On the Differential Equation $\frac{dX}{dt} = [X, k(X)]$ where k Is a Toeplitz Annihilator

Moody T. Chu

Department of Mathematics North Carolina State University Raleigh, North Carolina 27695-8205

Inverse Eigenvalue Problem (IEP)

- Given
 - Real symmetric matrices $A_0, A_1, \ldots, A_n \in \mathbb{R}^{n \times n}$;
 - Real numbers $\lambda_1^* \ge \ldots \ge \lambda_n^*$,
- Find
 - Values of $c := (c_1, \ldots, c_n)^T \in \mathbb{R}^n$,
- Such that
 - Eigenvalues of the matrix

$$A(c) := A_0 + c_1 A_1 + \ldots + c_n A_n$$

are precisely $\lambda_1^*, \ldots, \lambda_n^*$.

Existence Question

- Not always will the (IEP) have a solution.
- Inverse Toeplitz Eigenvalue Problem (ITEP):
 - A special case of the (IEP) where $A_0 = 0$ and $A_k := (A_{ij}^{(k)})$ with

$$A_{ij}^{(k)} := \begin{cases} 1, & \text{if } |i-j| = k-1; \\ 0, & \text{otherwise.} \end{cases}$$

- Existence question for (ITEP) remains open for $n \ge 5$.

Notation

- $\mathcal{S}(n) :=$ The subspace of all symmetric matrices in $\mathbb{R}^{n \times n}$.
- $\mathcal{O}(n) :=$ The manifold of all orthogonal matrices in $\mathbb{R}^{n \times n}$.
- \mathcal{T} := The subspace of all Toeplitz matrices in $\mathcal{S}(n)$.

•
$$\Lambda := diag\{\lambda_1, \ldots, \lambda_n\}$$
 .

•
$$\mathcal{M}(\Lambda) := \{Q\Lambda Q^T | Q \in \mathcal{O}(n)\}$$

– Contains all matrices in $\mathcal{S}(n)$ whose eigenvalues are precisely $\lambda_1^*, \ldots, \lambda_n^*$.

•
$$\mathcal{A} := \{A(c) | c \in \mathbb{R}^n\}.$$

- Solving the (IEP) is equivalent to finding an intersection of the two sets $\mathcal{M}(\Lambda)$ and \mathcal{A} .

A Descent Method for ITP

- Assume
 - Matrices A_1, \ldots, A_n are mutually orthonormal.
 - Matrix A_0 is perpendicular to all A_k , for $k = 1, \ldots, n$.
- The distance from X to the affine subspace \mathcal{A} is

$$dist(X, \mathcal{A}) = \|X - (A_0 + P(X))\|$$

where

$$P(X) = \sum_{k=1}^{n} \langle X, A_k \rangle A_k.$$

• Approach the (IEP) by solving the optimization problem:

Minimize
$$F(Q) := \frac{1}{2} \|Q^T \Lambda Q - A_0 - P(Q^T \Lambda Q)\|^2$$

Subject to $Q \in \mathcal{O}(n).$

Compute the Projected Gradient

• The gradient ∇F can be calculated:

$$\nabla F(Q) = 2\Lambda Q \{ Q^T \Lambda Q - A_0 - P(Q^T \Lambda Q) \}.$$

• Projection is easy because:

$$R^{n \times n} = T_Q \mathcal{O}(n) \oplus T_Q \mathcal{O}(n)^{\perp}$$
$$= Q \mathcal{S}(n)^{\perp} \oplus Q \mathcal{S}(n)$$

• The vector field

$$\frac{dQ}{dt} = Q[Q^T \Lambda Q, A_0 + P(Q^T \Lambda Q)]$$

where

$$[A,B] := AB - BA$$

defines a steepest descent flow on the manifold $\mathcal{O}(n)$ for the objective function F(Q).

A Descent Flow for the IEP

• Define

$$X(t) := Q(t)^T \Lambda Q(t).$$

• X(t) is governed by:

$$\frac{dX}{dt} = [X, [X, A_0 + P(X)]].$$

- Starting with any given $X(0) \in \mathcal{M}(\Lambda)$, the solution X(t) of the initial value problem will
 - Stay on the surface $\mathcal{M}(\Lambda)$.
 - Move in the steepest descent direction to minimize $dist(X(t), \mathcal{A}).$

• Suppose

$$-X(t) \longrightarrow \hat{X} \text{ as } t \longrightarrow \infty.$$

 $-\hat{X}$ is also in \mathcal{A} .

Then $c_i = \langle \hat{X}, A_i \rangle$ for i = 1, ..., n is a putative solution to the (IEP).

• UNFORTUNATELY, ∞ the flow X(t) for the (ITEP) sometimes converges to a stable equilibrium point that is not Toeplitz.

A New Approach

• To stay on the surface $\mathcal{M}(\Lambda)$, a differential equation must take the form

$$\frac{dX}{dt} = [X, k(X)]$$

where $k : \mathcal{S}(n) \longrightarrow \mathcal{S}(n)^{\perp}$.

• Require k to be a linear Toeplitz annihilator:

-k(X) = 0 if and only if $X \in \mathcal{T}$.

- What is the idea?
 - Suppose all elements in Λ are distinct.
 - -[X, k(X)] = 0 if and only if k(X) is a polynomial of X.

$$-k(X) \in \mathcal{S}(n) \cap \mathcal{S}(n)^{\perp} = \{0\}.$$

- $-||X(t)|| = ||\Lambda|| \text{ for all } t \in R.$
- A bounded flow on a compact set must have a non-empty ω -limit set.
- Can such a k be defined?

– The simpliest choice:

$$k_{ij} := \begin{cases} x_{i+1,j} - x_{i,j-1}, & \text{if } 1 \le i < j \le n \\ 0, & \text{if } 1 \le i = j \le n \\ x_{i,j-1} - x_{i+1,j}, & \text{if } 1 \le j < i \le n \end{cases}$$

The Differential Equation

- Only consider
 - The upper triangular part of a matrix.
 - -n = 3.
- The differential equation is invariant under the translation $X + \sigma I$. Thus
 - Assume

$$\lambda_1 + \lambda_2 + \lambda_3 = 0.$$

- Eliminate one variable

$$x_{22} = -x_{11} - x_{33}.$$

\bullet The differential system is equivalent to

$$\frac{dx_{11}}{dt} = 4x_{12}x_{11} + 2x_{12}x_{33} - 2x_{13}x_{23} + 2x_{13}x_{12},
\frac{dx_{12}}{dt} = -4x_{11}^2 - 4x_{11}x_{33} - 2x_{13}x_{33} - x_{13}x_{11}
-x_{33}^2 - x_{23}^2 + x_{23}x_{12},
\frac{dx_{13}}{dt} = 3x_{11}x_{23} + 3x_{12}x_{33},
\frac{dx_{23}}{dt} = x_{23}x_{12} - x_{12}^2 - 4x_{11}x_{33} - x_{11}^2 - 4x_{33}^2
-2x_{13}x_{11} - x_{13}x_{33},
\frac{dx_{33}}{dt} = 2x_{13}x_{23} - 2x_{13}x_{12} + 4x_{23}x_{33} + 2x_{11}x_{23}.$$

Critical Points

- The vector field is a system of homogeneous polynomials of degree 2.
 - No isolated equilibrium for the differential system.
- Only two kinds of real equilibria (by using the theory of Gröbner bases):
 - $-(c_1, 0, -3c_1, 0, c_1), c_1 \in R.$
 - $-(0, c_2, c_3, c_2, 0), c_2, c_3 \in R.$
- Local stability:
 - Eigenvalues at $(c_1, 0, -3c_1, 0, c_1)$ are

$$0, \pm 3\sqrt{6}c_1, \pm 6\sqrt{2}|c_1|i.$$

- * This kind of equilibrium can never be stable.
- * Near such an equilibrium, there should be periodic solutions.
- * The number of zero eigenvalue indicates the dimension of the manifold of equilibria.

- Eigenvalues at $(0, c_2, c_3, c_2, 0)$ are

$$0, 0, 6c_2, 2(c_2 + c_3), 2(c_2 - c_3).$$

* The equilibrium can be stable only if

$$c_2 < 0$$
 and $|c_2| \ge c_3$.

 \ast The equilibrium corresponds to a Toeplitz matrix

$$\begin{bmatrix} 0 & c_2 & c_3 \\ c_2 & 0 & c_2 \\ c_3 & c_2 & 0 \end{bmatrix}$$

whose eigenvalues are:

$$\frac{c_3 - \sqrt{c_3^2 + 8c_2^2}}{2}, \ -c_3, \ \frac{c_3 + \sqrt{c_3^2 + 8c_2^2}}{2}$$

in ascending order.

* The case $|c_2| = c_3$ corresponds to multiple eigenvalues.

Invariant Sets

- Due to the homogeneity,
 - If X(t) is a solution, so is $Y(t) := \frac{1}{\alpha} X(\frac{t}{\alpha})$ for any real constant α .
 - If \mathcal{I} is any set invariant under the differential equation, so is the set $\alpha \mathcal{I}$.
- A matrix is said to be
 - (Skew-) Persymmetric if it is (skew-) symmetric about the NE-SW diagonal.
- The subspace \mathcal{W} of all persymmetric matrices in $\mathcal{S}(n)$ is invariant.
 - $-\mathcal{W}$ is a 3-dimensional subspace:

 $\mathcal{W} = \{ (x_{11}, x_{12}, x_{13}, x_{12}, x_{11}) | x_{11}, x_{12}, x_{13} \in R \}.$

• The intersection of \mathcal{W} and $\mathcal{M}(\Lambda)$ consists of three "ellipses":

$$(x_{11} - \frac{\lambda_3}{4})^2 + \frac{1}{2}x_{12}^2 = \frac{(2\lambda_1 + \lambda_3)^2}{16},$$

$$x_{13} = x_{11} - \lambda_3;$$

$$(x_{11} - \frac{\lambda_1}{4})^2 + \frac{1}{2}x_{12}^2 = \frac{(\lambda_1 + 2\lambda_3)^2}{16},$$

$$x_{13} = x_{11} - \lambda_1;$$

$$(x_{11} + \frac{\lambda_1 + \lambda_3}{4})^2 + \frac{1}{2}x_{12}^2 = \frac{(\lambda_1 - \lambda_3)^2}{16},$$

$$x_{13} = x_{11} + \lambda_1 + \lambda_3$$

- The projections of these ellipses onto the (x_{11}, x_{12}) plane must be such that one circumscribes the other two.
- For n = 3 the (ITEP) has exactly
 - * Four real solutions if all given eigenvalues are distinct.
 - * Two real solutions if one eigenvalue has multiplicity 2.

Flows on \mathcal{W}

• The differential equation restricted on \mathcal{W} is given by:

$$\frac{dx_{11}}{dt} = 6x_{11}x_{12},$$

$$\frac{dx_{12}}{dt} = -9x_{11}^2 - 3x_{11}x_{13},$$

$$\frac{dx_{13}}{dt} = 6x_{11}x_{12}.$$

- W itself consists of layers of 2-dimensional invariant affine subspaces:
 - Each affine subspace is determined by

$$x_{13} = x_{11} + c_4$$

for a certain real constant c_4 .

- For any given c_4 , the integral curves on the invariant affine subspace are determined by

$$(x_{11} + \frac{c_4}{4})^2 + \frac{1}{2}x_{12}^2 = c_5^2$$

for real constants c_5 .

- These elliptic orbits are concentric with the center $\left(-\frac{c_4}{4}, 0, \frac{3c_4}{4}\right)$ which is an equilibrium of the first kind.
 - There are periodic solutions near that equilibrium.
 - For large enough c_5^2 , a non-periodic solution of will converge as is shown.
 - * The limit point corresponds to an equilibrium of the second kind

$$(0, -\sqrt{2c_5^2 - \frac{c_4^2}{8}}, c_4, -\sqrt{2c_5^2 - \frac{c_4^2}{8}}, 0).$$

* The limit point can be stable for the entire system only if

$$c_5^2 \ge \frac{9c_4^2}{16}.$$

• For any given $\{\lambda_1, \lambda_2, \lambda_3\}$, the surface $\mathcal{M}(\Lambda)$ can have one and only one equilibrium which is stable for the differential system.

Orbital Stability

- The existence of periodic solutions is disappointing.
- A computer plot of $x_{12}(t)$ versus $x_{11}(t)$ for a single trajectory where
 - Initial values $x_{11}(0) = 1.0, x_{12}(0) = 1.0, x_{13} = -3.0, x_{14} = 1.0, x_{15} = 1.0$ indicate the true trajectory should be an ellipse.
 - Interval of integration is $0 \le t \le 11.05$.
 - A variable-step variable-order numerical method with high accuracy of error control ($\leq 10^{-14}$) fails to stay close to the ellipse.
- Calculate the characteristic exponents of the linearized system:
 - The period is estimated to be T = 1.04719755120 (a ccurate up to the 11-th digit).
 - The fundamental matrix $\Phi(t) = P(t)e^{tR}$ for the linear system is calculated with $\Phi(0) = I$.

- The corresponding characteristic exponents (eigenvalues of R) are estimated to be:

 $\pm 7.8998, \pm 2.0222 \times 10^{-5}, 4.5297 \times 10^{-14}.$

- The first positive characteristic exponent clearly indicates the orbital unstability.
- Although the numerical solution fails to track down the elliptic orbit, it stays close to the surface $\mathcal{M}(\Lambda)$.
 - See the plot of the difference of eigenvalues (measured in the 2-norm) between X(0) and X(t). The error is certainly acceptable within machine roundoff.
 - Although the numerical solution is meaningless to the original initial value problem, the final false limit point does solve the (ITEP).

More Questions

- Are there any invariant sets other than the ones we have found?
- With $X(0) = \Lambda$, the solution X(t) displays a special feature diagonals of X(t) alternate symmetry of evenness with oddness. Does this mean anything?
- Starting with $X(0) = \Lambda$, the solution flow has been observed numerically to always converge a symmetric Toeplitz matrix as $t \longrightarrow \infty$. How to argue analytically that this is the case?
- How much can the understanding for n = 3 be generalized to higher dimensional case?