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Why Search for Structure?

I Critical for retrieving latent information.
• Spectral decomposition for symmetric matrices.
• Singular value decomposition for rectangular matrices.
• Schur decomposition for general square matrices.

I Efficient for numerical computation.
• QR algorithm ⇒ Upper Hessenberg structure.
• QZ algorithm ⇒ Upper Hessenberg/triangular structure.
• SVD algorithm ⇒ Bidiagonal structure.

I Improve physical feasibility and interpretability.
I Reduce information leakage or disturbance.

• Pejorative manifold (Kahan ’72).
• The solution structure is lost when the problem leaves the manifold

due to an arbitrary perturbation.
• The problem may not be sensitive at all if the problem stays on the

manifold, unless it is near another pejorative manifold.
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Two Questions

I Given a dynamical system, what are the structures invariant
under the the flow?

I Given a set of structures related to a fixed matrix, can a
dynamical system, discrete or continuous, be designed to
preserve the specified structures?
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Staircase Structure
I Given A = [aij ] ∈ Rm×n,

• Define

tk (A) := max


k , max
k<i≤m

{i|aik 6= 0}
ff

, k = 1, . . . , n.

• A is in staircase form if and only if

tk (A) ≤ tk+1(A), k = 1, . . . , n − 1.

I Examples with step indices {1, 3, 4, 4, 5}:
× × × × ×
0 × × × ×
0 × 0 × ×
0 0 × × ×
0 0 0 0 ×

 ,


× × × × ×
0 × × × ×
0 × × × ×
0 0 × × ×
0 0 0 0 ×


︸ ︷︷ ︸

full staircase
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QR Algorithm
(Arbenz & Golub ’95)

I Assume that A0 is symmetric and {Ak} are the iterates
generated by the QR algorithm.

1. If A0 is reducible by some permutation matrix P, that is,

PA0P> =

»
A01 A02

0 A03

–
,

then so is each Ak by means of the same permutation P.
2. If A0 is irreducible, then the zero pattern of A0 is preserved

throughout {Ak} if and only if A0 is a full staircase matrix.



Staircase Structure Lancaster Structure Hamiltonian Structure Hamiltonian Pencils Group Structure

Zero Pattern and Irreducibility

I Two nearly identical matrices:

× 0 × 0 × 0 ×
0 × 0 × 0 × 0
× 0 × 0 × 0 ×
0 × 0 × 0 × 0
× 0 × 0 × 0 ×
0 × 0 × 0 × 0
× 0 × 0 × 0 ×


,



× 0 × 0 × × ×
0 × 0 × 0 × 0
× 0 × 0 × 0 ×
0 × 0 × 0 × 0
× 0 × 0 × 0 ×
× × 0 × 0 × 0
× 0 × 0 × 0 ×


.

• Differ only at the (1, 6) and (6, 1) positions.
• No significant staircase form.

I Totally different dynamics:
• Zero pattern for the left matrix is preserved because it is reducible,
• Zero pattern for the right matrix is totally destroyed even after one

iteration.
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Preserving Staircase

I For non-symmetric matrices,
• Reducibility cannot be preserved.
• If A0 is in the staircase form, then so is {Ak} throughout the QR

algorithm.
• If X0 is in the staircase form, then so is X (t) throughout the Toda

lattice.
I The staircase form preservation between the QR algorithm and

the Toda lattice is not directly related.
• Even if X0 is in the staircase form, the corresponding A0 = exp(X0)

may not be.
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QZ Algorithm

I Generalized eigenvalue problem,

A0x = λB0x.

I First reduce A0 to an upper Hessenberg form and B0 to an upper
triangular form.

• Orthogonal equivalence transformations are used.
I Critical components:

• Simulate the effect of the QR algorithm on the matrix B−1
0 A0

without explicitly forming the inverse or the product.
• Throughout the iteration, preserve the upper Hessenberg/triangular

structure.
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QZ Flow
I Consider a smooth orthogonal equivalence transformation on the

pencil B0λ− A0,

L (t) = Q(t)(B0λ− A0)Z (t), Q(t), Z (t) ∈ O(n).

I Dynamical system for the isospectral flow L (t)

dL

dt
= L R − LL , L (0) = B0λ− A0,

• Dynamical system for the coordinate transformations( dQ
dt = −LQ,

dZ
dt = ZR,

L, R ∈ o(n).

I The choice of skew-symmetric matrix parameters L(t) and R(t)
determines the dynamics.



Staircase Structure Lancaster Structure Hamiltonian Structure Hamiltonian Pencils Group Structure

Preserving Upper Hesserberg/Triangularity
I Write {

X (t) = Q(t)A0Z (t),

Y (t) = Q(t)B0Z (t).

I Mimic the QZ algorithm.
• Choose L(t) and R(t) so that dX

dt / dY
dt remain upper

Hessenberg/triangular whenever X (t)/Y (t) are.
• Many choices.

I Out of naïveté but with proper symmetry,{
L := Π0(XY−1),

R := Π0(Y−1X ).

I The QZ flow:

dL

dt
= L Π0(Y−1X )− Π0(XY−1)L , L (0) = B0λ− A0.
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Related to the Toda Lattice

I If X (t)/Y (t) are upper Hessenberg/triangular, then both L(t) and
R(t) are tridiagonal.

I Define {
E(t) := X (t)Y−1(t),

F (t) := Y−1(t)X (t),

then { dE
dt = [E ,Π0(E)],

dF
dt = [F ,Π0(F )].

I The QZ flow is related to the QZ algorithm in the same way as
the Toda flow is related to the QR algorithm.
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Conjecture 1

I The QZ flow was designed solely for the purpose of maintaining
the upper Hessenberg/triangular form.

I If both A0 and B0 are staircase matrices, not necessarily of the
same pattern, then the structures of A0 and B0 are preserved by
X (t) and Y (t), respectively, under the QZ flow.

• Observed numerically, but no formal proof.
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Algebraic Manipulation?

I Direct manipulation is hard.

A0 =



× × × × × × ×
× × × × × × ×
0 × × × × × ×
0 × × × × × ×
0 0 0 × × × ×
0 0 0 × × × ×
0 0 0 0 0 0 ×


, B0 =



× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×


,

• Y−1 is usually full and dense.
• The QZ flow is somehow able to mix and then separate the

different staircase forms.
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SVD Algorithm

I First reduce A0 to a bidiagonal matrix via orthogonal equivalence
transformations.

I Critical components:
• Performing the QR algorithm on the product A>0 A0 without explicitly

forming the product.
• The bidiagonal structure is preserved throughout the iteration.
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SVD Flow

I Assume

X (t) = U(t)B0V (t), U(t) ∈ O(m), V (t) ∈ O(n).

I Necessary format:

dX
dt

= XR − LX , X (0) = B0.

• Coordinate transformation:( dU
dt = −LU,

dV
dt = VR,

L, R ∈ o(n).

I How to choose skew-symmetric matrix parameters L(t) and
R(t)?
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Maintain the Bidiagonal Structure

I Want
• X (t) remains bidiagonal for all t .
• L(t), R(t) are tridiagonal and skew-symmetric.
• Good convergence.

I Among many other choices,

L = Π0(XX>),

R = Π0(X>X ).

I The gradient flow will reduce the off-diagonal magnitude but will
not keep the bidiagonal structure.

L =
1
2

(
X>diag(X )− diag(X )>X

)
,

R =
1
2

(
Xdiag(X )> − diag(X )X>)

.
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Related to the Toda Lattice

I Define Y (t) = X>(t)X (t). Then

dY
dt

= [Y ,Π0(Y )].

• Convergence follows from the Toda dynamics.
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Conjecture 2

I The Lokta-Volterra system was discovered with the preservation
of the bidiagonal form in mind.

I Suppose B0 is a staircase matrix. Then the SVD flow B(t)
defined by the Lokta-Volterra equation and the corresponding
SVD algorithm maintains the same staircase structure.

• For small size matrices, the validity can be proved by an ad hoc
calculation.
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Second-Order Vibration System

I Dynamical system with n-degree-of-freedom:

Mẍ + (C + G)ẋ + (K + N)x = F .

I Some interpretations:

M := Mass matrix M = M> � 0.

C := Damping matrix C = C>.

K := Stiffness matrix K = K> � 0.

G := Gyroscopic matrix G> = −G.

N := Dissipation matrix N> = −N.

F := External force.
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Quadratic Eigenvalue Problem

I Assume the homogeneous solution x(t):

x = eλtu.

I Look for nontrivial solution to the QEP:

Q(λ)u := (λ2M + λC + K )u = 0.

I If M is nonsingular, then there are 2n eigenpairs.
• Many applications.
• Many numerical techniques.



Staircase Structure Lancaster Structure Hamiltonian Structure Hamiltonian Pencils Group Structure

Model Reduction

Can the original n-degree-of-freedom system be reduced to n totally
independent single-degree-of-freedom subsystems?

I Must maintain isospectrality.
I Must be done via real-valued transformation.
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Common Knowledge

I Reduction means simultaneous diagonalization.
• In general, it is impossible to diagonalize three matrices M, C, and

K simultaneously.
• Those can be done are called proportionally or classically clamped

— very limited.
I Is simultaneous diagonalization the wrong question to ask?
I Any other way to achieve the reduction?
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Symmetric Linearization

I Lancaster pair:

L(λ) := L(λ; M, C, K ) =

[
C M
M 0

]
λ−

[
−K 0
0 M

]
.

I Equivalence between Q(λ) and L(λ).([
C M
M 0

]
λ−

[
−K 0
0 M

])[
u
v

]
= 0

⇔
{

(λC + K )u + λMv = 0,
λMu−Mv = 0.

I If M is nonsingular, then v = λu.
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Structure Preserving Transformation

I Look for nonsingular matrices Π`, Πr ∈ R2n×2n such that
• Lancaster structure is preserved:

Π`L(λ)Πr = L(λ; MD, CD, KD) =

»
CD MD

MD 0

–
λ−

»
−KD 0

0 MD

–
.

• MD , CD and KD are all diagonal matrices,
I Isospectral equivalence:

(
λ2MD + λCD + KD

)
z = 0 ⇔

[
z
λz

]
= Πr

[
u
λu

]
,
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Not a Conventional Transformation

I Write

Π` =

[
π

[`]
11 π

[`]
12

π
[`]
21 π

[`]
22

]
, Πr =

[
π

[r ]
11 π

[r ]
12

π
[r ]
21 π

[r ]
22

]
.

• π
[`]
ij , π

[r ]
ij ∈ Rn×n.

I Do the structure preserving transformations Π` and Πr exist?
I Can the transformations Π` and Πr be real-valued?
I Is there any relationship between Π` and Πr ?, say, Π` = Π>r ?
I How to find the real-valued transformations Π` and Πr

numerically?
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Nonlinear Algebraic System
I To maintain the Lancaster structure:

−π
[`]
11Kπ

[r ]
12 + π

[`]
12Mπ

[r ]
22 = 0,

−π
[`]
21Kπ

[r ]
11 + π

[`]
22Mπ

[r ]
21 = 0,

π
[`]
21Cπ

[r ]
12 + π

[`]
22Mπ

[r ]
12 + π

[`]
21Mπ

[r ]
22 = 0,

π
[`]
11Cπ

[r ]
12 + π

[`]
12Mπ

[r ]
12 + π

[`]
11Mπ

[r ]
22 = π

[`]
21Cπ

[r ]
11 + π

[`]
22Mπ

[r ]
11 + π

[`]
21Mπ

[r ]
21

= −π
[`]
21Kπ

[r ]
12 + π

[`]
22Mπ

[r ]
22.

I To attain the diagonal form:

−π
[`]
21Kπ

[r ]
12 + π

[`]
22Mπ

[r ]
22 = MD,

π
[`]
11Cπ

[r ]
11 + π

[`]
12Mπ

[r ]
11 + π

[`]
11Mπ

[r ]
21 = CD,

π
[`]
11Kπ

[r ]
11 − π

[`]
12Mπ

[r ]
21 = KD,

I A nonlinear algebraic system of 8n2 − 3n equations in 8n2

unknowns.
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Existence

I For almost all regular quadratic pencils,
• Real-valued equivalence transformations Π` and Πr do exist.

• (Garvey, Friswell, & Prells, ’02), has flaws and is incomplete.
• (Chu & Del Buono, ’05), simpler and complete proof.

I For self-adjoint quadratic pencils,
• Π` = Π>r .
• This is congruence transformation.

I Proof is based on the availability of complete spectral
information.

• Not numerically feasible.
• Any constructive way to establish Π` and Πr ?
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Moving Frame

I Denote

A0 :=

[
−K0 0

0 M0

]
, B0 :=

[
C0 M0
M0 0

]
.

I Assume the transformation changes as a one-parameter family:{
A(t) = T>` (t)A0Tr (t),

B(t) = T>` (t)B0Tr (t).

subject to the rule:
Ṫ`(t) = T`(t)L(t) = T`(t)

[
`11(t) `12(t)
`21(t) `22(t)

]
,

Ṫr (t) = Tr (t)R(t) = Tr (t)
[

r11(t) r12(t)
r21(t) r22(t)

]
.
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Equivalence Flow

I The transformation is governed by{ dA
dt = AR + L>A,

dB
dt = BR + L>B.

I L(t) and R(t) effectuate the dynamical behavior.
• This is an isospectral flow.
• Need to preserve the Lancaster structure.
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Determining the Vector Field

I To maintain the Lancaster structure for A(t) and B(t):

`>21M − Kr12 = 0,

−`>12K + Mr21 = 0,

`>12M + Mr12 = 0,

`>11M + Cr12 + Mr22 = `>12C + `>22M + Mr11

= `>22M + Mr22.

I There are 5n2 equations in 8n2 unknowns — Can be solved in
terms of three matrix parameters.
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Forming L(t) and R(t)



r12 = −DM,
`21 = −D>K>,
`12 = D>M>,
r21 = DK ,

r11 − r22 = −DC,
`11 − `22 = D>C>.

I One possible formation:[
r11(t) r12(t)
r21(t) r22(t)

]
=

[
D 0
0 D

] [ −C
2 −M
K C

2

]
+

[
Nr 0
0 Nr

]
,[

`11(t) `12(t)
`21(t) `22(t)

]
=

[
D> 0
0 D>

][
C>
2 M>

−K> −C>
2

]
+

[
N` 0
0 N`

]
.

I Determined up to three free parameters D, N` and Nr .
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Isospectral Flow

I The corresponding flow (Garvey et al,04):

Ṁ =
1
2

(MDC − CDM) + MNr + N>
` M,

Ċ = (MDK − KDM) + CNr + N>
` C,

K̇ =
1
2

(CDK − KDC) + KNr + N>
` K .

I How to choose D, N` and Nr so as to attain convergence?
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Maintaining Symmetry

I Assume (M(0), C(0), K (0)) has some symmetry to begin with.
I Take Nr (t) = N`(t).
I Then symmetry is preserved:

D(t) M(t) C(t) K (t)
skew-symmetric symmetric symmetric symmetric

symmetric symmetric skew-symmetric symmetric
symmetric skew-symmetric skew-symmetric skew-symmetric

skew-symmetric skew-symmetric symmetric skew-symmetric

...
I Still ....., need to control the convergence.
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A Control Problem

I An open-loop control:

minimize f (x),

subject to ẋ = g(x)u, x(0) = x0, u = control.

I A possible control:
u = −g(x)†∇f (x).

I A closed-loop control:

ẋ = −g(x)g(x)†∇f (x), x(0) = x0.

• This is a gradient flow!
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Objective Function

I Minimize

F (M, C, K ) := ‖M‖2
F − (1 + δ)‖diag(M)‖2

F

+ ‖C‖2
F − (1 + δ)‖diag(C)‖2

F

+ ‖K‖2
F − (1 + δ)‖diag(K )‖2

F .

I Subject to

Ṁ =
1
2

(MDC − CDM) + MN + N>M,

Ċ = (MDK − KDM) + CN + N>C,

K̇ =
1
2

(CDK − KDC) + KN + N>K .

I (D, N) = control.
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Basic Ideas

I While minimizing off-diagonal entries of (M, C, K ), also penalize
growth of diagonal entries by a factor of δ.

I Assume (M0, C0, K0) are all symmetric and, hence, N` = Nr and
D> = −D.

I Tangent vectors in the orbit of equivalence at (M, C, K ) are linear
in the control parameters (D, N).

I Need to rewrite the vector field in terms of an outer product form.
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Structure Preserving Isospectral Flow

The resulting (M(t), C(t), K (t)) has the following properties:
I It is isospectral to (M0, C0, K0).
I It preserves the Lancaster structure implicitly.
I It moves in the direction to minimize the off-diagonal entries

while keeping the diagonal entries at bay.
I Ideally, (M(t), C(t), K (t)) converges to (MD, CD, KD).
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Hamiltonian Structure
I Define

J :=

[
0 In
−In 0

]
.

• J2 = −I.
I H ∈ R2n×2n is Hamiltonian

• ⇔ (HJ)> = HJ.
• ⇔H has the structure:

H =

»
M P
Q −M>

–
, P and Q are symmetric.

I W ∈ R2n×2n is skew-Hamiltonian
• ⇔ (WJ)> = −WJ.
• ⇔W has the structure:

W =

»
M F
G M>

–
, F and G are skew-symmetric.
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Importance of Hamiltonian Structure

I Many applications:
• Systems and controls.
• Algebraic Riccati equations.
• Quadratic eigenvalue problems.
• Structures carry underlying physical settings.

I Many inherent properties:
• Eigenvalues of H are symmetric with respect to the imaginary axis.
• Eigenvalues of W have even algebraic and geometric multiplicities.
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Preserving Hamiltonian Structure

I Conventional algorithms usually fail to preserve the Hamiltonian
structure.

I Considerable research effort in deriving special methods for
matrices with Hamiltonian structure.

• Iterative procedures are carefully carved, but usually complicated.
I Most Hamiltonian structure-preserving dynamical systems can

be characterized as a single line equation.
• Strong numerical evidence for convergence.
• Lack complete asymptotic analysis.
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Symplectic Group

I S ∈ R2n×2n is symplectic ⇔ S>JS = J.
• Natural symmetry SJS> = J.

I From a matrix group Sp(2n).
• S−1 = −JS>J.
• g = TI2nSp(2n) = {all Hamiltonian matrices}.

I Hamiltonian matrices as tangent vectors to Sp(2n) is analogous
to skew-symmetric matrices to O(n).
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Schur-Hamiltonian Form

I Given Hamiltonian H with no purely imaginary eigenvalues,
• There exists an orthogonal symplectic matrix U ∈ R2n×2n such thateH = U>HU is Hamiltonian, and is of the form

eH =

»
R P
0 −R>

–
,

• P is symmetric and R is upper quasitriangular.
I Given skew-Hamiltonian W,

• There exists an orthogonal symplectic matrix U ∈ R2n×2n such thatfW = U>WU is skew-Hamiltonian, and is of the form

fW =

»
R F
0 R>

–
,

• F is skew-symmetric and R is upper quasitriangular.
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URV Form

I Given Hamiltonian H,
• There exist orthogonal symplectic matrices U, V ∈ R2n×2n such

that bH = U>HV is of the form

bH =

»
T N
0 R>

–
,

• N has no particular structure, T is upper triangular and R is upper
quasitriangular.
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Hamiltonian Eigenvalue Computation

I Critical components:
• Reduce a matrix of Hamiltonian structure to its Schur-Hamiltonian

form.
• Employ classical iterative schemes to the reduced eigenproblem.

I Stable eigenvalue computation procedures for skew-Hamiltonian
matrices are well developed (Benner et al. ’05, Van Loan, ’84).

I Much harder task for For Hamiltonian matricesr.
• H2 is skew-Hamiltonian.
• By URV,

U>H2U =

»
−TR TN> − NT>

0 −R>T>

–
.

• Eigenvalues of H are the square roots of those from −TR.
• A QZ -type algorithm can be applied to find the eigenvalues of the

product TR without explicitly forming the product.
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Symplectic Flow

I A smooth curve S(t) on the manifold of symplectic group Sp(2n)
is necessarily governed by

dS
dt

= SK, (or KS),

• K is Hamiltonian.
I If the symplectic S(t) is also orthogonal, then

K =

[
M −Q
Q M

]
,

• M is skew-symmetric and Q is symmetric.
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Hamiltonian Flow
I Given H0 ∈ R2n×2n, consider the Lax dynamics,

dX
dt

= [X ,P0(X )], X (0) = H0,

• P0 acting on X is defined by

P0(X ) :=

»
0 −X>21

X21 0

–
, if X =

»
X11 X12

X21 X22

–
.

• Corresponding parameter dynamical system,

dg
dt

= gP0(X ), g(0) = I2n.

I P0(X ) is Hamiltonian ⇒ g(t) is orthogonal symplectic.
• H0 is Hamiltonian ⇒ X (t) = g>(t)H0g(t) remains Hamiltonian.
• X21(t) −→ 0 as t −→∞ (Chu & Norris ’88).

I The limit point is not exactly of the Schur-Hamiltonian form yet.
• The flow approach is remarkably simple.
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Skew-Hamiltonian Flow
I X is skew-Hamiltonian ⇒ P0(X ) is not Hamiltonian.
I Skew-Hamiltonian eigenproblem is supposed to be relatively

easier than the Hamiltonian eigenproblem by iterative methods.
I Every real skew-Hamiltonian matrix has a real Hamiltonian

square root (Faßbender et al. ’99).
• Given a skew-Hamiltonian matrix W0, define H0 := W1/2

0 .
• Apply the Hamiltonian flow to obtain X (t)
• W(t) := X 2(t) is skew-Hamiltonian and converges to an upper

block triangular form.
• The very same parameter g(t) serves as the continuous coordinate

transformation for W(t) = g>(t)W0g(t) and leads to convergence.
I Symbolic dynamical system,

dW
dt

= [W,P0(W1/2)], W(0) = W0,

• A skew-Hamiltonian matrix W has infinitely many Hamiltonian
square roots.
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Conjecture 3
I Using Π0(X ) only ⇒

• Convergence to the real Schur form.
• Cannot preserve Hamiltonian structure.

I Define

P1(X ) :=

[
Π0(X11) −X21

X21 Π0(X11)

]
• Appears to be a compromise.
• P1 for a Hamiltonian matrix X differ from Π0 only in the (2, 2)-block.

I Toda-Hamiltonian flow:

dH
dt

= [H,P1(H)], H(0) = H0.

I Suppose H0 is Hamiltonian with no purely imaginary
eigenvalues. Then the Toda-Hamiltonian flow H(t) remains
Hamiltonian and converges to the real Schur-Hamiltonian form.
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URV Flow
I A flow X (t) = U>(t)X0V (t) is necessarily governed by the

system

dX
dt

= XR − LX , X (0) = X0, (1)

• L and R to be determined.
• Similar to SVD and QZ flows.

I Same U transformation in the real Schur-Hamiltonian form for
H0⇒ L = P1(U>H0U).

I Same V transformation in the lower quasitriangular
Schur-Hamiltonian for H>0 ⇒ R = P2(V>H>0 V ).

• Define

P2(X ) :=

»
−Π0(X>11) X12

−X12 −Π0(X>11)

–
.

I Rewrite as the autonomous dynamical system,

dX
dt

= XP2((X>JXJ)1/2)− P1((XJX>J)1/2)X , X (0) = H0.
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Three Types of Hamiltonian Pencils

I A linear pencil Bλ− A is simply Hamiltonian ⇔

BJA> = −AJB>

• Equivalent to B−1A being Hamiltonian, if B−1 exists.
• Has {λ,−λ, λ̄,−λ̄} as eigenvalues.

I A linear pencil Bλ− A is sHH ⇔ B is skew-Hamiltonian and A is
Hamiltonian.

• Arise in gyroscopic systems, structural mechanics, linear response
theory, and quadratic optimal control (Benner et al. ’02).

I A linear pencil Bλ− A is HH ⇔ Both A and B are Hamiltonian.
• Rare in applications.
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Preserving Isospectrality

I Assume

H(t) = Q(t) (B0λ− A0) Z (t).

I Necessary format:

dH
dt

= HR − LH, H(0) = B0λ− A0.

• Coordinate transformation:( dQ
dt = −LQ,

dZ
dt = ZR.

I So far, this is similar to the QZ flow.
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Choices of R and L

I Mimicking the QZ flow,
• Choose R to be as much like Π0(B−1A) as possible.
• Choose L to be as much like Π0(AB−1) as possible.

I Must subject to the structure preserving limitation.
• Further restrictions on R and L.
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Isospectral sHH Flow

I Write
L (t) = W(t)λ−H(t).

• WR − LW remains skew-Hamiltonian.
• HR − LH remain Hamiltonian.

I Suffice to consider
L = JR>J.

• Q(t) and Z (t) are interchangeable.
Z (t) = JQ>(t)J,

Q(t) = JZ>(t)J.

• Only one coordinate transformation is needed.
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Mimicking QZ but Keeping sHH

I Given 2n × 2n matrix X , define

P4(X ) :=

[
Π0(X11) −X>

21
X21 −Π0(X>

22)

]
.

• Almost identical to Π0(X ) except for a “twist" at the (2, 2) block.

P4(X ) =

26666664
0
× 0
× × 0
× × × 0 × ×
× × × 0 ×
× × × 0

37777775− [. . .]> .
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Modified sHH Flow

I Define

dL

dt
= L P4(W−1H)︸ ︷︷ ︸

R

−P4(HW−1)︸ ︷︷ ︸
L

L , L (0) = B0λ− A0,

I Inherent relationship:

sHH pencil ⇒ HW−1 = J(W−1H)>J ⇒ sHH structure preserving.

I Only need to work with R.

L (t) = JZ>(t)J(W0λ−H0)Z (t).
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Conjecture 4

I Suppose L (0) is an sHH pencil. The flow L(t) with
R := P4(W−1H) maintains the sHH structure and converges to
the canonical form

L̃ =

[
W̃11 W̃12

0 W̃>
11

]
λ−

[
H̃11 H̃12

0 −H̃>11

]
.

• fW11 and eH11 are upper quasitriangular.
• fW12 is skew-symmetric.
• eH12 is symmetric.

I The canonical form is the same as that desirable in the literature
(Benner et al. ’02).

• Extremely complicated iterative procedure.
• If the convergence can be proved, then we have a very simple way

to realize the canonical form.
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Maintaining Simply Hamiltonian

I Bλ− A is Hamiltonian if and only if Q(Bλ− A)Z is Hamiltonian
for arbitrary nonsingular Q and symplectic Z .

I To maintain the Hamiltonian structure,
• No restriction on L.
• R must be Hamiltonian.



Staircase Structure Lancaster Structure Hamiltonian Structure Hamiltonian Pencils Group Structure

Simply Hamiltonian Flow

I Both B−1A and A−1B are Hamiltonian, but AB−1 and BA−1 are
not.

I Take {
R = P1(B−1A)

L = Π0(AB−1).

I Simply Hamiltonian flow:

dL

dt
= LP1(B−1A)− Π0(AB−1)L .

• Differ from the QZ flow only a P1.
• Maintain the simply Hamiltonian structure.
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Conjecture 5

I B0λ− A0 has no purely imaginary eigenvalues ⇒ L (t)
converges to the canonical form

L̂ =

[
B̂11 B̂12

0 B̂22

]
λ−

[
Â11 Â12

0 Â22

]
,

• bA11 and bB11 are upper quasitriangular matrices with corresponding
1× 1 or 2× 2 blocks.

• bA22 and bB22 are upper-left quasitriangular matrices with
corresponding 1× 1 or 2× 2 blocks.

I B0λ− A0 has one pair of purely imaginary eigenvalues ⇒ L (t)
converges to the same canonical form as above, with the
exception of a non-zero entry at the (n + 1, n) position which is
periodic in t .
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Initial Structure Dynamical System Limiting Behavior Operator
X0=staircase Ẋ = [X, Π0(X)] Ashlock et al. ’97 Π0(X) := X− − (X−)>

B0λ − A0 = staircase L̇ = L Π0(Y−1X) − Π0(XY−1)L Conjecture 1

B0 = staircase Ḃ = BΠ0(B>B) − Π0(BB>)B Conjecture 2

B0λ − A0 = Lancaster K̇ = 1
2 (CDK − KDC) + N>L K + KNR D, NR , NL :=controls

Ċ = (MDK − KDM) + N>L C + CNR
Ṁ = 1

2 (MDC − CDM) + N>L M + MNR

H0 = Hamiltonian Ḣ = [H,P0(H)] Chu et al. ’88 P0(X) :=

"
0 −X>21

X21 0

#

W0 = skew-Hamiltonian Ẇ = [W,P0(W1/2)]

H0 = Hamiltonian Ḣ = [H,P1(H)] Conjecture 3 P1(X) :=

»
Π0(X11) −X21

X21 Π0(X11)

–

W0 = skew-Hamiltonian Ẇ = [W,P1(W1/2)]

X0 = general Ẋ = XP3(X>X) − P3(XX>)X Chu el al.’ 88 P3 :=generalizedP0

H0 = Hamiltonian Ẋ = XP2((X>JXJ)1/2) − P1((XJX>J)1/2)X URV flow P2(X) :=

"
−Π0(X>11 ) X12
−X12 −Π0(X>11 )

#

W0λ −H0 = sHH L̇ = LP4(W−1H) − P4(HW−1)L Conjecture 4 P4(X) :=

"
Π0(X11) −X>21

X21 −Π0(X>22 )

#

B0λ − A0 = Hamiltonian L̇ = LP1(B−1A) − Π0(AB−1)L Conjecture 5

B0λ − A0 = general Ȧ = AP2((A>B−>JB−1AJ)1/2) − P4(AB−1)A Not tested
Ḃ = BP1((B−1AJA>B−>J)1/2) − P4(AB−1)A
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HH Pencil

I Inherent relationships!

AB−1 = −J(B−1A)>J.

I A choice similar to that for the sHH pencil will not work — It
misses a negative sign.

I Nor sure what the Hamiltonian Schur form is for the HH pencil.
• Not all Hamiltonian matrices have a Hamiltonian Schur form.

I Would it work if we choose

R = P1(B−1A),

L = −P1(AB−1)?
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One Final Question

I For all the Hamiltonian flows, is the staircase structure still
preserved?
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Generalizing into Manifolds

I Far too many applications where it is desirable that a specific
structure is maintained throughout an evolving process.

• The notion of “structure" should be interpreted quite liberally.
• Preserving volume, momentum, energy, symplecticity, or other

kinds of physical quantities is an extremely important task with
significant consequences.

I Lie theory is now a ubiquitous framework in many disciplines of
sciences and engineering applications.

• Dynamical systems and numerical algorithms originally developed
over Euclidean space need to be redeveloped over manifolds.

• Newton and the conjugate gradient methods have been generalized
to the Grassmann and the Stiefel manifolds (Edelman et al. ’99).
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Newton Dynamics on a Lie Group
(Owren & Welfert ’00)

I The problem:
• Given a Lie group G and its corresponding Lie algebra g,
• want to find “zeros(s)" of the map

f : G → g.

I A typical Newton scheme:
• Solve for a tangent vector un ∈ Tyn G via the linear equation

dfyn (un) + f (yn) = 0.

• Update yn to yn+1 via un.
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Interpretation
I Bring back to local coordinates:

• All local charts of a Lie group can be obtained by translation.
• Ty G = yg.

• Consider a representation of f restricted to a local chart at yn.

f̃ := f ◦ Lyn ◦ exp,

• Ly (z) = yz.

I A classical Newton iteration over the Euclidean space.

df̃vn(un) + f̃ (vn) = 0.

• vn = ln yn.
• vn+1 = vn + un.
• Lift to the new iterate on the manifold G.

yn+1 = yn exp(un).
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Generalizations

I Under classical assumptions the proposed methods converge
quadratically .

I This framework can be repeatedly applied to generalize other
types of algorithms originally designed for Euclidean space to Lie
groups.

I How far this generalization should go, and how practical such
extensions might be, are yet to be seen.
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