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Basic Dynamics
I Lax dynamics:

dX (t)
dt

:= [X (t), k1(X (t))]

X (0) := X0.

I Parameter dynamics:

dg1(t)
dt

:= g1(t)k1(X (t))

g1(0) := I.

and

dg2(t)
dt

:= k2(X (t))g2(t)

g2(0) := I.

• k1(X ) + k2(X ) = X .
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Similarity Property

X (t) = g1(t)−1X0g1(t) = g2(t)X0g2(t)−1.

I Define Z (t) = g1(t)X (t)g1(t)−1.
I Check

dZ
dt

=
dg1

dt
Xg−1

1 + g1
dX
dt

g−1
1 + g1X

dg−1
1

dt
= (g1k1(X ))Xg−1

1 + g1(Xk1(X )− k1(X )X )g−1
1

+g1X (−k1(X )g−1
1 ) = 0.

I Thus Z (t) = Z (0) = X (0) = X0.
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Factorization Property

exp(tX0) = g1(t)g2(t).

I Trivially exp(X0t) satisfies the IVP

dY
dt

= X0Y ,Y (0) = I.

I Define Z (t) = g1(t)g2(t).
I Then Z (0) = I and

dZ
dt

=
dg1

dt
g2 + g1

dg2

dt
= (g1k1(X ))g2 + g1(k2(X )g2) = g1Xg2

= X0Z (by Similarity Property).

I By the uniqueness theorem in ODEs, Z (t) = exp(X0t).
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Reversal Property

exp(tX (t)) = g2(t)g1(t).

I By Factorization Property,

g2(t)g1(t) = g1(t)−1exp(X0t)g1(t)
= exp(g1(t)−1X0g1(t)t)
= exp(X (t)t).
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Abstract QR-type Factorization

I Arbitrary subspace splitting gl(n) ⇐⇒ Factorization of a
one-parameter semigroup in the neighborhood of I as the
product of two nonsingular matrices , i.e.,

exp(X0t) = g1(t)g2(t).

• Lie algebra splitting of gl(n)⇐⇒ Lie group decomposition of Gl(n)
in the neighborhood of I.

I The product g1(t)g2(t) will be called the abstract g1g2
factorization of exp(X0t).
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Abstract QR-type Algorithm

I By setting t = 1, we have

exp(X (0)) = g1(1)g2(1)

exp(X (1)) = g2(1)g1(1).

I The dynamical system for X (t) is autonomous =⇒ The above
phenomenon will occur at every feasible integer time.

I Corresponding to the abstract g1g2 factorization, the above
iterative process at all feasible integers is regarded as an
abstract g1g2 algorithm.
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Toda Flow

I Lie algebra splitting:
• Write

X = X− − X−
>| {z }

Π0(X)

+ X 0 + X+ + X−
>| {z }

Π1(X)

.

where X o is the diagonal, X+ the strictly upper triangular, and X−

the strictly lower triangular part of X .
• gl(n) = {skew symmetric}

L
{upper triangular}.

I The Toda lattice (Symes’82, Deift el al’83):

dX
dt

= [X ,Π0(X )]

X (0) = X0.



Basic Dynamics Complete Integrability Measure, Moment and Orthogonality Tau Function Techniques Conclusion

QR Algorithm and Limiting Behavior

I QR flows in two Lie subgroups,

dQ(t)
dt

:= Q(t)Π0(X (t)), Q(0) := I ⇒ Q(t) is orthogonal.

dR(t)
dt

:= Π1(X (t))R(t), R(0) := I ⇒ R(t) is upper triangular.

I Samples at integer times,
• {X (k)} gives the same sequence as does the QR algorithm

applied to the matrix A0 = exp(X0).
I An isospectral flow starting from X0,

• Toda lattice is a Hamiltonian system.
• Certain physical quantities are kept at constant, i.e., this is a

completely integrable system.
• Asymptotic behavior can be analyzed via ODE theory.
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Mimicry versus Embedment

I A continuous system that mimics the dynamical behavior of a
discrete system is easy to generate.

I The correspondence between the QR algorithm and the Toda
lattice exhibits a new type of involvement.

• The result of an iterative scheme is entirely “embedded" in the
solution curve of a continuous dynamical system.

• The solution curve of a differential equation smoothly “interpolates"
all points generated by a discrete dynamical system.
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Mutual Implications

Iterative
Scheme

Differential 
System

Time-1
Sampling

Discrete
Approximation
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Generalized Toda Lattice

I Pseudo convergence:
• The QR algorithm can be applied to general nonsymmetric

matrices.
• If A0 has complex eigenvalues, the QR iterates do not converge to

any fixed limit point, but to a block upper triangular “form" with at
most 1× 1 or 2× 2 blocks along the main diagonal.

• The QR algorithm produces only the upper quasi-triangular form,
but not any fixed matrix, in its limiting behavior.

I Limit cycle:
• The Toda flow applied to a nonsymmetric matrix X0 does not have

any asymptotically stable equilibrium point in general.
• The flow converges to an upper quasitriangular form where each of

the 2× 2 blocks actually represents an ω-limit cycle.
• The limit cycle behavior of the Toda flow offers a theoretical

explanation of the pseudo-convergence behavior of the QR
algorithm.



Basic Dynamics Complete Integrability Measure, Moment and Orthogonality Tau Function Techniques Conclusion

Informal Definitions

I A differential system is said to be completely integrable
• ⇔ It enjoys infinitely many conservation laws.
• ⇔ It can be expressed in terms of a Lax pair.

I The existence of a Lax pair allows to apply (at least formally)
inverse scattering techniques to solve a completely integrable
equation.
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KdV and Schrödinger Equations

Compatibility Condition

dL
dt

= [B,L]

[

∂
∂x
, x

]

= id

KdV Equation

∂u
∂t

+ 6u∂u
∂x

+ ∂3u
∂x3 = 0

Schrödinger Equation

Lψ = λψ

∂ψ
∂t

= Bψ

Lψ := ∂2ψ

∂x2 + uψ

Bψ := −4∂
3ψ

∂x3 − 6u∂ψ
∂x
− 3∂u

∂x
ψ

Alg. Eigenvalue Problem
dX
dt

= [k2(X), X ]

dψ
dt

= k2(X)ψ

λ invariant

1
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Time Invariant Eigenvalues
I Suppose L and B are general time-dependent operators

satisfying

Lψ = λψ

∂ψ

∂t
= Bψ.

I If λ is time invariant, then

dL
dt
ψ + L

∂ψ

∂t︸︷︷︸
Bψ

= λ
∂ψ

∂t︸︷︷︸
Bψ

.

I The Lax dynamics:
dL
dt

= BL− LB.

• Regardless how B and L are defined.
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Schrödinger Operator

L :=
∂2

∂x2 + u.

I dL
dt = ∂u

∂t is but a multiplication.
I Fundamental operation:[

∂

∂x
, x

]
︸ ︷︷ ︸

identity

ψ =

(
∂

∂x
x − x

∂

∂x

)
ψ =

∂

∂x
(xψ)− x

∂

∂x
ψ = ψ.
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Searching Operator B

I Try B0 = ∂
∂x ⇒

∂u
∂t = [B0,L] = ∂u

∂x .
• This is a trivial translation.

I Try B1 = ∂3

∂x3 + b ∂
∂x + ∂

∂x b.

[B1,L] =
∂3u
∂x3 + 3

∂2u
∂x2

∂

∂x
+ 3

∂u
∂x

∂2

∂x2 + 2b
∂u
∂x

−4
∂b
∂x

∂2

∂x2 − 4
∂2b
∂x2

∂

∂x
− ∂3b
∂x3

• Choose b = 3
4 u ⇒ [B1, L] = 1

4
∂3u
∂x3 + 3

2 u ∂u
∂x .

I Choose B := −4B1 ⇒
• B = − ∂3

∂x3 − 3u ∂
∂x − 3 ∂

∂x u
• dL

dt = BL− LB (Lax Dynamics) ⇔ ∂u
∂t + 6u ∂u

∂x + ∂3u
∂x3 = 0 (KdV

equation).
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Some Basic Notions about Computation

I Central theme in the game.
• Engage dynamical systems such as the Lax dynamics.
• Maintain isospectrality.

I Most conventional numerical ODE methods, in particular the
linear multi-step and the Runge-Kutta schemes, cannot preserve
isospectral flows (Calvo, Iserles & Zanna, ’97).
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One Quick Remedy

I Bypass the isospectrality.
• Perform numerical integration over the parameter dynamical

system.
• Employ the similarity property to reclaim X (t).

I Solving the parameter dynamical system still requires the
preservation of some structures, but can be handled more easily.

• Orthogonal integrators (Dieci, Russell & Van Vleck, ’94).
• Projections.
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Two (Three) Avenues of Attack

I Follow the paradigm of discretization from the classical numerical
analysis prospective.

I Geometric integrator.
• Numerical schemes that preserve geometric properties, such as

properties of the exact flow of a differential equation.
• Symplectic integrators.
• Lie group integrators.
• Volume preserving integrators.
• Energy preserving integrators.
• Integrators preserving first integrals and Lyapunov functions.
• Integrators preserving coadjoint orbits and Casimirs.
• Lagrangian and variationial integrators.
• Integrators respecting Lie symmetries.
• Integrators preserving contact structures.

• Very active reserach subject at the moment.
I Integrable discretization.

• Can be considered as a special geometric integrator.
• Few research results.
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Orthogonal Polynomials

I Orthogonal polynomials with respect to a given a measure µ(x),∫
pk (x)p`(x) dµ(x) = δk,`, k , ` = 0,1, . . . .

I Three-term recurrence relationship.

xpk (x) = ak pk+1(x) + bk pk (x) + ak−1pk−1(x), k = 1,2, . . . ,

with p−1(x) ≡ 0 and p0(x) ≡ 1.
I Corresponding monic polynomials {p̃k (x)}k ,

xp̃k (x) = p̃k+1 + bk p̃k (x) + a2
k−1p̃k−1(x).
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Hankel Determinants

Hk := det


s0 s1 . . . sk−1
s1 s2 sk
...

...
sk−1 sk . . . s2k−2

 .
I sj are moments with respect to µ,

sj :=

∫
x j dµ(x), j = 0,1, . . . .
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Classical Moment Problem

I p̃k (x) is given by (Akhiezer’65,Szegö’75),

p̃k (x) =
1

Hk
det


s0 s1 . . . sk
s1 s2 sk+1
...

...
sk−1 sk . . . s2k−1

1 x . . . xk

 ,
= xk + c(k)

1 xk−1 + . . .+ c(k)
k−1x + c(k)

k ,

I

c(k)
j =

(−1)j

Hk
det


s0 . . . sk−j−1 sk−j+1 . . . sk
s1 sk+1
...

...
...

...
sk−1 . . . s2k−j−2 s2k−j . . . s2k−1

 .
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Polynomials in Moments

I By comparing the corresponding coefficients,

a2
k =

Hk Hk+2

H2
k+1

,

bk = c(k)
1 − c(k+1)

1 .

I A classical result.

µ(x) sj ! Hk  pk (x)! {ak−1,bk}.
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Measure Deformation

I Rewrite orthogonality in matrix form,
b0 a0 0
a0 b1 a1 0
0 a1 b2 a2 0

. . . . . . . . . . . . . . .


︸ ︷︷ ︸

J


p0(x)
p1(x)
p2(x)

...

 = x


p0(x)
p1(x)
p2(x)

...

 .

I What can be said about

µ(x ; t)! J(t),

if the measure is time dependent?
• This is a hard inverse moment problem.
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Semi-infinite Toda Lattice

I If J(t) follows the Toda flow, that is, if

dak

dt
= ak (bk+1 − bk ),

dbk

dt
= 2(a2

k − a2
k−1),

with a−1 ≡ 0, then (Moser’75)

dµ(x ; t) := etxdµ(x ; 0).
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Moment Generator for Toda Lattice

s`+1 =
ds`
dt

, ` = 0,1, . . .
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orthogonal polynomialmeasure

moments

three-term recurrence

three-term recurrence

measure deformation
measure deformation

time dependent coeff.
time dependent coeff.

SVD Alg.
QR Alg.

µ(x) {p̃k(x)}k

sj =
∫

xjdµ(x)

Hankel determinants

Toda
Lotka-Volterra

xp̃k = p̃k+1 + bkp̃k + a2
k−1p̃k−1

xp̃k = p̃k+1 + a2
k−1p̃k−1

ȧk = ak(bk+1 − bk),

ḃk = 2(a2
k − a2

k−1
) u̇k = uk(uk+1 − uk−1),

uk(t) = b2

k(t/2)

dµ(x; t) = etxdµ(x)
dµ(x; t) = etx2

dµ(x)
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Finite-Dimensional Eigenvalue Problem

I Truncation.

b0 a0 0
a0 b1 a1 0
0 a1 b2 a2 0

. . . . . . . . .
an−2

0 an−2 bn−1


︸ ︷︷ ︸

L



p0(x)
p1(x)
p2(x)

...

pn−1(x)


+



0
0
0
...

an−1pn(x)


=x



p0(x)
p1(x)
p2(x)

...

pn−1(x)


.

I λ is a root of the polynomial pn(x) if and only if λ is an eigenvalue
of the finite-dimensional tridiagonal matrix L.
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Genius Change of Variables
(Kadomtsev-Petviashvili or Hirota-Miwa Hierarchies)

I Redefine the off-diagonal elements by

ck (t) := a2
k

(
t
2

)
, k = 0,1, . . . .

I Reduce the Toda lattice into a self-contained second-order
system:

d2 ln ck

dt2 = ck+1 − 2ck + ck−1.

I Diagonal elements can be obtained from

d ln ck

dt
= bk+1

(
t
2

)
− bk

(
t
2

)
.
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τ Functions

I Introduce new variables {τk (t)}k implicitly via

ck =
τk+1τk−1

τ2
k

,

so that
ln ck = ln τk+1 − 2 ln τk + ln τk−1.

I Compatibility condition:

ck =
d2 ln τk

dt2 ,
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Solving for τk

I Hirota bilinear form:

τk
d2τk

dt2 −
(

dτk

dt

)2

= τk−1τk+1, (1)

• τ0 ≡ 1.
I Starting with τ1 = φ(t), then

τ2(t) = φ
d2φ

dt2 −
(

dφ
dt

)2

,

τ3(t) = −
(

d2φ

dt2

)3

+ φ

(
d2φ

dt2

)
d4φ

dt4 −
(

dφ
dt

)2 d4φ

dt4

+2
(

dφ
dt

) (
d2φ

dt2

)
d3φ

dt3 − φ
(

d3φ

dt3

)2

,

...
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Hankel Determinant, again!

I From a given φ(t), define

Ĥk (t) := det


φ φ(1) . . . φ(k−1)

φ(1) φ(2) φ(k)

...
...

φ(k−1) φ(k) . . . φ(2k−2)

 ,

• For abbreviation,

φ(`) =
d`φ

dt`
, ` = 1, 2, . . . .
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Matrix Calculus

I Define Ĥk

[
i
j

]
:= the determinant of the submatrix by deleting

the i th row and the j th column from the matrix defining Ĥk .
I Observe that

dĤk

dt
= Ĥk+1

[
k + 1

k

]
,

d2Ĥk

dt2 = Ĥk+1

[
k
k

]
.

I Recall the Sylvester determinant identity

Ĥk+1Ĥk−1 = det


Ĥk+1

[
k + 1
k + 1

]
Ĥk+1

[
k + 1

k

]
Ĥk+1

[
k

k + 1

]
Ĥk+1

[
k
k

]
 .
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Determinantal Solution

I Ĥk (t) satisfies precisely the Hirota bilinear form.
I Toda lattice is finally solved.

τk (t) = det


φ φ(1) . . . φ(k−1)

φ(1) φ(2) φ(k)

...
...

φ(k−1) φ(k) . . . φ(2k−2)

 .
I Perhaps some smart integrable discretization? (Iwasaki &

Nakamura, ’06)
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Conclusion

I The Toda lattice governs the evolution of a certain class of
orthogonal polynomials whose orthogonality is determined by a
specific time-dependent measure.

I Since the measure deformation is explicitly known, moments can
be calculated which, when properly assembled, lead to the
conclusion abstractly, but literally, that the iterates of the QR
algorithm can be expressed in closed-form!

I Hankel determinantal solutions are too complicated to be useful.
Would a “smart" integrability-preserving discretization of the
Toda lattice yield a useful algorithm for eigenvalue computation?
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