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What This Study Is About?

I To recast many numerical algorithms as special dynamical
systems, whence to derive new understandings and insights.

I To exploit the notion of dynamical systems as a special
realization process for problems arising from the field of
numerical analysis, whence to develop possible new schemes.

I To forge the idea that, while these “things" have been
differentiated from each other, they can also be integrated
together.



Basic Concepts Examples Mutual Implications Structured Integrators

Topics of Lessons

1. Numerical Analysis versus Dynamical Systems
2. Dynamics and Controls in Solving Algebraic Equations
3. Lax Evolution and Its Equivalents
4. Lotka-Volterra Equations and Singular Values
5. Dynamics via Group Actions
6. Structure-preserving Dynamical Systems and Applications
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Realization Process

I A logical procedure used to reason or to infer.
I Usually done deductively or inductively.
I Aim to draw conclusion or make decision.
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Dynamical System

I A realization process in the recursive form.
I One state develops into another state by following a certain

specific rule.
I Often appears in the form of an iterative procedure or a

differential equation.
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Basic Components

I Two abstract problems:
• One is a make-up and is easy.
• The other is the real problem and is difficult.

I A bridge:
• A continuous path connecting the two problems.
• A path that is easy to follow.

I A numerical method:
• A method for moving along the bridge.
• A method that is readily available.



Basic Concepts Examples Mutual Implications Structured Integrators

Building the Bridge

I Specified guidance is available.
• The bridge is constructed by monitoring the values of certain

specified functions.
• The path is guaranteed to work.
• e.g. The projected gradient method.

I Only some general guidance is available.
• A bridge is built in a straightforward way.
• No guarantee the path will be complete.
• e.g. The homotopy method.

I No guidance at all.
• A bridge is built seemingly by accident.
• Usually deeper mathematical theory is involved.
• e.g. The isospectral flows.
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Characteristics of a Bridge

I A bridge, if it exists, usually is characterized by an ordinary
differential equation.

I The discretization of a bridge, or a numerical method in traveling
along a bridge, usually produces an iterative scheme.
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Symmetric Eigenvalue Problem

I The mathematical problem:
• A symmetric matrix A0 is given.
• Solve the equation

A0x = λx

for a nonzero vector x and a scalar λ.
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An Iterative Realization

I The QR decomposition:
A = QR

where Q is orthogonal and R is upper triangular.
I The QR algorithm (Francis’61):

Ak = Qk Rk ,

Ak+1 = Rk Qk .

I Theory:
• Every matrix Ak has the same eigenvalues of A0.
• The sequence {Ak} converges to a diagonal matrix.
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A Continuous Realization

I Lie algebra decomposition:

X = X o + X+ + X−

where X o is the diagonal, X+ the strictly upper triangular, and
X− the strictly lower triangular part of X .

I Toda lattice (Symes’82, Deift el al’83):

dX
dt

= [X , X− − X−
T
]

X (0) = X0.

I Theory:
• Sampled at integer times, {X (k)} gives the same sequence as

does the QR algorithm applied to the matrix A0 = exp(X0).
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How Is the Bridge Built?

I The bridge between X0 and the limit point of Toda flow is built on
the basis of maintaining isospectrum.

I Points to ponder:
• What motivates the construction of the Toda lattice?
• Why is convergence guaranteed?
• What is the advantage of one approach over the other?



Basic Concepts Examples Mutual Implications Structured Integrators

Nonlinear Algebraic Equations

I The mathematical problem:
• A sufficiently smooth function f : Rn → Rn is given.
• Solve the equation

f(x) = 0.
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An Iterative Realization

I The Newton method:

xk+1 = xk − αk (f′(xk ))−1f(xk ).

I Theory:
• The sequence {xk} converges quadratically to a solution, if x0 is

sufficiently close to that solution.
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A Continuous Realization
I The Newton homotopy (Smale ’76, Keller ’78, etc.):

H(x, t) = f(x)− tf(x0).

• The zero set {(x, t) ∈ Rn+1 |H(x, t) = 0} forms a smooth curve.
• The homotopy curve:

f′(x)
dx
ds

− 1
t

f(x)
dt
ds

= 0, x(0) = x0, t(0) = 1,

where s is the arc length.
I Suppose f ′(x) is nonsingular. Then written as

dx
ds

=
dt
ds

1
t
(f′(x))−1f(x).

I Theory:
• With appropriate step size chosen, an Euler step is equivalent to a

regular Newton method.
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How Is the Bridge Built?

I The bridge is built upon the hope that the obvious solution will be
deformed mathematically into the solution that we are seeking
for.

I Points to ponder:
• Will this idea always work?
• How to mathematically design an appropriate homotopy?
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Least Squares Matrix Approximation

I The mathematical problem:
• A symmetric matrix N and a set of real values {λ1, . . . , λn} are

given.
• Find a least squares approximation of N that has the prescribed

eigenvalues.
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A Standard Formulation

Minimize F (Q) :=
1
2
||QT ΛQ − N||2

Subject to QT Q = I

I Equality Constrained Optimization:
• Augmented Lagrangian methods.
• Sequential quadratic programming methods.
• Interior point method.

I All these techniques employ iterative realization.
• Linearize the Lagrangian.
• Sequential quadratic approximation.
• Follow the central path.
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A Continuous Realization

I The projection of the gradient of F can easily be calculated.
I Projected gradient flow (Chu&Driessel’90):

dX
dt

= [X , [X , N]]

X (0) = Λ

• X := QT ΛQ.
• Flow X (t) moves in a descent direction to reduce ||X − N||2.

I Theory:
• The optimal solution X can be fully characterized by the spectral

decomposition of N and is unique.
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How Is the Bridge Built?

I The bridge between a starting point and the optimal point is built
on the basis of systematically reducing the difference between
the current position and the target position.

I Points to ponder:
• How to get to the limit point of the gradient flow efficiently?
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Mutual Implications

Iterative
Scheme

Differential 
System

Time-1
Sampling

Discrete
Approximation
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Technology Limitations

I Floating-point arithmetic is the most common and effective way
for computation.

I Almost a mandate to discretize a continuous problem.
I A majority of numerical algorithms in practice are iterative in

nature.
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Iterative Scheme

xk+1 = Gk (xk , . . . , xk−p+1), k = 0, 1, . . . ,

I A p-step sequential process (Ortega&Rheinboldt’00),:
I Gk : Dk ⊂ V p → V is a predetermined map.

• Could be stationary.
• A bridge intends to achieve a certain goal.
• V is a designated set of states. Could be a manifold.

I Need initial values x0, x−1, . . . , x−p+1.
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Initial Value Problem

dx
dt

= f(t , x), x(0) = x0,

I f defines a flow moving in a specific direction.
I In many applications, x(t) is supposed to preserve certain

quantities, such as mass, volume, or stay on a certain manifold.
• Challenging to realize this conservation law.
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Numerical ODE Techniques

I Conventional Runge-Kutta method:

xn+1 = xn + h
R∑

r=1

cr kr︸ ︷︷ ︸
Gn(xn)

,
R∑

r=1

cr = 1.

• kr := f(tn + ar h, xn + h
PR

s=1 brsks),
PR

s=1 brs = ar .
I Conventional linear multi-step method:

xn+1 :=

p∑
i=0

(αixn−i + hβi fn−i)︸ ︷︷ ︸
G(xn,...,xn−p)

+hβ−1fn+1.

I Special purpose geometric integrator .....
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Sarkovskii’s Theorem

I Consider the iteration
xk+1 = f (xk ),

where f : R → R is continuous.
I A number x0 is of period m if xm = x0 and having least period m if

xk 6= x0 for all 0 < k < m.
I Arrange positive integers in the following ordering:

3, 5, 7, 9, . . . , 2 · 3, 2 · 5, 2 · 7, . . . , 22 · 3, 22 · 5, . . . , 24, 23, 22, 2, 1.

I Sharkovskii’s theorem:
• If f has a periodic point of least period m and m ≤ n in the above

ordering, then f has also a periodic point of least period n.
I Remarkable for its lack of hypotheses and its qualitative

universality.
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Two Different Views

Numerical Analysis Dynamical System
Consider systems with only triv-
ial asymptotic behavior.

Interested in systems with more
complicated behavior.

Concerned about convergence
and stability.

Study overall trajectories.

Meant to trace the flow of ODEs
with reliable and reasonable ac-
curacy — local behavior of the
trajectory.

Want to differentiate the intrinsic
geometric structure — long-term
behavior of the trajectory.

Meant to converge to a unique
equilibrium point.

Search for limit cycles, bifurca-
tions, or strange attractors.
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Logistic Equation

dx
dt

= x(1− x), x(0) = x0.

I Exact solution:
x(t) =

x0

x0 + e−t(1− x0)
,

• Converge to the equilibrium x(∞) = 1 for any initial value x0 6= 0.



Basic Concepts Examples Mutual Implications Structured Integrators

Explicit Euler Iteration

xk+1 = xk + εxk (1− xk ), ε = step size.

I Fix t , xn → x(t) as n →∞ in the sense of ε = t
n .

I With n = d 90
ε e and 0 < ε ≤ 3, plot the absolute error |xn − x(nε)|.

• Theoretic error estimate O(ε).
I Fix ε, iterate the Euler step 5000 times to see the limit points.

• A cascade of period doubling as ε increases.
• The equilibrium x(∞) = 1 is not even an attractor for large ε.
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Implicit Euler Iterations

xk+1 = xk + εxk+1(1− xk+1),

xk+1 = xk + εxk (1− xk+1).

I Converge to the equilibrium x(∞) = 1 for any step size ε.
I Points to ponder:

• Distinguish limiting behavior between an iterative algorithm
designed originally to solve a specific problem and a discrete
approximation of a differential system formulated to mimic an
existing iterative algorithm.

• Distinguish asymptotic behavior between a differential system
developed originally from a specific realization process and its
discrete approximation which becomes an iterative scheme.
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Gradient Flow

dx
dt

= −∇F (x), x(0) = x0,

I F : Rn → R is a specified smooth objective function.
I Goal: Find the limit point x∗ = limt→∞ x(t) of the gradient flow

x(t).
I Wish list:

• Do not want to solve the equation ∇F (x) = 0 by Newton-like
methods.

• Ignore the gradient property.
• Might locate undesirable, dynamically unstable critical points.

• Do not want to follow the solution curve x(t) closely.
• Too expensive computation at the transient state.
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Pseudo-transient Continuation

I Idea: Stay near the true trajectory, but not strive for accuracy.
I Employ one implicit Euler step with step size εk :

xk+1 = xk − εk∇F (xk+1).

I Perform only one correction using one Newton iteration starting
at xk and accept the outcome as xk+1.

xk+1 = xk −
(

1
εk

In +∇2F (xk )

)−1

∇F (xk ).

I The step size changes the nature of iterations.
• Small values of εk ⇒ Scheme behaves like a steepest descent

method.
• Large values of εk ⇒ Scheme behaves like a Newton iteration.
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Hamiltonian Flow

{ dpi
dt = {pi , H} ,

dqi
dt = {qi , H} ,

i = 1, . . . , n,

with Poisson bracket

{f , g} :=
n∑

i=1

(
∂f
∂qi

∂g
∂pi

− ∂f
∂pi

∂g
∂qi

)
.

I Goal: Find the long-term evolution behavior.
I Wish list:

• Want to keep the simplectic form dp ∧ dq invariant ⇒ Preserving
qualitative properties of phase space trajectories.
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Runge-Kutta Methods

a B
c>

I If mij := cibij + cjbji − cicj = 0 for all 1 ≤ i , j ≤ R, then the RK
method is simplectic. (Sanz-Serna’88).

I Gauss-Legengre RK methods are simplectic.
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