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SVD

I Given A ∈ Rm×n, there exist real orthogonal matrices U ∈ Rm×m

and V ∈ Rn×n such that

A = U
[

Σ 0
0 0

]
V>

where
Σ = diag{σ1, . . . , σr},

with σ1 ≥ σ2 ≥ . . . ≥ σr > 0.
I Critical decomposition with many important applications.
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SVD Algorithm
(Golub & Kahan, ’65)

I First reduce A to a bidiagonal matrix B0 via orthogonal
equivalence transformations.

I Critical components:
• Performing the QR algorithm on the product B>0 B0 without explicitly

forming the product.
• The bidiagonal structure is preserved throughout the iteration.
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Make It Continuous

I Assume

B(t) = U(t)B0V (t), U(t) ∈ O(m),V (t) ∈ O(n).

I Necessary format:

dB
dt

= BR − LB, B(0) = B0.

• Coordinate transformation:( dU
dt = −LU,

dV
dt = VR,

L, R ∈ o(n).

I The choice of skew-symmetric matrix parameters L(t) and R(t)
determines the dynamics.
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Maintain the Bidiagonal Structure

I Want
• B(t) remains bidiagonal for all t .
• L(t), R(t) are tridiagonal and skew-symmetric.
• Good convergence.

I Among many other choices,

L = Π0(BB>),

R = Π0(B>B).
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SVD Flow
(Chu, ’86)

I Given a bidiagonal matrix B0,

dB
dt

= BΠ0(B>B)− Π0(BB>)B, B(0) = B0,

• B(t) stays bidiagonal for all t .
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Component Form

I Denote

B(t) := diag
{

b2(t) . . . b2n−2(t)
b1(t) b3(t) . . . b2n−1(t)

}
,

I SVD flow in component form:{ db2k−1
dt = b2k−1(b2

2k − b2
2k−2) for 1 ≤ k ≤ n,

db2k
dt = b2k (b2

2k+1 − b2
2k−1) for 1 ≤ k ≤ n − 1.

• b0 = b2n ≡ 0.
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Asymptotic Behavior

I Define Y (t) = B>(t)B(t). Then

dY
dt

= [Y ,Π0(Y )].

• Convergence follows from the Toda dynamics.
I The sequence {B(`)} by sampling B(t) at integer times

corresponds to the iterates produced by the Golub-Kahan SVD
algorithm.



Singular Value Decomposition SVD Dynamics Integrable Discretization Conclusion

Lotka-Volterra Equation

I Change variables,

u2k−1(t) := b2
2k−1

(
t
2

)
,

u2k (t) := b2
2k

(
t
2

)
.

I Continuous-time finite Lotka-Volterra equation,

duk

dt
= uk (uk+1 − uk−1), k = 1,2, . . . ,2n − 1,

with u0(t) ≡ 0 and u2n(t) ≡ 0.
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τ Functions

I Change variables
uk =

τk+2τk−1

τk+1τk

so that
d ln uk

dt
=

d
dt

ln
τk+2

τk+1
− d

dt
ln

τk

τk−1
.

I A compatibility condition,

τk+2τk−1

τk+1τk
=

d
dt

ln
τk+1

τk
,

or equivalently,

dτk

dt
τk+1 − τk

dτk+1

dt
+ τk−1τk+2 = 0.
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Determinantal Solution
I Starting with τ−1 ≡ 0, τ0 ≡ 1, τ1(t) = 1 and τ2(t) = ψ(t),

τ3 =
dψ
dt
,

τ4 = det
[

ψ ψ(1)

ψ(1) ψ(2)

]
,

I In general (Tsujimoto’95),

τ2k−1 = Hk−1,1,

τ2k = Hk,0,

where

Hk,j(t) := det


ψ(j) ψ(j+1) . . . ψ(j+k−1)

ψ(j+1) ψ(j+2) . . . ψ(j+k)

...
...

...
ψ(j+k−1) ψ(j+k) ψ(j+2k−2)

 , j = 0 or 1,

is the determinant of a k × k Hankel matrix.



Singular Value Decomposition SVD Dynamics Integrable Discretization Conclusion

SVD Solution

I The general solution to the Lotka-Volterra equation (Tsujimoto,
Nakamura &Iwasaki, ’01)

u2k−1(t) =
Hk,1(t)Hk−1,0(t)
Hk,0(t)Hk−1,1(t)

,

u2k (t) =
Hk+1,0(t)Hk−1,1(t)

Hk,1(t)Hk,0(t)
, k = 1,2, . . . ,n,

I Assuming all derivatives of ψ are obtainable from elementary
calculus,

• In principle, all Hankel determinants can be calculated
algebraically.

• All quantities about uk (t) are now in the analytic form.
• The SVD flow and, hence, the iterates from the SVD algorithm are

representable in closed form.
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Discrete Lotka-Voterra Equation
(HIrota, Tsujimoto & Imai, ’93)

I A key discretization of the Lotka-Volterra equation is a particular
Euler-type scheme (symplectic Euler) of the form,

u[`+1]
k = u[`]

k + δ
(

u[`]
k u[`]

k+1 − u[`+1]
k u[`+1]

k−1

)
.

• u[`]
k ≈ uk (`δ).

• Boundary conditions u[`]
0 ≡ 0 and u[`]

2n ≡ 0 for all `.
I A mixture of both explicit and implicit Euler methods to maintain

integrability.
• Closely resemble the progressive qd algorithm (Rutishauser, ’60)

and the dqds algorithm (Fernando & Parlett, ’94).
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Variable Step Implementation
Iwasaki & Nakamura, ’02, ’04, ’06)

u[`+1]
k

(
1 + δ[`+1]u[`+1]

k−1

)
= u[`]

k

(
1 + δ[`]u[`]

k+1

)
︸ ︷︷ ︸

v [`]
k

,
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vdLV in Matrix Form

I For each `, define q[`]
i := 1

δ[`]

(
1 + δ[`]u[`]

2i−2

) (
1 + δ[`]u[`]

2i−1

)
, i = 1, . . . ,n,

e[`]
j := δ[`]u[`]

2j−1u[`]
2j , j = 1, . . .n − 1.

I Assemble two n × n bidiagonal matrices,

L[`] :=



q[`]
1 0 0
1 q[`]

2
. . .
. . .

1 q[`]
n


, R[`] :=


1 e[`]

1
0 1

. . . . . .
e[`]

n−1
1

 ..
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Progressive qd Algorithm
(Rutishauser, ’54, ’60)

I The vdLV is equivalent to the matrix equation

L[`+1]R[`+1] = R[`]L[`] −
(

1
δ[`]

− 1
δ[`+1]

)
︸ ︷︷ ︸

built-in shift?

In.
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What Is up There?
I Introduce the tridiagonal matrix

Y [`] := L[`]R[`] − 1
δ[`]

In.

I Can rewrite

Y [`] =



w [`]
1 w [`]

1 w [`]
2 0 0

1 w [`]
2 + w [`]

3 w [`]
3 w [`]

4
. . .
. . .
. . .

0 w [`]
2n−3w [`]

2n−2

0 1 w [`]
2n−2 + w [`]

2n−1


,

• w [`]
k := u[`]

k

“
1 + δ[`]u[`]

k−1

”
.



Singular Value Decomposition SVD Dynamics Integrable Discretization Conclusion

dqds Algorithm
(Fernando & Parlett, ’94)

I The vdLV is equivalent to the similarity relationship

Y [`+1] = R[`]Y [`]R[`]−1

• {Y [`]}` are isospectral.
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New Integrals

I Can ensure w [`]
k > 0 as long as u[0]

k > 0 and δ[`] > 0, which can
easily be achieved.

I Can symmetrize Y [`] via

Y [`]
S := D[`]−1

Y [`]D[`],

• Easy to see that

D[`] := diag

(
n−1Y
i=1

q
w [`]

2i−1w [`]
2i ,

n−1Y
i=2

q
w [`]

2i−1w [`]
2i , . . . ,

q
w [`]

2n−3w [`]
2n−2, 1

)
.
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Singular Values Deviations
I Y [`]

S enjoys a Cholesky decomposition

Y [`]
S = B[`]>B[`],

with

B[`] :=



√
w [`]

1

√
w [`]

2

0
√

w [`]
3

√
w [`]

4
. . .
. . . √

w [`]
2n−3

√
w [`]

2n−2√
w [`]

2n−1


.

I Singular values of the bidiagonal matrices {B[`]}` derived from
the vdLV are invariant.



Singular Value Decomposition SVD Dynamics Integrable Discretization Conclusion

Initial Correction

I Want singular values of a given matrix B0.
I Constant drift.
I Choose initial values for the vdLV by

u[0]
k :=

bk (0)2

1 + δ[0]u[0]
k−1

, k = 1,2, . . . ,2n − 1.
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Convergence and Stability
(Nakamura, ’06)

I With any step sizes δ[`] > 0,
• {u[`]

1 , u[`]
3 , . . . , u[`]

2n−1}` converges to the squares of singular values
of B0 in descending order.

• u[`]
2k converges to 0.

I Numerical stability.
• No subtraction is involved.
• All quantities are bounded by ‖B0‖.

I Greedy thoughts:
• What is the convergence rate?
• How to speed up convergence?
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Constant Step Size δ[`] ≡ δ

I Convergence is linear with asymptotic convergence factor

α = max
k=1,...,n−1

σk+1 + 1
δ

σk + 1
δ

,

• σ1 > σ2 > . . . > σn are the singular values of B0.
• Larger step sizes might reduce the value of α, but only to a certain

extent.
I There is a built-in shift, but

• Disappear with constant step size.
• Become less effective with larger variable step sizes.
• Need ”true" shift to make the vdLV algorithm efficient.
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True Shifts
I The true shift really needed should be of the form

B
[`]>

B
[`]

= B[`]>B[`] − θ[`]2,

while keeping bidiagonal form

B
[`]

:=



√
w [`]

1

√
w [`]

2

0
√

w [`]
3

√
w [`]

4
. . .
. . . √

w [`]
2n−3

√
w [`]

2n−2√
w [`]

2n−1


.
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Computation Scheme
I Nonlinear relationship: w [`]

2k + w [`]
2k+1 = w [`]

2k + w [`]
2k+1 − θ[`]2,

w [`]
2k−1w [`]

2k = w [`]
2k−1w [`]

2k ,
k = 0, . . . ,n − 1,

with w [`]
0 = w [`])

0 ≡ 0.

w
[ℓ]
0 w

[ℓ]
2k−1 w

[ℓ]
2k w

[ℓ]
2k+1

w
[ℓ]
0 w

[ℓ]
2k−1 w

[ℓ]
2k w

[ℓ]
2k+1

1
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mdLV Algorithm

I Without shift,

u[`+1]
k =

w [`+1]
k

1 + δ[`+1]u[`+1]
k−1

,

I With shift,

u[`+1]
k =

w [`+1]
k

1 + δ[`+1]u[`+1]
k−1

.
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mdLV Implementation
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Conclusion
I Powerful discrete dynamical systems such as the QR algorithm

and the SVD algorithm do have their continuous counterparts.
• These differential systems often arise from seemingly rather

distinct fields of disciplines.
I Diverse topics, such as soliton theory, integrable systems,

continuous fractions, τ functions, orthogonal polynomials, the
Sylvester identity, moments, and Hankel determinants, can all
play together, intertwine, and eventually lead to the fact that the
eigenvalues and the singular values of a given matrix can be
expressed as the limit of some closed-form formulas!

I A careful discretization of a continuous dynamical system may
indeed lead to an effective numerical algorithm.

• By a “careful discretization", it is critical that the discrete scheme
maintains its complete integrability.

• A great many details such as shift strategies and implementation
tactics also demand considerable attention.

I Classical SVD algorithm ⇒ Lotka-Volterra equation ⇒ dLV
scheme ⇒ dqds algorithm ⇒ a brand new mdLVs.
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