On the Differential Equation $\frac{d X}{d t}=[X, k(X)]$ where k Is a Toeplitz Annihilator

Moody T. Chu

Department of Mathematics
North Carolina State University Raleigh, North Carolina 27695-8205

Inverse Eigenvalue Problem (IEP)

- Given
- Real symmetric matrices $A_{0}, A_{1}, \ldots, A_{n} \in R^{n \times n}$;
- Real numbers $\lambda_{1}^{*} \geq \ldots \geq \lambda_{n}^{*}$,
- Find
- Values of $c:=\left(c_{1}, \ldots, c_{n}\right)^{T} \in R^{n}$,
- Such that
- Eigenvalues of the matrix

$$
A(c):=A_{0}+c_{1} A_{1}+\ldots+c_{n} A_{n}
$$

are precisely $\lambda_{1}^{*}, \ldots, \lambda_{n}^{*}$.

Existence Question

- Not always will the (IEP) have a solution.
- Inverse Toeplitz Eigenvalue Problem (ITEP):
- A special case of the (IEP) where $A_{0}=0$ and $A_{k}:=$ $\left(A_{i j}^{(k)}\right)$ with

$$
A_{i j}^{(k)}:=\left\{\begin{array}{l}
1, \text { if }|i-j|=k-1 \\
0, \text { otherwise }
\end{array}\right.
$$

- Existence question for (ITEP) remains open for $n \geq 5$.

Notation

- $\mathcal{S}(n):=$ The subspace of all symmetric matrices in $R^{n \times n}$.
- $\mathcal{O}(n):=$ The manifold of all orthogonal matrices in $R^{n \times n}$.
- $\mathcal{T}:=$ The subspace of all Toeplitz matrices in $\mathcal{S}(n)$.
- $\Lambda:=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$.
- $\mathcal{M}(\Lambda):=\left\{Q \Lambda Q^{T} \mid Q \in \mathcal{O}(n)\right\}$
- Contains all matrices in $\mathcal{S}(n)$ whose eigenvalues are precisely $\lambda_{1}^{*}, \ldots, \lambda_{n}^{*}$.
- $\mathcal{A}:=\left\{A(c) \mid c \in R^{n}\right\}$.
- Solving the (IEP) is equivalent to finding an intersection of the two sets $\mathcal{M}(\Lambda)$ and \mathcal{A}.

A Descent Method for ITP

- Assume
- Matrices A_{1}, \ldots, A_{n} are mutually orthonormal.
- Matrix A_{0} is perpendicular to all A_{k}, for $k=1, \ldots, n$.
- The distance from X to the affine subspace \mathcal{A} is

$$
\operatorname{dist}(X, \mathcal{A})=\left\|X-\left(A_{0}+P(X)\right)\right\|
$$

where

$$
P(X)=\sum_{k=1}^{n}<X, A_{k}>A_{k}
$$

- Approach the (IEP) by solving the optimization problem:

Minimize $\quad F(Q):=\frac{1}{2}\left\|Q^{T} \Lambda Q-A_{0}-P\left(Q^{T} \Lambda Q\right)\right\|^{2}$
Subject to $\quad Q \in \mathcal{O}(n)$.

Compute the Projected Gradient

- The gradient ∇F can be calculated:

$$
\nabla F(Q)=2 \Lambda Q\left\{Q^{T} \Lambda Q-A_{0}-P\left(Q^{T} \Lambda Q\right)\right\} .
$$

- Projection is easy because:

$$
\begin{aligned}
R^{n \times n} & =T_{Q} \mathcal{O}(n) \oplus T_{Q} \mathcal{O}(n)^{\perp} \\
& =Q \mathcal{S}(n)^{\perp} \oplus Q \mathcal{S}(n)
\end{aligned}
$$

- The vector field

$$
\frac{d Q}{d t}=Q\left[Q^{T} \Lambda Q, A_{0}+P\left(Q^{T} \Lambda Q\right)\right]
$$

where

$$
[A, B]:=A B-B A
$$

defines a steepest descent flow on the manifold $\mathcal{O}(n)$ for the objective function $F(Q)$.

A Descent Flow for the IEP

- Define

$$
X(t):=Q(t)^{T} \Lambda Q(t)
$$

- $X(t)$ is governed by:

$$
\frac{d X}{d t}=\left[X,\left[X, A_{0}+P(X)\right]\right]
$$

- Starting with any given $X(0) \in \mathcal{M}(\Lambda)$, the solution $X(t)$ of the initial value problem will
- Stay on the surface $\mathcal{M}(\Lambda)$.
- Move in the steepest descent direction to minimize $\operatorname{dist}(X(t), \mathcal{A})$.
- Suppose
$-X(t) \longrightarrow \hat{X}$ as $t \longrightarrow \infty$.
$-\hat{X}$ is also in \mathcal{A}.
Then $c_{i}=<\hat{X}, A_{i}>$ for $i=1, \ldots n$ is a putative solution to the (IEP).
- UNFORTUNATELY, œ the flow $X(t)$ for the (ITEP) sometimes converges to a stable equilibrium point that is not Toeplitz.

A New Approach

- To stay on the surface $\mathcal{M}(\Lambda)$, a differential equation must take the form

$$
\frac{d X}{d t}=[X, k(X)]
$$

where $k: \mathcal{S}(n) \longrightarrow \mathcal{S}(n)^{\perp}$.

- Require k to be a linear Toeplitz annihilator:
$-k(X)=0$ if and only if $X \in \mathcal{T}$.
- What is the idea?
- Suppose all elements in Λ are distinct.
$-[X, k(X)]=0$ if and only if $k(X)$ is a polynomial of X.
$-k(X) \in \mathcal{S}(n) \cap \mathcal{S}(n)^{\perp}=\{0\}$.
$-\|X(t)\|=\|\Lambda\|$ for all $t \in R$.
- A bounded flow on a compact set must have a nonempty ω-limit set.
- Can such a k be defined?
- The simpliest choice:

$$
k_{i j}:= \begin{cases}x_{i+1, j}-x_{i, j-1}, & \text { if } 1 \leq i<j \leq n \\ 0, & \text { if } 1 \leq i=j \leq n \\ x_{i, j-1}-x_{i+1, j}, & \text { if } 1 \leq j<i \leq n\end{cases}
$$

The Differential Equation

- Only consider
- The upper triangular part of a matrix.
$-n=3$.
- The differential equation is invariant under the translation $X+\sigma I$. Thus
- Assume

$$
\lambda_{1}+\lambda_{2}+\lambda_{3}=0
$$

- Eliminate one variable

$$
x_{22}=-x_{11}-x_{33} .
$$

- The differential system is equivalent to

$$
\begin{aligned}
\frac{d x_{11}}{d t}= & 4 x_{12} x_{11}+2 x_{12} x_{33}-2 x_{13} x_{23}+2 x_{13} x_{12} \\
\frac{d x_{12}}{d t}= & -4 x_{11}^{2}-4 x_{11} x_{33}-2 x_{13} x_{33}-x_{13} x_{11} \\
& -x_{33}^{2}-x_{23}^{2}+x_{23} x_{12} \\
\frac{d x_{13}}{d t}= & 3 x_{11} x_{23}+3 x_{12} x_{33}, \\
\frac{d x_{23}}{d t}= & x_{23} x_{12}-x_{12}^{2}-4 x_{11} x_{33}-x_{11}^{2}-4 x_{33}^{2} \\
& -2 x_{13} x_{11}-x_{13} x_{33}, \\
\frac{d x_{33}}{d t}= & 2 x_{13} x_{23}-2 x_{13} x_{12}+4 x_{23} x_{33}+2 x_{11} x_{23} .
\end{aligned}
$$

Critical Points

- The vector field is a system of homogeneous polynomials of degree 2 .
- No isolated equilibrium for the differential system.
- Only two kinds of real equilibria (by using the theory of Gröbner bases):
$-\left(c_{1}, 0,-3 c_{1}, 0, c_{1}\right), c_{1} \in R$.
$-\left(0, c_{2}, c_{3}, c_{2}, 0\right), c_{2}, c_{3} \in R$.
- Local stability:
- Eigenvalues at $\left(c_{1}, 0,-3 c_{1}, 0, c_{1}\right)$ are

$$
0, \pm 3 \sqrt{6} c_{1}, \pm 6 \sqrt{2}\left|c_{1}\right| i
$$

* This kind of equilibrium can never be stable.
* Near such an equilibrium, there should be periodic solutions.
* The number of zero eigenvalue indicates the dimension of the manifold of equilibria.
- Eigenvalues at $\left(0, c_{2}, c_{3}, c_{2}, 0\right)$ are

$$
0,0,6 c_{2}, 2\left(c_{2}+c_{3}\right), 2\left(c_{2}-c_{3}\right)
$$

* The equilibrium can be stable only if

$$
c_{2}<0 \text { and }\left|c_{2}\right| \geq c_{3} .
$$

* The equilibrium corresponds to a Toeplitz matrix

$$
\left[\begin{array}{ccc}
0 & c_{2} & c_{3} \\
c_{2} & 0 & c_{2} \\
c_{3} & c_{2} & 0
\end{array}\right]
$$

whose eigenvalues are:

$$
\frac{c_{3}-\sqrt{c_{3}^{2}+8 c_{2}^{2}}}{2},-c_{3}, \frac{c_{3}+\sqrt{c_{3}^{2}+8 c_{2}^{2}}}{2}
$$

in ascending order.

* The case $\left|c_{2}\right|=c_{3}$ corresponds to multiple eigenvalues.

Invariant Sets

- Due to the homogeneity,
- If $X(t)$ is a solution, so is $Y(t):=\frac{1}{\alpha} X\left(\frac{t}{\alpha}\right)$ for any real constant α.
- If \mathcal{I} is any set invariant under the differential equation, so is the set $\alpha \mathcal{I}$.
- A matrix is said to be
- (Skew-) Persymmetric if it is (skew-) symmetric about the NE-SW diagonal.
- The subspace \mathcal{W} of all persymmetric matrices in $\mathcal{S}(n)$ is invariant.
$-\mathcal{W}$ is a 3-dimensional subspace:

$$
\mathcal{W}=\left\{\left(x_{11}, x_{12}, x_{13}, x_{12}, x_{11}\right) \mid x_{11}, x_{12}, x_{13} \in R\right\}
$$

- The intersection of \mathcal{W} and $\mathcal{M}(\Lambda)$ consists of three "ellipses":

$$
\begin{aligned}
\left(x_{11}-\frac{\lambda_{3}}{4}\right)^{2}+\frac{1}{2} x_{12}^{2} & =\frac{\left(2 \lambda_{1}+\lambda_{3}\right)^{2}}{16} \\
x_{13} & =x_{11}-\lambda_{3} \\
\left(x_{11}-\frac{\lambda_{1}}{4}\right)^{2}+\frac{1}{2} x_{12}^{2} & =\frac{\left(\lambda_{1}+2 \lambda_{3}\right)^{2}}{16} \\
x_{13} & =x_{11}-\lambda_{1} \\
\left(x_{11}+\frac{\lambda_{1}+\lambda_{3}}{4}\right)^{2}+\frac{1}{2} x_{12}^{2} & =\frac{\left(\lambda_{1}-\lambda_{3}\right)^{2}}{16} \\
x_{13} & =x_{11}+\lambda_{1}+\lambda_{3}
\end{aligned}
$$

- The projections of these ellipses onto the $\left(x_{11}, x_{12}\right)$ plane must be such that one circumscribes the other two.
- For $n=3$ the (ITEP) has exactly
* Four real solutions if all given eigenvalues are distinct.
* Two real solutions if one eigenvalue has multiplicity 2.

Flows on \mathcal{W}

- The differential equation restricted on \mathcal{W} is given by:

$$
\begin{aligned}
\frac{d x_{11}}{d t} & =6 x_{11} x_{12} \\
\frac{d x_{12}}{d t} & =-9 x_{11}^{2}-3 x_{11} x_{13} \\
\frac{d x_{13}}{d t} & =6 x_{11} x_{12}
\end{aligned}
$$

- \mathcal{W} itself consists of layers of 2-dimensional invariant affine subspaces:
- Each affine subspace is determined by

$$
x_{13}=x_{11}+c_{4}
$$

for a certain real constant c_{4}.

- For any given c_{4}, the integral curves on the invariant affine subspace are determined by

$$
\left(x_{11}+\frac{c_{4}}{4}\right)^{2}+\frac{1}{2} x_{12}^{2}=c_{5}^{2}
$$

for real constants c_{5}.

- These elliptic orbits are concentric with the center $\left(-\frac{c_{4}}{4}, 0, \frac{3 c_{4}}{4}\right)$ which is an equilibrium of the first kind.
- There are periodic solutions near that equilibrium.
- For large enough c_{5}^{2}, a non-periodic solution of will converge as is shown.
* The limit point corresponds to an equilibrium of the second kind

$$
\left(0,-\sqrt{2 c_{5}^{2}-\frac{c_{4}^{2}}{8}}, c_{4},-\sqrt{2 c_{5}^{2}-\frac{c_{4}^{2}}{8}}, 0\right)
$$

* The limit point can be stable for the entire system only if

$$
c_{5}^{2} \geq \frac{9 c_{4}^{2}}{16}
$$

- For any given $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$, the surface $\mathcal{M}(\Lambda)$ can have one and only one equilibrium which is stable for the differential system.

Orbital Stability

- The existence of periodic solutions is disappointing.
- A computer plot of $x_{12}(t)$ versus $x_{11}(t)$ for a single trajectory where
- Initial values $x_{11}(0)=1.0, x_{12}(0)=1.0, x_{13}=-3.0, x_{14}=$ $1.0, x_{15}=1.0$ indicate the true trajectory should be an ellipse.
- Interval of integration is $0 \leq t \leq 11.05$.
- A variable-step variable-order numerical method with high accuracy of error control $\left(\leq 10^{-14}\right)$ fails to stay close to the ellipse.
- Calculate the characteristic exponents of the linearized system:
- The period is estimated to be $T=1.04719755120$ (a ccurate up to the 11-th digit).
- The fundamental matrix $\Phi(t)=P(t) e^{t R}$ for the linear system is calculated with $\Phi(0)=I$.
- The corresponding characteristic exponents (eigenvalues of R) are estimated to be:

$$
\pm 7.8998, \pm 2.0222 \times 10^{-5}, 4.5297 \times 10^{-14}
$$

- The first positive characteristic exponent clearly indicates the orbital unstability.
- Although the numerical solution fails to track down the elliptic orbit, it stays close to the surface $\mathcal{M}(\Lambda)$.
- See the plot of the difference of eigenvalues (measured in the 2-norm) between $X(0)$ and $X(t)$.The error is certainly acceptable within machine roundoff.
- Although the numerical solution is meaningless to the original initial value problem, the final false limit point does solve the (ITEP).

More Questions

- Are there any invariant sets other than the ones we have found?
- With $X(0)=\Lambda$, the solution $X(t)$ displays a special feature - diagonals of $X(t)$ alternate symmetry of evenness with oddness. Does this mean anything?
- Starting with $X(0)=\Lambda$, the solution flow has been observed numerically to always converge a symmetric Toeplitz matrix as $t \longrightarrow \infty$. How to argue analytically that this is the case?
- How much can the understanding for $n=3$ be generalized to higher dimensional case?

