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Singular Value Decomposition

SVD

» Given A € R™" there exist real orthogonal matrices U € R™*™
and V € R"*" such that

=0
A_U[0 O}V

where
Y =diag{o1,...,0:},

withoy > 00> ... >0, > 0.
» Critical decomposition with many important applications.
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SVD Algorithm

(Golub & Kahan, ’65)

» First reduce A to a bidiagonal matrix By via orthogonal
equivalence transformations.
» Critical components:
e Performing the QR algorithm on the product B, B, without explicitly
forming the product.
e The bidiagonal structure is preserved throughout the iteration.
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Make It Continuous

» Assume

B(t) = U(H)ByV(t), U(t) € O(m), V(t) € O(n).
» Necessary format:

daB

~ = BR-LB. B(0)=B.

e Coordinate transformation:

wo_ g,
o L,R € o(n).
ot = VR,

» The choice of skew-symmetric matrix parameters L(t) and R(t)
determines the dynamics.
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Maintain the Bidiagonal Structure

» Want

e B(t) remains bidiagonal for all t.
e L(t), R(t) are tridiagonal and skew-symmetric.
e Good convergence.

» Among many other choices,

L = My(BBT),
R = TMo(B'B).
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SVD Flow

(Chu, ’86)
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» Given a bidiagonal matrix By,

%f — BMo(B"B) — Mo(BB")B, B(0) = By,

o B(t) stays bidiagonal for all t.
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Component Form

» Denote
= di ba(1) ban_2(t)
B(t) := dlag{ b (t) ba(t) bon_1(t) |~
» SVD flow in component form:
{ dbz'kt_1 = b2k71(b§k - bgkfg) for1 < k <n,
e = bok(bB g —bB ) for1<k<n-1.

° bOZbZnEO
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Asymptotic Behavior

» Define Y(t) = BT (t)B(t). Then

dY
=1y

¢ Convergence follows from the Toda dynamics.
» The sequence {B(¢)} by sampling B(t) at integer times
corresponds to the iterates produced by the Golub-Kahan SVD
algorithm.
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Lotka-Volterra Equation

» Change variables,

Upk—1(t) == b3_; (;)»
() = ().

» Continuous-time finite Lotka-Volterra equation,

du
dt
with up(t) = 0 and wap(t) = 0.

:U;((U;(Jr1—u;(,1)7 k:1,2,...,2n—1,
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7 Functions

» Change variables
Tk+2Tk—1

Tk+1Tk

Uk =

so that
dlInuyg d, 7k d Tk

= — n .
at at Tk+1 at Tk—1
» A compatibility condition,
ThyoThk—1 O | Tkyd

=—In
Tk+1Tk dt Tk ’

or equivalently,

ﬁT —Tdi+1+T T =0
at k+1 k at k—1Tk+2 — VY.

Conclusion
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Determinantal Solution
» Starting with 7_1 =0, 0 = 1, 7 (t) = 1 and 72(t) = ¥(?),

Lo 9
3 - dt,
_ ¢ )
o= det[w) p@ |
» In general (Tsujimoto’95),
T2k—1 = ﬁkf1,17
Tok = ﬁk,Oa
where
SO U k=)
- U Ut Utk
Hy j(t) := det . . . , j=0or1,
¢(j+-k—1) w(j-—s-k) w(j+ék—2)

is the determinant of a k x k Hankel matrix.



SVD Dynamics

oooe

SVD Solution

» The general solution to the Lotka-Volterra equation (Tsujimoto,
Nakamura &lwasaki, '01)

Hi1(t)Hi—1,0(t)

Hio(t)Hi—1,1(t)’

Heo@Henal® =y 5
Hi 1 () Hi (1) ’ Y

» Assuming all derivatives of ¢ are obtainable from elementary
calculus,
¢ In principle, all Hankel determinants can be calculated

algebraically.
¢ All quantities about uk(t) are now in the analytic form.
e The SVD flow and, hence, the iterates from the SVD algorithm are

representable in closed form.

Ugk—1(t) =

ng(f)
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Discrete Lotka-Voterra Equation

(Hlrota, Tsujimoto & Imai, ’93)

» A key discretization of the Lotka-Volterra equation is a particular
Euler-type scheme (symplectic Euler) of the form,

U;[fH] _ u,[f] Iy (U;[f] u,[f]1 - U;[fH]U;[fj:])-

o U~ u(06).
« Boundary conditions 1} = 0 and ul] = 0 for all .
» A mixture of both explicit and implicit Euler methods to maintain
integrability.
e Closely resemble the progressive qd algorithm (Rutishauser, '60)
and the dqds algorithm (Fernando & Parlett, '94).
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Variable Step Implementation
lwasaki & Nakamura, 02, ’04, ’06)

a0 (1 0Ty = (14614,

b
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vdLV in Matrix Form

» For each ¢, define

q = gy (1+09d],) (14a9d] ). =1,
G @ 0
e’ = oMuy upl, j=1,...n—1.

» Assemble two n x n bidiagonal matrices,

[ 0 0 ] | el
1 g 0 1
1. . Rl.—
I4
eL]_1
I 1 gy | 1
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Progressive gd Algorithm

(Rutishauser, ’54, ’60)

» The vdLV is equivalent to the matrix equation

Ll glet] _ gla i < 1 1 ) s

st sle+1]
—_—
built-in shift?

Conclusion
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What Is up There?

» Introduce the tridiagonal matrix
1

Q. pla _
Yy .= MR 3 I,.
» Can rewrite
Cwi wlnl 0 0 1
1 WZ[Z] + wg] Wy] Wyl
Y[e] — B
¢ ¢
0 Wz[fl—s W2[r3—2
{4 4
L O 1 Wz[n]fz + W2[rL1 .

o W= " (1 + 6[“u,[f]_1>.
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dqds Algorithm

(Fernando & Parlett, '94)

» The vdLV is equivalent to the similarity relationship

yle+1] — glaylagla—!

o { Y}, are isospectral.

Conclusion
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New Integrals

» Can ensure w}! > 0 as long as ul” > 0 and 5! > 0, which can
easily be achleved.

» Can symmetrize Y via

v .= pla~" vl pld,

o Easy to see that

14 : 14 14 14 4 4 4
01 = i { T /ol ol T ol .. ol L1}
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Singular Values Deviations
> Yg] enjoys a Cholesky decomposition

Y = gl gl

with
W1[e] Wg]
0 We[f] Wy]
B .=

the vdLV are invariant.

[4] [4]
V Won3 \/Wap_2

» Singular values of the bidiagonal matrices {Bl1}, derived from

Conclusion
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Initial Correction

» Want singular values of a given matrix By.
» Constant drift.
» Choose initial values for the vdLV by

2
Jor._ _ bk(0)

= . k=1,2,....2n—1.
C s
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Convergence and Stability
(Nakamura, ’06)

» With any step sizes 611 > 0,

o (Ui Ul U 1, converges to the squares of singular values

of By in descending order.

o ug“;] converges to 0.

» Numerical stability.

¢ No subtraction is involved.
¢ All quantities are bounded by || By]|.

» Greedy thoughts:

e What is the convergence rate?
e How to speed up convergence?
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Constant Step Size 51 = ¢

» Convergence is linear with asymptotic convergence factor

1

Ok+1+ 3

a= max ——2
k=1,n=1 oy + &

e o1 > 02 > ... > op are the singular values of By.
e Larger step sizes might reduce the value of «, but only to a certain
extent.

» There is a built-in shift, but

e Disappear with constant step size.
e Become less effective with larger variable step sizes.
e Need "true" shift to make the vdLV algorithm efficient.
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True Shifts
» The true shift really needed should be of the form
549759 _ gaT gl _ o2

while keeping bidiagonal form

WE@] W[Zé]

0wy /w

¢ ¢
\/W[2r]1—3 \/W[2!]1—2
(4]
L V Wan—1 |

Conclusion
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Computation Scheme

» Nonlinear relationship:

—[ |, =t ¢ 0 2
Wop Wo = Woy o+ Wy =0,
—[g] [ [ [ T
W Whi = Wil wh,

with Wg] = W([f]) =0.

Wg’] """ - W

Conclusion
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mdLV Algorithm

» Without shift,

£+1
e !
k 1 + 6[e+1]ul[(€j-11] )
» With shift,
—[e+1]
w
ul[(€+1] _ k

14 olernglHl

Conclusion
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Conclusion

Conclusion

Powerful discrete dynamical systems such as the QR algorithm
and the SVD algorithm do have their continuous counterparts.
e These differential systems often arise from seemingly rather
distinct fields of disciplines.
Diverse topics, such as soliton theory, integrable systems,
continuous fractions, 7 functions, orthogonal polynomials, the
Sylvester identity, moments, and Hankel determinants, can all
play together, intertwine, and eventually lead to the fact that the
eigenvalues and the singular values of a given matrix can be
expressed as the limit of some closed-form formulas!
A careful discretization of a continuous dynamical system may
indeed lead to an effective numerical algorithm.
e By a “careful discretization", it is critical that the discrete scheme
maintains its complete integrability.
o A great many details such as shift strategies and implementation
tactics also demand considerable attention.
Classical SVD algorithm = Lotka-Volterra equation = dLV
scheme = dqds algorithm = a brand new mdLVs.
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