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Motivation

“What is the simplest form to which a family of matrices
depending smoothly on the parameters can be reduced by a
change of coordinates depending smoothly on the
parameters?"

– V. I. Arnold in Geometric Methods in the Theory of
Ordinary Differential Equations, 1988

• What is the simplest form referred to here?
• What kind of continuous change can be employed?
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Realization via Transformation

• In linear algebra, transformations are often used to reduce a
matrix into its simplest form so as to agilely think and retrieve
inherent information.
• The simplest form usually refers to structures such as diagonal,

triangular, or Hessenberg matrices.
• There are other types of simplest forms such as matrix

factorizations.

• The simplest form usually cannot be reached immediately. The
intermediate steps form a dynamical system.
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Toda Lattice
(Symes’82, Deift el al’83)

dX
dt

= [X ,Π0(X )]

X (0) = X0.

• Lie algebra decomposition:

X = X− − X−>︸ ︷︷ ︸
Π0(X)

+ X o + X+ + X−>︸ ︷︷ ︸
Π1(X)

.

• Sampled at integer times, {X (k)} gives the same sequence as
does the QR algorithm applied to the matrix A0 = exp(X0).
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Double Bracket Flow
(Brocket’88, Chu&Driessel’90)

dX
dt

= [X , [X , N]]

X (0) = Λ.

• With X := QT ΛQ, this is a projected gradient flow for

Minimize F (Q) :=
1
2
||QT ΛQ − N||2

Subject to QT Q = I.

• Flow X (t) moves in a descent direction to reduce ||X − N||2.
• The optimal solution X can be fully characterized by the spectral

decomposition of N and is unique (Wiedlandt-Hoffman
Theorem).



Motivation Matrix Groups and Actions Canoncial Forms Objective Functions Conclusion

Equivalence

• (Bloch’90) Suppose X is tridiagonal. Take

N = diag{n, . . . , 2, 1},

then
[X , N] = Π0(X ).

• A gradient flow hence becomes a Hamiltonian flow.
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Matrix Groups and Actions

Lots of transformations used in numerical linear algebra are the
results of group actions.
• What groups can be used?
• What actions can be taken?
• What results can be expected?
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Matrix Groups

• A subset of nonsingular matrices (over any field) closed under
matrix multiplication and inversion is called a matrix group.
• Matrix groups are central in many parts of mathematics and

applications.
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Examples of Matrix Groups

Group Subgroup Notation Characteristics

General linear Gl(n) {A ∈ Rn×n| det(A) 6= 0}

Special linear S l(n) {A ∈ Gl(n)| det(A) = 1}

Upper triangular U(n) {A ∈ Gl(n)|A is upper triangular}

Unipotent Unip(n) {A ∈ U(n)|aii = 1 for all i}

Orthogonal O(n) {Q ∈ Gl(n)|Q>Q = I}

Generalized orthogonal OS (n) {Q ∈ Gl(n)|Q>SQ = S}; S is a fixed matrix

Symplectic Sp(2n) OJ (2n); J :=

24 0 I

−I 0

35
Lorentz Lor(n, k) OL(n + k); L := diag{1, . . . , 1| {z }

n

,−1, . . . − 1| {z }
k

}

Affine Aff (n)

8<:
24 A t

0 1

35 | A ∈ Gl(n), t ∈ Rn

9=;
Translation T rans(n)

8<:
24 I t

0 1

35 | t ∈ Rn

9=;
Isometry Isom(n)

8<:
24 Q t

0 1

35 | Q ∈ O(n), t ∈ Rn

9=;
Center of G Z (G) {z ∈ G|zg = gz, for every g ∈ G}, G is a given group

Product of G1 and G2 G1 × G2 (g1, g2) ∗ (h1, h2) := (g1h1, g2h2)
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Lie Groups

• A smooth manifold which is also a group where the multiplication
and the inversion are smooth maps is called a Lie group.
• The most remarkable feature of a Lie group is that the structure is

the same in the neighborhood of each of its elements.
• (Howe’83) Every (non-discrete) matrix group is in fact a Lie

group.
• Algebra and geometry are intertwined in the study of matrix groups.

• The Hessenberg group, Hess(n) := Unip(n)/Zn, is a Lie group,
but not a matrix group.
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Group Actions

• A function µ : G × V −→ V is said to be a group action of G on a
set V if and only if
• µ(gh, x) = µ(g, µ(h, x)) for all g, h ∈ G and x ∈ V.
• µ(e, x) = x, if e is the identity element in G.

• Given x ∈ V, two important notions associated with a group
action µ:
• The stabilizer of x is

StabG(x) := {g ∈ G|µ(g, x) = x}.

• The orbit of x is

OrbG(x) := {µ(g, x)|g ∈ G}.
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Examples of Group Actions

Set V Group G Action µ(g, A) Application

Rn×n Any subgroup g−1Ag conjugation

Rn×n O(n) g>Ag orthogonal similarity

Rn×n × . . . × Rn×n| {z }
k

Any subgroup (g−1A1g, . . . , g−1Ak g) simultaneous reduction

S(n) × SPD (n) Any subgroup (g>Ag, g>Bg) symm. positive definite

pencil reduction

Rn×n × Rn×n O(n) × O(n) (g>1 Ag2, g>1 Bg2) QZ decomposition

Rm×n O(m) × O(n) g>1 Ag2 singular value decomp.

Rm×n × Rp×n O(m) × O(p) × Gl(n) (g>1 Ag3, g>2 Bg3) generalized

singular value decomp.
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Some Exotic Group Actions (yet to be studied!)

• In numerical analysis, it is customary to use actions of the
orthogonal group to perform the change of coordinates for the
sake of cost efficiency and numerical stability.
• What could be said if actions of the isometry group are used?

• Being isometric, stability is guaranteed.
• The inverse of an isometry matrix is easy.»

Q t
0 1

–−1
=

»
Q> −Q>t
0 1

–
.

• The isometry group is larger than the orthogonal group.
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Actions with Shift or Scaling

• What could be said if actions of the orthogonal group plus shift
are used?

µ((Q, s), A) := Q>AQ + sI, Q ∈ O(n), s ∈ R+.

• What could be said if action of the orthogonal group with scaling
are used?

µ((Q, s), A) := sQ>AQ, Q ∈ O(n), s ∈ R×,

or

µ((Q, s, t), A) := diag{s}Q>AQdiag{t}, Q ∈ O, s, t ∈ Rn
×.
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Using the Group Actions

• Given a group G and its action µ on a set V, the associated orbit
OrbG(x) characterizes the rule by which x is to be changed in V.
• Merely an orbit is often too “wild" to be readily traced for finding the

“simplest form" of x.

• Depending on the applications, a path or differential equation
needs to be built on the orbit to connect x to its simplest form.
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Embedded Environment

• A differential equation on the orbit OrbG(x).
• Lax dynamics on X (t).
• Usually difficult to maintain the innate properties.

• A differential equation on the group G.
• Parameter dynamics on g1(t) or g2(t).
• Can take advantage of the group structure.
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Following the Orbits

• To stay in either the orbit or the group, the vector field of the
dynamical system must be distributed in the tangent space of the
corresponding manifold.
• Most of the tangent spaces for the matrix groups can be calculated

explicitly.

• If some kind of objective function has been used to control the
connecting bridge, its gradient should be projected to the tangent
space.
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Tangent Space in General
• Given a matrix group G ≤ Gl(n), the tangent space to G at A ∈ G

can be defined as

TAG := {γ′(0)|γ is a differentiable curve in G with γ(0) = A}.

• The tangent space g = TIG at the identity I is critical.
• g is a Lie subalgebra in Rn×n, i.e.,

If α′(0), β′(0) ∈ g, then [α′(0), β′(0)] ∈ g

• The tangent space of a matrix group has the same structure
everywhere, i.e.,

TAG = Ag.

• TIG can be characterized as the logarithm of G, i.e.,

g = {M ∈ Rn×n| exp(tM) ∈ G, for all t ∈ R}.
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Examples of Tangent Spaces

Group G Algebra g Characteristics

Gl(n) gl(n) Rn×n

S l(n) sl(n) {M ∈ gl(n)|trace(M) = 0}

Aff (n) aff (n) {

24 M t

0 0

35 |M ∈ gl(n), t ∈ Rn}

O(n) o(n) {K ∈ gl(n)|K is skew-symmetric}

Isom(n) isom(n) {

24 K t

0 0

35 | K ∈ o(n), t ∈ Rn}

G1 × G2 T(e1,e2)G1 × G2 g1 × g2
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An Illustration of Projection

• The tangent space of O(n) at any orthogonal matrix Q is

TQO(n) = QK(n)

where
K(n) = {All skew-symmetric matrices}.

• The normal space of O(n) at any orthogonal matrix Q is

NQO(n) = QS(n).

• The space Rn×n is split as

Rn×n = QS(n)⊕QK(n).
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• A unique orthogonal splitting of X ∈ Rn×n:

X = Q(QT X ) = Q
{

1
2

(QT X − X T Q)}+ Q{1
2

(QT X + X T Q)

}
.

• The projection of X onto the tangent space TQO(n) is given by

ProjTQO(n)X = Q
{

1
2

(QT X − X T Q)

}
.
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Canonical Forms

• A canonical form refers to a “specific structure" by which a certain
conclusion can be drawn or a certain goal can be achieved.

• The superlative adjective “simplest" is a relative term which
should be interpreted broadly.
• A matrix with a specified pattern of zeros, such as a diagonal,

tridiagonal, or triangular matrix.
• A matrix with a specified construct, such Toeplitz, Hamiltonian,

stochastic, or other linear varieties.
• A matrix with a specified algebraic constraint, such as low rank or

nonnegativity.



Motivation Matrix Groups and Actions Canoncial Forms Objective Functions Conclusion

Examples of Canonical Forms

Canonical form Also know as Action

Bidiagonal J Quasi-Jordan Decomp., P−1AP = J,

A ∈ Rn×n P ∈ Gl(n)

Diagonal Σ Sing. Value Decomp., U>AV = Σ,

A ∈ Rm×n (U, V ) ∈ O(m) × O(n)

Diagonal pair (Σ1, Σ2) Gen. Sing. Value Decomp., (U>AX, V>BX) = (Σ1, Σ2),

(A, B) ∈ Rm×n × Rp×n (U, V, X) ∈ O(m) × O(p) × Gl(n)

Upper quasi-triangular H Real Schur Decomp., Q>AQ = H,

A ∈ Rn×n Q ∈ O(n)

Upper quasi-triangular H Gen. Real Schur Decomp., (Q>AZ, Q>BZ ) = (H, U),

Upper triangular U A, B ∈ Rn×n Q, Z ∈ O(n)

Symmetric Toeplitz T Toeplitz Inv. Eigenv. Prob., Q>diag{λ1, . . . , λn}Q = T ,

{λ1, . . . , λn} ⊂ R is given Q ∈ O(n)

Nonnegative N ≥ 0 Nonneg. inv. Eigenv. Prob., P−1diag{λ1, . . . , λn}P = N,

{λ1, . . . , λn} ⊂ C is given P ∈ Gl(n)

Linear variety X Matrix Completion Prob., P−1{λ1, . . . , λn}P = X ,

with fixed entries {λ1, . . . , λn} ⊂ C is given P ∈ Gl(n)

at fixed locations Xiν ,jν = aν , ν = 1, . . . , `

Nonlinear variety Test Matrix Construction, P−1ΛP = U>ΣV

with fixed singular values Λ = diag{λ1, . . . , λn} and P ∈ Gl(n), U, V ∈ O(n)

and eigenvalues Σ = diag{σ1, . . . σn} are given

Maximal fidelity Structured Low Rank Approx.
“

diag
“

USS>U>
””−1/2

USV> ,

A ∈ Rm×n (U, S, V ) ∈ O(m) × Rk
× × O(n)
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Objective Functions

• The orbit of a selected group action only defines the rule by
which a transformation is to take place.

• Properly formulated objective functions helps to control the
construction of a bridge between the current point and the
desired canonical form on a given orbit.
• The bridge often assumes the form of a differential equation on the

manifold.
• The vector field of the differential equation must distributed over the

tangent space of the manifold.
• Corresponding to each differential equation on the orbit of a group

action is a differential equation on the group, and vice versa.

• How to choose appropriate objective functions?
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Flows on OrbO(n)(X ) under Conjugation

• Toda lattice arises from a special mass-spring system
(Symes’82, Deift el al’83),

dX
dt

= [X ,Π0(X )], Π0(X ) = X− − X−>,

X (0) = tridiagonal and symmetric.

• No specific objective function is used, but physics laws govern the
definition of the vector field.



Motivation Matrix Groups and Actions Canoncial Forms Objective Functions Conclusion

• Generalization to general matrices is totally by brutal force and
blindness (and by the then young and desperate researchers)
(Chu’84, Watkins’84).

dX
dt

= [X ,Π0(G(X ))], G(z) is analytic over spectrum of X (0).

• But nicely explains the pseudo-convergence and convergence
behavior of the classical QR algorithm for general and normal
matrices, respectively.

• Sorting of eigenvalues at the limit point is observed, but not quite
clearly understood.



Motivation Matrix Groups and Actions Canoncial Forms Objective Functions Conclusion

• Double bracket flow (Brockett’88),

dX
dt

= [X , [X , N]], N = fixed and symmetric.

• This is the projected gradient flow of the objective function

Minimize F (Q) :=
1
2
||QT ΛQ − N||2,

Subject to QT Q = I.

• Sorting is necessary in the first order optimality condition
(Wielandt&Hoffman’53).

• Take a special N = diag{n, n − 1, . . . , 2, 1},
• X is tridiagonal and symmetric =⇒ Double bracket flow ≡ Toda

lattice (Bloch’90).
• Bingo! The classical Toda lattice does have an objective function in

mind.

• X is a general symmetric matrix =⇒ Double bracket = A specially
scaled Toda lattice.
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• Scaled Toda lattice (Chu’95),

dX
dt

= [X , K ◦ X ], K = fixed and skew-symmetric.

• Flexible in componentwise scaling.
• Enjoy very general convergence behavior.
• But still no explicit objective function in sight.
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Flows on OrbO(m)×O(n)(X ) under Equivalence

• Any flow on the orbit OrbO(m)×O(n)(X ) under equivalence must
be of the form

dX
dt

= X (t)h(t)− k(t)X (t), h(t) ∈ K(n), k(t) ∈ K(m).
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• QZ flow (Chu’86),

dX1

dt
= X1Π0(X−1

2 X1)− Π0(X1X−1
2 )X1,

dX2

dt
= X2Π0(X−1

2 X1)− Π0(X1X−1
2 )X2, .

• SVD flow (Chu’86),

dY
dt

= YΠ0
(
Y (t)>Y (t)

)
− Π0

(
Y (t)Y (t)>

)
Y ,

Y (0) = bidiagonal.

• The "objective" in the design of this flow was to maintain the
bidiagonal structure of Y (t) for all t .

• The flow gives rise to the Toda flows for Y>Y and YY>.
• Votka-Volterra equation (Nakamura’01).
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Projected Gradient Flows

• Given
• A continuous matrix group G ⊂ Gl(n).
• A fixed X ∈ V where V ⊂ Rn×n be a subset of matrices.
• A differentiable map f : V −→ Rn×n with a certain “inherent"

properties, e.g., symmetry, isospectrum, low rank, or other
algebraic constraints.

• A group action µ : G × V −→ V.
• A projection map P from Rn×n onto a singleton, a linear subspace,

or an affine subspace P ⊂ Rn×n where matrices in R carry a certain
desired structure, e.g., the canonical form.

• Minimize the functional F : G −→ R

F (g) :=
1
2
‖f (µ(g, X ))− P(µ(g, X ))‖2

F .
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Flow Approach

• Compute ∇F (g).
• Project ∇F (g) onto TgG.
• Follow the projected gradient until convergence.
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Some Old Examples

• Brockett’s double bracket flow (Brockett’88).
• Least squares approximation with spectral constraints

(Chu&Driessel’90, Nakamura’92-98).

dX
dt

= [X , [X , P(X )]].

• Simultaneous reduction problem (Chu’91),

dXi

dt
=

Xi ,

p∑
j=1

[Xj , PT
j (Xj)]−[Xj , PT

j (Xj)]
T

2


Xi(0) = Ai
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• Nearest normal matrix problem (Chu’91),

dW
dt

=

[
W ,

1
2
{[W , diag(W ∗)]− [W , diag(W ∗)]∗}

]
W (0) = A.

• Matrix with prescribed diagonal entries and spectrum
(Schur-Horn Theorem) (Chu’95),

Ẋ = [X , [diag(X )− diag(a), X ]]
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• Inverse generalized eigenvalue problem for symmetric-definite
pencil (Chu&Guo’98).

Ẋ = −
(
(XW )T + XW

)
,

Ẏ = −
(
(YW )T + YW

)
,

W := X (X − P1(X )) + Y (Y − P2(Y )).

• Various structured inverse eigenvalue problems (Chu&Golub’02).
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New Thoughts

• The idea of group actions, least squares, and the corresponding
gradient flows can be generalized to other structures such as
• Stiefel manifold O(p, q) := {Q ∈ Rp×q |QT Q = Iq}.
• The manifold of oblique matrices
OB(n) := {Q ∈ Rn×n|diag(Q>Q) = In}.

• Cone of nonnegative matrices.
• Semigroups.
• Low rank approximation.

• Using the product topology to describe separate groups and
actions might broaden the applications.

• Any advantages of using the isometry group over the orthogonal
group?
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Stochastic Inverse Eigenvalue Problem

• Construct a stochastic matrix with prescribed spectrum
• A hard problem (Karpelevic’51, Minc’88).
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• Would be done if the nonnegative inverse eigenvalue problem is
solved – a long standing open question.
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Least Squares Formulation

Minimize F (g, R) :=
1
2
||gJg−1 − R ◦ R||2

Subject to g ∈ Gl(n), R ∈ gl(n).

• J = Real matrix carrying spectral information.
• ◦ = Hadamard product.
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Steepest Descent Flow

dg
dt

= [(gJg−1)T , α(g, R)]g−T

dR
dt

= 2α(g, R) ◦ R.

• α(g, R) := gJg−1 − R ◦ R.
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ASVD Flow for g
(Bunse-Gerstner et al’91, Wright’92)

g(t) = X (t)S(t)Y (t)T

ġ = ẊSY T + XṠY T + XSẎ T

X T ġY = X T Ẋ︸ ︷︷ ︸
Z

S + Ṡ + S Ẏ T Y︸ ︷︷ ︸
W

Define Q := X T ġY . Then

dS
dt

= diag(Q).

dX
dt

= XZ .

dY
dt

= YW .
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Nonnegative Matrix Factorization

• For various applications, given a nonnegative matrix A ∈ Rm×n,
want to

min
0≤V∈Rm×k ,0≤H∈Rk×n

1
2
‖A− VH‖2

F .

• Relatively new techniques for dimension reduction applications.
• Image processing — no negative pixel values.
• Data mining — no negative frequencies.

• No firm theoretical foundation available yet (Tropp’03).
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• Relatively easy by flow approach!

min
E∈Rm×k ,F∈Rk×n

1
2
‖A− (E ◦ E)(F ◦ F )‖2

F .

• Gradient flow:

dV
dt

= V ◦ (A− VH)H>),

dH
dt

= H ◦ (V>(A− VH)).

• Once any entry of either V or H hits 0, it stays zero. This is a
natural barrier!

• The first order optimality condition is clear.
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Conclusion

• Many operations used to transform matrices can be considered
as matrix group actions.

• The view unifies different transformations under the same
framework of tracing orbits associated with corresponding group
actions.
• More sophisticated actions can be composed that might offer the

design of new numerical algorithms.
• As a special case of Lie groups, tangent space structure of a matrix

group is the same at every of its element. Computation is easy and
cheap.
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• It is yet to be determined how a dynamical system should be
defined over a group so as to locate the simplest form.
• The notion of “simplicity" varies according to the applications.
• Various objective functions should be used to control the dynamical

systems.
• Usually offers a global method for solving the underlying problem.

• Group actions together with properly formulated objective
functions can offer a channel to tackle various classical or new
and challenging problems, even those where conventional
discrete methods seems to be impossible.

• New computational techniques for structured dynamical systems
on matrix group will further extend and benefit the scope of this
interesting topic.
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