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A Study on

Numerical Algorithms as Dynamical Systems

Moody Chu

North Carolina State University



What This Study Is About?

» To recast many numerical algorithms as special dynamical
systems, whence to derive new understandings and insights.

» To exploit the notion of dynamical systems as a special
realization process for problems arising from the field of
numerical analysis, whence to develop possible new schemes.

» To forge the idea that, while these “things" have been
differentiated from each other, they can also be integrated
together.
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Topics of Lessons

Numerical Analysis versus Dynamical Systems

Dynamics and Controls in Solving Algebraic Equations
Lax Evolution and Its Equivalents

Lotka-Volterra Equations and Singular Values

Dynamics via Group Actions

Structure-preserving Dynamical Systems and Applications
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Lecture 1
Numerical Analysis

versus Dynamical Systems
An Overview

Moody T. Chu

North Carolina State University

June 14, 2009 @ MCM, CAS
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Realization Process

» A logical procedure used to reason or to infer.
» Usually done deductively or inductively.
» Aim to draw conclusion or make decision.
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Dynamical System

» A realization process in the recursive form.

» One state develops into another state by following a certain
specific rule.

» Often appears in the form of an iterative procedure or a
differential equation.
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Basic Components

» Two abstract problems:

e One is a make-up and is easy.
e The other is the real problem and is difficult.

» A bridge:

¢ A continuous path connecting the two problems.

e A path that is easy to follow.
» A numerical method:

¢ A method for moving along the bridge.
¢ A method that is readily available.

Structured Integrators
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Building the Bridge

» Specified guidance is available.
e The bridge is constructed by monitoring the values of certain
specified functions.
e The path is guaranteed to work.
e e.g. The projected gradient method.

» Only some general guidance is available.

o A bridge is built in a straightforward way.
o No guarantee the path will be complete.
e e.g. The homotopy method.

» No guidance at all.

e A bridge is built seemingly by accident.
e Usually deeper mathematical theory is involved.
e e.g. The isospectral flows.
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Characteristics of a Bridge

» A bridge, if it exists, usually is characterized by an ordinary
differential equation.

» The discretization of a bridge, or a numerical method in traveling
along a bridge, usually produces an iterative scheme.
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Symmetric Eigenvalue Problem

» The mathematical problem:

o A symmetric matrix A is given.
¢ Solve the equation

ApX = XX
for a nonzero vector x and a scalar \.
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An lterative Realization

» The QR decomposition:
A=QR
where Q is orthogonal and R is upper triangular.
» The QR algorithm (Francis’61):

Ac = @Ry,
Akr1 = RiQx.

» Theory:

e Every matrix Ax has the same eigenvalues of Ay.
e The sequence {A} converges to a diagonal matrix.
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A Continuous Realization

» Lie algebra decomposition:
X=X+ X"+ X"

where X° is the diagonal, X the strictly upper triangular, and
X~ the strictly lower triangular part of X.

» Toda lattice (Symes’82, Deift el al’83):

aX _ _T
&= XXX
X0) = X

» Theory:
e Sampled at integer times, {X(k)} gives the same sequence as
does the QR algorithm applied to the matrix Ay = exp(Xo).
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How Is the Bridge Built?

» The bridge between X; and the limit point of Toda flow is built on
the basis of maintaining isospectrum.
» Points to ponder:
e What motivates the construction of the Toda lattice?
e Why is convergence guaranteed?
e What is the advantage of one approach over the other?
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Nonlinear Algebraic Equations

» The mathematical problem:

o A sufficiently smooth function f: R” — R” is given.
e Solve the equation

f(x) = 0.
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An lterative Realization

» The Newton method:

Xkt = Xk — ok (F (k) 7 H(X4).
» Theory:

e The sequence {X} converges quadratically to a solution, if Xg is
sufficiently close to that solution.
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A Continuous Realization
» The Newton homotopy (Smale °76, Keller '78, etc.):

H(x, t) = f(x) — tf(Xp).

e The zero set {(x,t) € R™" | H(x, t) = 0} forms a smooth curve.
e The homotopy curve:

,odx 1 at
F(X) g — f¥) 5 =0 X(0) =x0, 1(0)=1,

where s is the arc length.
» Suppose f'(x) is nonsingular. Then written as

dX _ gl / —1
% dst f'(x))~"f(x).

» Theory:

o With appropriate step size chosen, an Euler step is equivalent to a
regular Newton method.
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How Is the Bridge Built?

» The bridge is built upon the hope that the obvious solution will be
deformed mathematically into the solution that we are seeking
for.

» Points to ponder:

o Will this idea always work?
e How to mathematically design an appropriate homotopy?
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Least Squares Matrix Approximation

» The mathematical problem:
e A symmetric matrix N and a set of real values {\1,..., \n} are
given.

e Find a least squares approximation of N that has the prescribed
eigenvalues.
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A Standard Formulation

Minimize F(Q) := %HQTAQ—NHZ
Subjectto Q'Q = |/

» Equality Constrained Optimization:
e Augmented Lagrangian methods.
e Sequential quadratic programming methods.
e Interior point method.
» All these techniques employ iterative realization.
e Linearize the Lagrangian.
e Sequential quadratic approximation.
¢ Follow the central path.

Structured Integrators
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A Continuous Realization

» The projection of the gradient of F can easily be calculated.
» Projected gradient flow (Chu&Driessel’90):

aX

— = [X,[X,N
= XX
X(0) = A
e X:=Q"AQ.
e Flow X(t) moves in a descent direction to reduce || X — N|J%.
» Theory:

e The optimal solution X can be fully characterized by the spectral
decomposition of N and is unique.
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How Is the Bridge Built?

» The bridge between a starting point and the optimal point is built
on the basis of systematically reducing the difference between
the current position and the target position.

» Points to ponder:
e How to get to the limit point of the gradient flow efficiently?
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Mutual Implications

Differential Discrete
System ™ Approximation
P
Time-1 lterative
Sampling [T g Scheme
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Technology Limitations

» Floating-point arithmetic is the most common and effective way

for computation.
» Almost a mandate to discretize a continuous problem.

» A majority of numerical algorithms in practice are iterative in
nature.



Mutual Implications Structured Integrators

Basic Concepts
000

lterative Scheme

Xky1 = G(Xk, -+, Xk—pt1), k=0,1,...,

» A p-step sequential process (Ortega&Rheinboldt’00),:
» Gk : Dy C VP — Vis a predetermined map.

e Could be stationary.
o A bridge intends to achieve a certain goal.
e Vis a designated set of states. Could be a manifold.

» Need initial values Xo,X_1,...,X_p41.
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Initial Value Problem

ax
G f(t,x), x(0) = xo,

» f defines a flow moving in a specific direction.

» In many applications, x(t) is supposed to preserve certain
quantities, such as mass, volume, or stay on a certain manifold.

e Challenging to realize this conservation law.
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Numerical ODE Techniques

» Conventional Runge-Kutta method:

R R
Xn+1:Xn+hZCrkra ZCr:1-
r=1 r=1

Gn(Xn)

o ke :=f(to+ arh,xo + h0, bks), 37, bs=ar.
» Conventional linear multi-step method:

p
Xnpi 1= Z(aixn—i + hBifn—i) +hB_1fni1.

i=0

G(Xn,--.,Xn—p)

» Special purpose geometric integrator .....
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Sarkovskii’s Theorem

Consider the iteration
Xkp1 = F(Xk),
where f : R — R is continuous.

A number X is of period m if X, = xo and having least period m if
Xk # Xo forall 0 < k < m.

Arrange positive integers in the following ordering:
3,5,7,9,...,2.3,2.5,2.7,...,22.3,22.5_...,24 23 22 2 1.

Sharkovskii’s theorem:
e If f has a periodic point of least period m and m < nin the above
ordering, then f has also a periodic point of least period n.

Remarkable for its lack of hypotheses and its qualitative
universality.



Mutual Implications

O@0000

Two Different Views

Numerical Analysis

Dynamical System

Consider systems with only triv-
ial asymptotic behavior.

Interested in systems with more
complicated behavior.

Concerned about convergence
and stability.

Study overall trajectories.

Meant to trace the flow of ODEs
with reliable and reasonable ac-
curacy — local behavior of the
trajectory.

Want to differentiate the intrinsic
geometric structure — long-term
behavior of the trajectory.

Meant to converge to a unique
equilibrium point.

Search for limit cycles, bifurca-
tions, or strange attractors.
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Logistic Equation

adx
i x(1—x), x(0)=xp.

» Exact solution:
Xo

- Xo +e (1 —x0)’

x(t)

e Converge to the equilibrium x(co) = 1 for any initial value x; # 0.
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Explicit Euler Iteration

Xk+1 = Xk + exk(1 — Xk), €= step size.

» Fix t, x, — x(t) as n — oo in the sense of e = L.

» With n= [%1 and 0 < € < 3, plot the absolute error |x, — x(ne)|.
e Theoretic error estimate O(e).

» Fix ¢, iterate the Euler step 5000 times to see the limit points.

o A cascade of period doubling as ¢ increases.
e The equilibrium x(c0) = 1 is not even an attractor for large e.
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Implicit Euler Iterations

X1 = Xk + X1 (1 — Xkat),
Xkr1 = Xg+ EXk(1 — Xk+1).

» Converge to the equilibrium x(co0) = 1 for any step size e.

» Points to ponder:

¢ Distinguish limiting behavior between an iterative algorithm
designed originally to solve a specific problem and a discrete
approximation of a differential system formulated to mimic an
existing iterative algorithm.

¢ Distinguish asymptotic behavior between a differential system
developed originally from a specific realization process and its
discrete approximation which becomes an iterative scheme.
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Gradient Flow

ax
g —VF(x), x(0)=xo,

» F:R" — R is a specified smooth objective function.

» Goal: Find the limit point x* = lim;_., X(t) of the gradient flow
x(1).

» Wish list:

¢ Do not want to solve the equation VF(x) = 0 by Newton-like
methods.

e Ignore the gradient property.
e Might locate undesirable, dynamically unstable critical points.

¢ Do not want to follow the solution curve x(t) closely.
e Too expensive computation at the transient state.
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Pseudo-transient Continuation

Idea: Stay near the true trajectory, but not strive for accuracy.
Employ one implicit Euler step with step size «:

Xk11 = Xk — ekVF(Xk+1 )

Perform only one correction using one Newton iteration starting
at x, and accept the outcome as x1.

1 —1
Xis1 = Xk — <€k -+ VZF(xk)) VF(Xk).

The step size changes the nature of iterations.
e Small values of ¢x = Scheme behaves like a steepest descent
method.
e Large values of ex = Scheme behaves like a Newton iteration.
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Hamiltonian Flow

{75?’ I
da — (g H}, s

with Poisson bracket

n
Y- (o009 of og
{f, g9} -—;(aq,ap,_apfaq/>.

» Goal: Find the long-term evolution behavior.
» Wish list:

e Want to keep the simplectic form dp A dq invariant =- Preserving
qualitative properties of phase space trajectories.
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Runge-Kutta Methods

al| B
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> If m; := cib; + ¢jbj — cic; =0forall 1 </,j < R, then the RK
method is simplectic. (Sanz-Serna’88).

» Gauss-Legengre RK methods are simplectic.
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