1 = x_0 + \epsilon_1 f_0, \]
\[x_{k+1} = \alpha_{k+1} x_k + (1 - \alpha_{k+1})x_{k-1} + \epsilon_{k+1} \alpha_{k+1} f_k, \]

with $f_k := f(x_k; K)$.
Two-step Stationary Sequential Process

- General explicit, linear two-step method (for ODEs):
 - Of order 2:
 \[
 x_{k+1} = \alpha x_k + (1 - \alpha) x_{k-1} + h \left((2 - \frac{\alpha}{2}) f_k - \frac{\alpha}{2} f_{k-1} \right).
 \]
 - Of order 1:
 \[
 x_{k+1} = \alpha x_k + (1 - \alpha) x_{k-1} + h (2 - \alpha) f_k.
 \]

- Acceleration from ODE point of view:
 - Low order of accuracy, but has a faster rate of convergence.
 - Non-stationary sequential process — More than just variable step sizes.
Line Search

- Rewrite the ODE as
 \[
 \frac{dx}{dt} = K^{-1}r,
 \]
 with a state feedback (residual) \(r := b - Ax \).

- Interpret the Euler step with variable step size \(h_k \)
 \[
 x_{k+1} = x_k + h_k K^{-1}r_k,
 \]
 as a line search in the \(K^{-1}r_k \) direction for a given \(K^{-1} \).

- Not immediately concern about convergence to an equilibrium, but control the flow via some objective values.
Step Size Selection

- Minimize \(r_{k+1}^T r_{k+1} \) \(\Rightarrow \)
 \[
h_k = \frac{\langle AK^{-1} r_k, r_k \rangle}{\langle AK^{-1} r_k, AK^{-1} r_k \rangle}.
 \]

- Minimize \(r_{k+1} A^{-1} r_{k+1} \) with \(A \succ 0 \) \(\Rightarrow \)
 \[
h_k = \frac{\langle K^{-1} r_k, r_k \rangle}{\langle AK^{-1} r_k, K^{-1} r_k \rangle}.
 \]
Two Steps Again!

- Rewrite the explicit, linear two-step method of order 1

\[
x_{k+1} = \alpha x_k + (1 - \alpha)x_{k-1} + h(2 - \alpha)f_k,
\]

as

\[
x_{k+1} = x_k + \epsilon_k \left[K^{-1}r_k + \gamma_k (x_k - x_{k-1}) \right].
\]

- Starting with \(p_0 = K^{-1}r_0 \), define

\[
p_k := K^{-1}r_k + \gamma_k (x_k - x_{k-1}) = K^{-1}r_k + \beta_k p_{k-1},
\]

\[
\beta_k := \epsilon_{k-1} \gamma_k.
\]

- Rewrite

\[
x_{k+1} = x_k + \epsilon_k p_k,
\]

\[
r_{k+1} = r_k - \epsilon_k A p_k,
\]
Suppose $A \succ 0$,

\[
\epsilon_k = \frac{\langle p_k, r_k \rangle}{\langle Ap_k, p_k \rangle},
\]

\[
\beta_{k+1} = -\frac{\langle K^{-1}r_{k+1}, Ap_k \rangle}{\langle Ap_k, p_k \rangle}, \quad k = 0, 1, \ldots,
\]

- K is a symmetric preconditioner.
- Laughable accuracy, but $\{x_k\}$ converges in at most n iterations.
Lessons We Have Learned

- A very basic discrete dynamical system \Rightarrow A very general continuous dynamical system.
- Use the system as a guide to draw up some general procedures that roughly solve the continuous system, but not with great accuracy.
- Aptly tune the parameters which masquerade as the step sizes in the procedures \Rightarrow Achieve fast convergence to the equilibrium point of the continuous system.
- Eventually accomplish the goal of the original basic discrete dynamical system.
Mutual Implications

- Differential System
- Time-1 Sampling
- Iterative Scheme
- Discrete Approximation
Nonlinear System

The problem:

\[g(x) = 0, \]

- \(g : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is nonlinear.

Various numerical techniques can be cast in an input-output control framework with different control strategies.
Continuous Control

- Basic model:

\[
\frac{dx(t)}{dt} = u(t),
\]

\[
y(t) = -r(t),
\]

- State variable \(x(t)\).
- Controller \(u(t)\).
- Output variable \(y(t)\) observed from the residue function

\[
r(t) = -g(x(t)).
\]

- Use both the state and the output as feedback to estimate the control strategy,

\[
u = \phi(x, r).
\]
Control Strategies
(Bhaya & Kaszkurewicz '06)

<table>
<thead>
<tr>
<th>(\phi(x, r))</th>
<th>(\frac{dV}{dt})</th>
<th>(\frac{dx}{dt})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g'(x)^{-1}r)</td>
<td>(-|r|^2)</td>
<td>(-g'(x)^{-1}g(x))</td>
</tr>
<tr>
<td>(g'(x)^\top r)</td>
<td>(-|g'(x)^\top r|^2)</td>
<td>(-g'(x)^\top g(x))</td>
</tr>
<tr>
<td>(g'(x)^{-1}sgn(r))</td>
<td>(-|r|_1)</td>
<td>(-g'(x)^{-1}sgn(g(x)))</td>
</tr>
<tr>
<td>(sgn(g'(x)^\top r))</td>
<td>(-|g'(x)^\top r|_1)</td>
<td>(-sgn(g'(x)^\top g(r)))</td>
</tr>
<tr>
<td>(g'(x)^\top sgn(r))</td>
<td>(-|g'(x)^\top sgn(r)|^2)</td>
<td>(-g'(x)^\top sgn(g(x)))</td>
</tr>
</tbody>
</table>

▶ Lyapunov function

\[
V(t) = \begin{cases}
\frac{1}{2} \|r(t)\|^2, & \text{first four cases,} \\
\|r(t)\|_1, & \text{last case.}
\end{cases}
\]
Continuous Newton

- Closed-loop dynamics for the state variable:

\[
\frac{dx}{dt} = u = -g'(x)^{-1}g(x).
\]

- Sure-fire method ⇒ Would fail, only if \(g'(x) \) becomes singular (Smale '76).

- Dynamics for the residual:

\[
\frac{dr}{dt} = -g'(x)\frac{dx}{dt} = -r.
\]

- Dynamics for the cost function:

\[
V(t) := \frac{1}{2}\langle r(t), r(t) \rangle,
\]

\[
\frac{dV}{dt} = -\|r\|_2^2.
\]
Discretization

- Only the continuous Newton method has been extensively studied.
 - An Euler step ⇒ Classical Newton iteration scheme.
- Some of the vector fields for $\mathbf{x}(t)$ are only piecewise continuous.
- A discretization of the differential system may not be trivial.
 - Scheme?
 - Convergence analysis?
Discrete Control

- **Basic model:**
 \[x_{k+1} = x_k + u_k. \]

- **Controller:**
 - Follow the feedback law:
 \[u_k = \epsilon_k \phi(x_k, r_k). \]
 - Also control the step size \(\epsilon_k \).
Informal Inquiries

- Assume $\phi(x, r)$ is fixed,

$$r_{k+1} \approx r_k - \epsilon_k g'(x_k) \phi(x_k, r_k).$$

- Line search,

$$\epsilon_k = \frac{\langle g'(x_k) \phi(x_k, r_k), r_k \rangle}{\langle g'(x_k) \phi(x_k, r_k), g'(x_k) \phi(x_k, r_k) \rangle}.$$

- Some special cases:
 - $\phi(x, r) = g'(x)^{-1} r \Rightarrow \epsilon_k = 1 \Rightarrow$ Classical Newton iteration.
 - $g(x) = Ax - b$ and $\phi(x, r) = K^{-1} r \Rightarrow$ ORTHOMIN(1) method.
Limiting Behavior of the Residual

- \(\{ r_k \} \) may not be a decreasing sequence.
 - \(x_{k+1} - x_k \) may not be small enough to warrant the Taylor series expansion.
 - The Newton iteration with \(\epsilon_k \equiv 1 \) does not necessarily give rise to a descent step.
- A dividing line between a discrete dynamical system and a continuous dynamical system is at the behavior of \(r \) before reaching convergence.
Continuity versus Discreteness
(Hauser & Nedić ’07)

Compare the dynamical systems:

\[
x_{k+1} = x_k + \nu(x_k).
\]

\[
\frac{dx}{dt} = \nu(x).
\]

\(\nu'(x)\) is continuous at \(x^*\).

Superlinear Convergence

\[\{x_k\} \text{ converges } Q\text{-superlinearly} \]
\[\iff \lim_{x \to x^*} \frac{\|x + \nu(x) - x^*\|}{\|x - x^*\|} = 0. \]
\[\iff \begin{cases}
\nu(x^*) = 0, \\
\nu'(x^*) = -I.
\end{cases} \]

\[x(t) \text{ converges exponentially} \]
\[\iff \left\{ \begin{array}{l}
e^{-(1+\epsilon)t} \leq \frac{\|x(t)-x^*\|}{\|x_0-x^*\|} \leq e^{-(1-\epsilon)t}, \\
\| \frac{\partial}{\partial t} \left(\frac{x(t)-x^*}{\|x(t)-x^*\|} \right) \| \leq \epsilon.
\end{array} \right. \]

\[Q\text{-superlinear convergence} \iff \text{Exponential convergence}. \]
Higher Order Q-convergence

- \(\{x_k\} \) Q-converges at rate \(p + 1 \)

\[\Leftrightarrow \| x + \nu(x) - x^* \| \leq \beta \| x - x^* \|^{p+1}. \]

\[\Leftrightarrow \begin{cases}
\nu(x^*) = 0, \\
\nu'(x^*) = -I, \\
\| \nu'(x) - \nu'(x^*) \| \leq \alpha \| x - x^* \|^p.
\end{cases} \]

- \(x(t) \) converges \(p \)-exponentially

\[\Leftrightarrow \begin{cases}
e^{-\left(1+\epsilon\right)t} \leq \frac{\| x(t)-x^* \|}{\| x_0-x^* \|} \leq e^{-\left(1-\epsilon\right)t}, \\
\| \frac{\partial}{\partial t} \left(\frac{x(t)-x^*}{\| x(t)-x^* \|} \right) \| \leq \gamma e^{-\left(1-\epsilon\right)p t} \| x_0 - x^* \|^p.
\end{cases} \]

- Q-convergence at rate \(p + 1 \) \(\Leftrightarrow \) \(p \)-exponential convergence.