0000 0000 0000 000000

[Basic Concepts](#page-8-0) [Examples](#page-13-0) [Mutual Implications](#page-25-0) [Structured Integrators](#page-36-0) $\overline{O}O$

KOD KAD KED KED A GAA

A Study on

Numerical Algorithms as Dynamical Systems

Moody Chu

North Carolina State University

 0000 0000 0000 0000 000000

[Basic Concepts](#page-8-0) [Examples](#page-13-0) [Mutual Implications](#page-25-0) [Structured Integrators](#page-36-0) \circ \circ

KOD KAD KED KED A GAA

What This Study Is About?

- \triangleright To recast many numerical algorithms as special dynamical systems, whence to derive new understandings and insights.
- \triangleright To exploit the notion of dynamical systems as a special realization process for problems arising from the field of numerical analysis, whence to develop possible new schemes.
- \blacktriangleright To forge the idea that, while these "things" have been differentiated from each other, they can also be integrated together.

 0000 0000 0000 0000 000000

[Basic Concepts](#page-8-0) [Examples](#page-13-0) [Mutual Implications](#page-25-0) [Structured Integrators](#page-36-0) \circ \circ

YO F YER YER YER YOU

Topics of Lessons

- **1.** Numerical Analysis versus Dynamical Systems
- **2.** Dynamics and Controls in Solving Algebraic Equations
- **3.** Lax Evolution and Its Equivalents
- **4.** Lotka-Volterra Equations and Singular Values
- **5.** Dynamics via Group Actions
- **6.** Structure-preserving Dynamical Systems and Applications

0000 0000 0000 0000 000000

[Basic Concepts](#page-8-0) [Examples](#page-13-0) [Mutual Implications](#page-25-0) [Structured Integrators](#page-36-0) \circ \circ

YO F YER YER YER YOU

Lecture 1 Numerical Analysis versus Dynamical Systems An Overview

Moody T. Chu

North Carolina State University

June 14, 2009 @ MCM, CAS

0000 0000 0000 0000 000000

[Basic Concepts](#page-8-0) [Examples](#page-13-0) [Mutual Implications](#page-25-0) [Structured Integrators](#page-36-0) \circ \circ

YO F YER YER YER YOU

Outline

[Basic Concepts](#page-8-0)

[Realization Process](#page-8-0) [Bridge Construction](#page-11-0)

[Examples](#page-13-0)

[Eigenvalue Problem](#page-13-0) [Root Finding](#page-17-0) [Procrustes Problem](#page-21-0)

[Mutual Implications](#page-25-0)

[Discretization](#page-26-0) [Discrete Dynamical System](#page-30-0)

[Structured Integrators](#page-36-0)

0000 0000 0000 0000 000000

[Basic Concepts](#page-8-0) [Examples](#page-13-0) [Mutual Implications](#page-25-0) [Structured Integrators](#page-36-0) \circ \circ

YO F YER YER YER YOU

Outline

[Basic Concepts](#page-8-0)

[Realization Process](#page-8-0) [Bridge Construction](#page-11-0)

[Examples](#page-13-0)

[Eigenvalue Problem](#page-13-0) [Root Finding](#page-17-0) [Procrustes Problem](#page-21-0)

[Mutual Implications](#page-25-0)

[Discretization](#page-26-0) [Discrete Dynamical System](#page-30-0)

[Structured Integrators](#page-36-0)

0000 0000 0000

0000 000000

[Basic Concepts](#page-8-0) [Examples](#page-13-0) [Mutual Implications](#page-25-0) [Structured Integrators](#page-36-0) \circ \circ

YO F YER YER YER YOU

Outline

[Basic Concepts](#page-8-0)

[Realization Process](#page-8-0) [Bridge Construction](#page-11-0)

[Examples](#page-13-0)

[Eigenvalue Problem](#page-13-0) [Root Finding](#page-17-0) [Procrustes Problem](#page-21-0)

[Mutual Implications](#page-25-0)

[Discretization](#page-26-0) [Discrete Dynamical System](#page-30-0)

[Structured Integrators](#page-36-0)

0000 0000 0000

0000 000000

[Basic Concepts](#page-8-0) [Examples](#page-13-0) [Mutual Implications](#page-25-0) [Structured Integrators](#page-36-0) \circ \circ

YO F YER YER YER YOU

Outline

[Basic Concepts](#page-8-0)

[Realization Process](#page-8-0) [Bridge Construction](#page-11-0)

[Examples](#page-13-0)

[Eigenvalue Problem](#page-13-0) [Root Finding](#page-17-0) [Procrustes Problem](#page-21-0)

[Mutual Implications](#page-25-0)

[Discretization](#page-26-0) [Discrete Dynamical System](#page-30-0)

[Structured Integrators](#page-36-0)

0000 0000 0000 000000

[Basic Concepts](#page-8-0) [Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0) ŏŏ

YO F YER YER YER YOU

Realization Process

- \triangleright A logical procedure used to reason or to infer.
- \triangleright Usually done deductively or inductively.
- \triangleright Aim to draw conclusion or make decision.

0000 0000 0000 0000 000000

[Basic Concepts](#page-8-0) [Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0) \circ \circ

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Dynamical System

- \triangleright A realization process in the recursive form.
- \triangleright One state develops into another state by following a certain specific rule.
- \triangleright Often appears in the form of an iterative procedure or a differential equation.

0000 000000

[Basic Concepts](#page-8-0) [Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0) \circ \circ

YO F YER YER YER YOU

Basic Components

- \blacktriangleright Two abstract problems:
	- One is a make-up and is easy.
	- The other is the real problem and is difficult.
- \blacktriangleright A bridge:
	- A continuous path connecting the two problems.
	- A path that is easy to follow.
- \blacktriangleright A numerical method:
	- A method for moving along the bridge.
	- A method that is readily available.

0000 000000

[Basic Concepts](#page-8-0) [Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0) \circ \circ

YO F YER YER YER YOU

Building the Bridge

- \triangleright Specified guidance is available.
	- The bridge is constructed by monitoring the values of certain specified functions.
	- The path is quaranteed to work.
	- e.g. The projected gradient method.
- \triangleright Only some general guidance is available.
	- A bridge is built in a straightforward way.
	- No guarantee the path will be complete.
	- e.g. The homotopy method.
- \triangleright No guidance at all.
	- A bridge is built seemingly by accident.
	- Usually deeper mathematical theory is involved.
	- e.g. The isospectral flows.

[Basic Concepts](#page-8-0) [Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0) \circ \circ

YO F YER YER YER YOU

Characteristics of a Bridge

- \triangleright A bridge, if it exists, usually is characterized by an ordinary differential equation.
- \blacktriangleright The discretization of a bridge, or a numerical method in traveling along a bridge, usually produces an iterative scheme.

0000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0)** \circ \circ

KOD CONTRACT A FIRE A GOOD

Symmetric Eigenvalue Problem

- \blacktriangleright The mathematical problem:
	- A symmetric matrix A_0 is given.
	- Solve the equation

$$
A_0\bm{x}=\lambda\bm{x}
$$

for a nonzero vector **x** and a scalar λ.

0000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0)** \circ \circ

YO F YER YER YER YOU

An Iterative Realization

▶ The *QR* decomposition:

 $A = \overline{OR}$

where *Q* is orthogonal and *R* is upper triangular.

► The *QR* algorithm (Francis'61):

$$
A_k = Q_k R_k,
$$

$$
A_{k+1} = R_k Q_k.
$$

 \blacktriangleright Theory:

- Every matrix A_k has the same eigenvalues of A_0 .
- The sequence ${A_k}$ converges to a diagonal matrix.

0000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0)** \circ \circ

KOD KAD KED KED A GAA

A Continuous Realization

 \blacktriangleright Lie algebra decomposition:

$$
X=X^o+X^++X^-
$$

where X^o is the diagonal, X^+ the strictly upper triangular, and *X* [−] the strictly lower triangular part of *X*.

 \triangleright Toda lattice (Symes'82, Deift el al'83):

$$
\frac{dX}{dt} = [X, X^- - X^{-T}]
$$

$$
X(0) = X_0.
$$

 \blacktriangleright Theory:

• Sampled at integer times, $\{X(k)\}\$ gives the same sequence as does the *QR* algorithm applied to the matrix $A_0 = exp(X_0)$.

 000 0000 0000 0000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0)** \circ \circ

YO F YER YER YER YOU

How Is the Bridge Built?

- In The bridge between X_0 and the limit point of Toda flow is built on the basis of maintaining isospectrum.
- \blacktriangleright Points to ponder:
	- What motivates the construction of the Toda lattice?
	- Why is convergence quaranteed?
	- What is the advantage of one approach over the other?

0000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0)** \circ

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Nonlinear Algebraic Equations

\blacktriangleright The mathematical problem:

- A sufficiently smooth function $f : \mathbb{R}^n \to \mathbb{R}^n$ is given.
- • Solve the equation

 $f(x) = 0.$

 0000 0000 0000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0)** ŏŏ

KOD KAD KED KED A GAA

An Iterative Realization

 \blacktriangleright The Newton method:

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k (\mathbf{f}'(\mathbf{x}_k))^{-1} \mathbf{f}(\mathbf{x}_k).
$$

 \blacktriangleright Theory:

• The sequence $\{x_k\}$ converges quadratically to a solution, if x_0 is sufficiently close to that solution.

0000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0)** \circ \circ

A Continuous Realization

 \triangleright The Newton homotopy (Smale '76, Keller '78, etc.):

 $H(\mathbf{x}, t) = \mathbf{f}(\mathbf{x}) - t\mathbf{f}(\mathbf{x}_0).$

- The zero set $\{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid H(\mathbf{x}, t) = 0\}$ forms a smooth curve.
- The homotopy curve:

$$
\mathbf{f}'(\mathbf{x})\frac{d\mathbf{x}}{ds} - \frac{1}{t}\mathbf{f}(\mathbf{x})\frac{dt}{ds} = 0, \quad \mathbf{x}(0) = \mathbf{x}_0, \quad t(0) = 1,
$$

where *s* is the arc length.

Suppose $f'(\mathbf{x})$ is nonsingular. Then written as

$$
\frac{d\mathbf{x}}{ds} = \frac{dt}{ds}\frac{1}{t}(\mathbf{f}'(\mathbf{x}))^{-1}\mathbf{f}(\mathbf{x}).
$$

 \blacktriangleright Theory:

• With appropriate step size chosen, an Euler step is equivalent to a regular Newton method.**KOD CONTRACT A FIRE A GOOD**

0000 000 0000 0000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0)** \circ \circ

YO F YER YER YER YOU

How Is the Bridge Built?

- \triangleright The bridge is built upon the hope that the obvious solution will be deformed mathematically into the solution that we are seeking for.
- \blacktriangleright Points to ponder:
	- Will this idea always work?
	- How to mathematically design an appropriate homotopy?

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0)** \circ \circ

KOD KAD KED KED A GAA

Least Squares Matrix Approximation

- \blacktriangleright The mathematical problem:
	- A symmetric matrix N and a set of real values $\{\lambda_1, \ldots, \lambda_n\}$ are given.
	- Find a least squares approximation of *N* that has the prescribed eigenvalues.

0000 0000 0000 0000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0)** \circ \circ

YO F YER YER YER YOU

A Standard Formulation

Minimize
$$
F(Q) := \frac{1}{2} ||Q^T \Lambda Q - N||^2
$$

Subject to $Q^T Q = I$

- \blacktriangleright Equality Constrained Optimization:
	- Augmented Lagrangian methods.
	- Sequential quadratic programming methods.
	- Interior point method.
- \blacktriangleright All these techniques employ iterative realization.
	- Linearize the Lagrangian.
	- Sequential quadratic approximation.
	- Follow the central path.

0000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0)** \circ \circ

KOD KAD KED KED A GAA

A Continuous Realization

- \blacktriangleright The projection of the gradient of F can easily be calculated.
- ▶ Projected gradient flow (Chu&Driessel'90):

$$
\frac{dX}{dt} = [X, [X, N]]
$$

$$
X(0) = \Lambda
$$

- \bullet $X := Q^T \Lambda Q$.
- Flow $X(t)$ moves in a descent direction to reduce $||X N||^2$.
- \blacktriangleright Theory:
	- The optimal solution *X* can be fully characterized by the spectral decomposition of *N* and is unique.

0000 0000 000 0000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Mutual Implications [Structured Integrators](#page-36-0)** \circ \circ

YO F YER YER YER YOU

How Is the Bridge Built?

- \triangleright The bridge between a starting point and the optimal point is built on the basis of systematically reducing the difference between the current position and the target position.
- \blacktriangleright Points to ponder:
	- How to get to the limit point of the gradient flow efficiently?

0000 0000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Examples Examples** ŏŏ

Mutual Implications

KOD KAD KED KED A GAA

 0000 0000 0000 \bullet 000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Examples Examples** \circ \circ

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Technology Limitations

- \blacktriangleright Floating-point arithmetic is the most common and effective way for computation.
- \blacktriangleright Almost a mandate to discretize a continuous problem.
- \triangleright A majority of numerical algorithms in practice are iterative in nature.

 0000 0000 0000 0000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Examples Examples** \circ \circ

KOD CONTRACT A BOAR CONTRACT

Iterative Scheme

$$
\boldsymbol{x}_{k+1} = G_k(\boldsymbol{x}_k,\ldots,\boldsymbol{x}_{k-p+1}), \quad k=0,1,\ldots,
$$

- ▶ A *p*-step sequential process (Ortega&Rheinboldt'00),:
- ^I *G^k* : *D^k* ⊂ *V ^p* → *V* is a predetermined map.
	- Could be stationary.
	- A bridge intends to achieve a certain goal.
	- *V* is a designated set of states. Could be a manifold.
- ^I Need initial values **x**0, **x**[−]1, . . . , **x**[−]*p*+1.

 000 \circ

 0000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Examples Examples** \circ \circ

KOD CONTRACT A BOAR CONTRACT

Initial Value Problem

$$
\frac{d\mathbf{x}}{dt} = \mathbf{f}(t, \mathbf{x}), \quad \mathbf{x}(0) = \mathbf{x}_0,
$$

- \blacktriangleright **f** defines a flow moving in a specific direction.
- In many applications, $\mathbf{x}(t)$ is supposed to preserve certain quantities, such as mass, volume, or stay on a certain manifold.
	- Challenging to realize this conservation law.

 0000 0000 0000 000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Examples Examples** \circ

Numerical ODE Techniques

 \triangleright Conventional Runge-Kutta method:

$$
\mathbf{x}_{n+1} = \mathbf{x}_n + h \sum_{r=1}^R c_r \mathbf{k}_r, \quad \sum_{r=1}^R c_r = 1.
$$

•
$$
\mathbf{k}_r := \mathbf{f}(t_n + a_r h, \mathbf{x}_n + h \sum_{s=1}^R b_{rs} \mathbf{k}_s), \quad \sum_{s=1}^R b_{rs} = a_r.
$$

 \triangleright Conventional linear multi-step method:

$$
\mathbf{x}_{n+1} := \underbrace{\sum_{i=0}^{p} (\alpha_i \mathbf{x}_{n-i} + h\beta_i \mathbf{f}_{n-i})}_{G(\mathbf{x}_n, \dots, \mathbf{x}_{n-p})} + h\beta_{-1} \mathbf{f}_{n+1}.
$$

 \triangleright Special purpose geometric integrator

KOD KAD KED KED A GAA

າດດດ 0000 nnnn 0000 00000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Examples Examples** \circ \circ

Sarkovskii's Theorem

 \blacktriangleright Consider the iteration

$$
x_{k+1}=f(x_k),
$$

where $f : \mathbb{R} \to \mathbb{R}$ is continuous.

- \triangleright A number x_0 is of period *m* if $x_m = x_0$ and having least period *m* if $x_k \neq x_0$ for all $0 < k < m$.
- \triangleright Arrange positive integers in the following ordering:

 $3, 5, 7, 9, \ldots, 2 \cdot 3, 2 \cdot 5, 2 \cdot 7, \ldots, 2^2 \cdot 3, 2^2 \cdot 5, \ldots, 2^4, 2^3, 2^2, 2, 1.$

- \blacktriangleright Sharkovskii's theorem:
	- If *f* has a periodic point of least period *m* and *m* ≤ *n* in the above ordering, then *f* has also a periodic point of least period *n*.
- \blacktriangleright Remarkable for its lack of hypotheses and its qualitative universality.

[Basic Concepts](#page-8-0) [Examples](#page-13-0) Examples [Mutual Implications](#page-25-0) [Structured Integrators](#page-36-0)
 $\begin{array}{ccc}\n0000 & 0000 \\
0000 & 0000\n\end{array}$
 $\begin{array}{ccc}\n0000 & 000 \\
00000 & 00\n\end{array}$

Two Different Views

 $\overline{O} \overline{O}$

 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Examples Examples** $\overline{O}O$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Logistic Equation

$$
\frac{dx}{dt}=x(1-x),\quad x(0)=x_0.
$$

$$
\blacktriangleright
$$
 Exact solution:

$$
x(t) = \frac{x_0}{x_0 + e^{-t}(1 - x_0)},
$$

• Converge to the equilibrium $x(\infty) = 1$ for any initial value $x_0 \neq 0$.

 000 \circ

 0000 000000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Examples Examples** \circ \circ

KOD KAD KED KED A GAA

Explicit Euler Iteration

$$
x_{k+1} = x_k + \epsilon x_k (1 - x_k), \quad \epsilon = \text{step size}.
$$

► Fix
$$
t
$$
, $x_n \rightarrow x(t)$ as $n \rightarrow \infty$ in the sense of $\epsilon = \frac{t}{n}$.

- ► With $n = \lceil \frac{90}{\epsilon} \rceil$ and $0 < \epsilon \leq 3$, plot the absolute error $|x_n x(n\epsilon)|$.
	- Theoretic error estimate $O(\epsilon)$.
- \blacktriangleright Fix ϵ , iterate the Euler step 5000 times to see the limit points.
	- A cascade of period doubling as ϵ increases.
	- The equilibrium $x(\infty) = 1$ is not even an attractor for large ϵ .

[Basic Concepts](#page-8-0) [Examples](#page-13-0) Examples [Mutual Implications](#page-25-0) [Structured Integrators](#page-36-0)
 $\begin{array}{ccc}\n0000 & 000 \\
000 & 0000 \\
0000 & 0000\n\end{array}$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 | X 9 Q @

 000 \circ

0000 00000

[Basic Concepts](#page-8-0) **[Examples](#page-13-0) Examples Examples [Mutual Implications](#page-25-0) Examples Examples** \circ \circ

Implicit Euler Iterations

$$
x_{k+1} = x_k + \epsilon x_{k+1} (1 - x_{k+1}),
$$

\n
$$
x_{k+1} = x_k + \epsilon x_k (1 - x_{k+1}).
$$

- **►** Converge to the equilibrium $x(\infty) = 1$ for any step size ϵ .
- \blacktriangleright Points to ponder:
	- Distinguish limiting behavior between an iterative algorithm designed originally to solve a specific problem and a discrete approximation of a differential system formulated to mimic an existing iterative algorithm.
	- Distinguish asymptotic behavior between a differential system developed originally from a specific realization process and its discrete approximation which becomes an iterative scheme.

 0000 0000 0000 0000 000000

[Basic Concepts](#page-8-0) [Examples](#page-13-0) [Mutual Implications](#page-25-0) [Structured Integrators](#page-36-0) \bullet \circ

KOD KAD KED KED A GAA

Gradient Flow

$$
\frac{d\mathbf{x}}{dt}=-\nabla F(\mathbf{x}),\quad \mathbf{x}(0)=\mathbf{x}_0,
$$

 \blacktriangleright $F: \mathbb{R}^n \to \mathbb{R}$ is a specified smooth objective function.

- ► Goal: Find the limit point $\mathbf{x}^* = \lim_{t \to \infty} \mathbf{x}(t)$ of the gradient flow **x**(*t*).
- \blacktriangleright Wish list:
	- Do not want to solve the equation $\nabla F(\mathbf{x}) = 0$ by Newton-like methods.
		- Ignore the gradient property.
		- Might locate undesirable, dynamically unstable critical points.
	- Do not want to follow the solution curve **x**(*t*) closely.
		- Too expensive computation at the transient state.

A DIA 4 DIA

Pseudo-transient Continuation

- \blacktriangleright Idea: Stay near the true trajectory, but not strive for accuracy.
- **Employ one implicit Euler step with step size** ϵ_k **:**

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - \epsilon_k \nabla F(\mathbf{x}_{k+1}).
$$

 \triangleright Perform only one correction using one Newton iteration starting at \mathbf{x}_k and accept the outcome as \mathbf{x}_{k+1} .

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - \left(\frac{1}{\epsilon_k}I_n + \nabla^2 \mathcal{F}(\mathbf{x}_k)\right)^{-1} \nabla \mathcal{F}(\mathbf{x}_k).
$$

- \blacktriangleright The step size changes the nature of iterations.
	- Small values of $\epsilon_k \Rightarrow$ Scheme behaves like a steepest descent method.
	- Large values of $\epsilon_k \Rightarrow$ Scheme behaves like a Newton iteration.

 \circ

0000 000000

[Basic Concepts](#page-8-0) [Examples](#page-13-0) [Mutual Implications](#page-25-0) [Structured Integrators](#page-36-0) \bullet

KOD KAD KED KED A GAA

Hamiltonian Flow

$$
\begin{cases}\n\frac{dp_i}{dt} = \{p_i, H\}, \\
\frac{dq_i}{dt} = \{q_i, H\},\n\end{cases}\n i = 1, \ldots, n,
$$

with Poisson bracket

$$
\{f,g\}:=\sum_{i=1}^n\left(\frac{\partial f}{\partial q_i}\frac{\partial g}{\partial p_i}-\frac{\partial f}{\partial p_i}\frac{\partial g}{\partial q_i}\right).
$$

- \triangleright Goal: Find the long-term evolution behavior.
- \triangleright Wish list:
	- Want to keep the simplectic form *d***p** ∧ *d***q** invariant ⇒ Preserving qualitative properties of phase space trajectories.

 \circ

[Basic Concepts](#page-8-0) [Examples](#page-13-0) [Mutual Implications](#page-25-0) [Structured Integrators](#page-36-0) \circ \circ

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Runge-Kutta Methods

$$
\begin{array}{c|c}\n\mathbf{a} & B \\
\hline\n\mathbf{c}^\top\n\end{array}
$$

- ► If $m_{ij} := c_i b_{ij} + c_j b_{ji} c_i c_j = 0$ for all $1 \le i, j \le R$, then the RK method is simplectic. (Sanz-Serna'88).
- \triangleright Gauss-Legengre RK methods are simplectic.

$$
\begin{array}{c|c|c}\n\frac{1}{2} - \frac{\sqrt{3}}{6} & \frac{1}{4} & \frac{1}{4} - \frac{\sqrt{3}}{6} \\
\frac{1}{2} + \frac{\sqrt{3}}{6} & \frac{1}{4} + \frac{\sqrt{3}}{6} & \frac{1}{4} \\
\hline\n& \frac{1}{2} & \frac{1}{2}\n\end{array}
$$