Multivariate Eigenvalue Problem: Algebraic Theory and Power Method

Moody T. Chu
and
J. Loren Watterson

Department of Mathematics
North Carolina State University
Raleigh, NC 27695-8205

Outline

- Statistics Background
- Homotopy Method and Cardinality
- Power Method and Convergence
- Other Numerical Methods

Multivariate Eigenvalue Problem (MEP)

Find real scalars $\lambda_{1}, \ldots, \lambda_{m}$ and a real vector $x \in R^{n}$ such that

$$
\begin{aligned}
A x & =\Lambda x \\
\left\|x_{i}\right\| & =1, i=1, \ldots, m
\end{aligned}
$$

where

- $A \in R^{n \times n}$ is SPD, and is block partitioned into

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 m} \\
A_{21} & A_{22} & \ldots & A_{2 m} \\
\vdots & \vdots & & \vdots \\
A_{m 1} & A_{m 2} & \ldots & A_{m m}
\end{array}\right],
$$

$-A_{i i} \in R^{n_{i} \times n_{i}}$.
$-\Sigma_{i=1}^{m} n_{i}=n$.

- $\Lambda=\operatorname{diag}\left\{\lambda_{1} I^{\left[n_{1}\right]}, \ldots, \lambda_{m} I^{\left[n_{m}\right]}\right\}$,
$-I^{\left[n_{n}\right]}:=$ The identity matrix of dimension n_{i}.
- $x=\left[x_{1}^{T}, \ldots, x_{m}^{T}\right]^{T}$,
$-x_{i} \in R^{n_{i}}$.

Relation to Other Problems

- MEP is a classical symmetric eigenvalue problem when $m=1$.
- MEP is fundamentally different from the so called multiparameter eigenvalue problem.
- MEP originates from the determination of canonical correlation coefficients for multivariate statistics.

Statistics Background

- $\tilde{X}:=\left(\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}\right)$ denotes an n-dimensional random variable with a certain distribution function.
- Row vectors $\left[x_{\xi 1}, \ldots, x_{\xi n}\right], \xi=1, \ldots, k$ denote a random sample of size k for X,
$-X:=\left[x_{\xi i}\right]$ is the $k \times n$ sample matrix.
- Assume
- Sample mean $\mu_{i}=0$ for each \mathcal{X}_{i}.
- No degenerate component and no linear dependence among \mathcal{X}_{i}.
Then
- Matrix $\Delta:=X^{T} X$ represents the covariance matrix of the random sample X.
$-\Delta$ is SPD.

Regroup of Variables

- Divide variables into groups $\tilde{X}=\left(\tilde{X}_{1}, \ldots, \tilde{X}_{m}\right)$,
- \tilde{X}_{i} is an n_{i}-dimensional random variable.
- Correspondingly, $\Delta=\left[\Delta_{i j}\right]$ and $X=\left[X_{1}, \ldots, X_{m}\right]$.
$-\Delta_{i i}$ is the covariance matrix of the $k \times n_{i}$ sample block X_{i}.
- Combining all n_{i} variables in \tilde{X}_{i} linearly into a single new variable \mathcal{Z}_{i} through coefficients $b_{i} \in R^{n_{i}}$,
- Sample matrix X is transformed into $Z:=X B:=$ $\left[Z_{1}, \ldots, Z_{m}\right]$ where

$$
B:=\left[\begin{array}{cccc}
b_{1} & 0 & \ldots & 0 \\
0 & b_{2} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & & \ldots & b_{m}
\end{array}\right]
$$

- Covariance matrix corresponding to Z is given by

$$
\Omega:=Z^{T} Z=B^{T} \Delta B
$$

An Example $(m=2)$

- Desire to use \mathcal{Z}_{1} to predict \mathcal{Z}_{2},
- Need to find b_{1} and b_{2} so that the correlation coefficient between Z_{1} and Z_{2} is as large as possible.
- Covariance matrix of Z is

$$
\Omega=\left[\begin{array}{cc}
b_{1}^{T} \Delta_{11} b_{1} & b_{1}^{T} \Delta_{12} b_{2} \\
b_{2}^{T} \Delta_{21} b_{1} & b_{2}^{T} \Delta_{11} b_{2}
\end{array}\right] .
$$

- Correlation coefficient ρ to be maximized is

$$
\rho=\frac{b_{1}^{T} \Delta_{12} b_{2}}{\sqrt{b_{1}^{T} \Delta_{11} b_{1}} \sqrt{b_{2}^{T} \Delta_{11} b_{2}}}
$$

- Normalize the variances of Z_{1} and Z_{2} to unity. The maximal correlation problem (MCP) becomes

Maximize $\quad b^{T} \Delta b$
Subject to $b_{i}^{T} \Delta_{i i} b_{i}=1$, for $i=1,2$
where $b:=\left[b_{1}^{T}, b_{2}^{T}\right]^{T}$.

Change MCP to MEP

- Each $\Delta_{i i}$ is SPD, so the Cholesky decomposition $\Delta_{i i}=$ $T_{i}^{T} T_{i}$ exists.
- Define

$$
\begin{aligned}
T & :=\operatorname{diag}\left\{T_{1}, T_{2}\right\} \\
x & :=T b:=\left[x_{1}^{T}, x_{2}^{T}\right]^{T} \\
A & :=T^{-T} \Delta T^{-1}
\end{aligned}
$$

MCP is transformed into

$$
\begin{aligned}
\text { Maximize } & x^{T} A x \\
\text { Subject to } & x_{i}^{T} x_{i}=1, i=1,2
\end{aligned}
$$

- MEP follows from differentiating the Lagrangian function

$$
\phi\left(x, \lambda_{1}, \lambda_{2}\right):=x^{T} A x-\sum_{i=1}^{2} \lambda_{i}\left(x_{i}^{T} x_{i}-1\right)
$$

with λ_{1} and λ_{2} as the Lagrange multipliers.

Maximal Correlation When $m>2$

- Heuristic observation:
- The closer to orthogonality any two sample vectors Z_{i}, Z_{j} are, the closer to zero the correlation coefficients will be.
- The more similar the vectors Z_{1}, \ldots, Z_{m} are to each other, the more closely the correlation coefficients will approach unity.
- MCP requires the sum of all off-diagonal elements of Ω be maximized subject to the condition that the diagonal elements of Ω be unity.
- Same procedure as fo $m=2$ to leads MCP to

$$
\begin{aligned}
\text { Maximize } & x^{T} A x \\
\text { Subject to } & x_{i}^{T} x_{i}=1, i=1, m
\end{aligned}
$$ and, then, to MEP.

What Are the Difficulties?

- MEP represents a non-linear algebraic system in $n+m$ unknowns.
- When $m=1$,
- Counting multiplicity, there are exactly n eigenvalues.
- Counting negative signs, there are exactly $2 n$ eigenvectors.
- When $m>1$, no discussion on the cardinality of solutions to MEP,
- Characteristic polynomial is not applicable to MEP.
- How to compute a multivariate eigenvalue and the corresponding eigenvector?
- Horst proposed an iterative procedure without a proof.
- Not heard of any other numerical method since Horst

Homotopy Method and Cardinality

- MEP is a nonlinear system:

$$
\begin{gathered}
F(x, \Lambda):=\left[\begin{array}{c}
\Lambda x-A x \\
\frac{x_{1}^{T} x_{1}-1}{2} \\
\vdots \\
\frac{x_{m}^{T} x_{m}-1}{2}
\end{array}\right]=0, \\
-F: R^{n} \times R^{m} \longrightarrow R^{n} \times R^{m}
\end{gathered}
$$

- The simple MEP:

$$
\begin{aligned}
D x & =\Lambda x \\
\left\|x_{i}\right\| & =1, i=1, \ldots, m
\end{aligned}
$$

with $D=\operatorname{diag}\left\{d_{1}^{(1)}, \ldots, d_{n_{1}}^{(1)}, \ldots, d_{1}^{(m)}, \ldots, d_{n_{m}}^{(m)}\right\}$ has exactly $\Pi_{i=1}^{m} 2 n_{i}$ solutions,

- For $i=1, \ldots, m$,

$$
\begin{aligned}
\lambda_{i} & =d_{j_{i}}^{(i)} \\
x_{i} & = \pm e_{j_{i}}^{\left[n_{i}\right]}
\end{aligned}
$$

* $j_{i}=1, \ldots, n_{i}$.
$* e_{s}^{[t]}:=s^{t h}$ column of $I^{[t]}$.

Homotopy Function

- Define $H: R^{n} \times R^{m} \times R \longrightarrow R^{n} \times R^{m}$ by

$$
H(x, \Lambda, t ; D):=\left[\begin{array}{c}
\Lambda x-[D+t(A-D)] x \\
\frac{x_{1}^{T} x_{1}-1}{2} \\
\vdots \\
\frac{x_{m}^{T} x_{m}-1}{2}
\end{array}\right]
$$

- D is a diagonal matrix whose elements will be specified.
- Basic Ideas:
- The set $\Gamma:=\{(x, \Lambda, t) \mid H(x, \Lambda, t)=0\}$ is a one dimensional smooth submanifold in $R^{n} \times R^{m} \times R$.
- No homotopy curve will escape to infinity or turn back.

Major Theorem

For each $(x, \Lambda, t) \in R^{n} \times R^{m} \times R$ such that $H(x, \Lambda, t)=0$, the matrix

$$
D_{(x, \Lambda)} H=\left[\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
\mathcal{B}^{T} & 0
\end{array}\right]
$$

where

$$
\mathcal{A}=\mathcal{A}(\Lambda, t, D):=\Lambda-(D+t(A-D)) .
$$

and

$$
\mathcal{B}:=\left[\begin{array}{cccc}
x_{1} & 0 & \ldots & 0 \\
0 & x_{2} & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & & \ldots & x_{m}
\end{array}\right]
$$

has rank $n+m$.

- If $H(x, \Lambda, t)=0$, then $\mathcal{A} x=0$.
- None of the m columns of \mathcal{B} can be in the range of \mathcal{A}.
- \mathcal{A} is at least of rank $n-m$.

Auxiliary Lemma

The set of D such that the matrix $\Lambda-(D+t(A-D))$ is of rank less than $n-m$ for some Λ and some $t \in(0,1)$ is of measure zero.

- If the rank of \mathcal{A} is less than $n-m$, then one of the diagonal blocks

$$
\mathcal{A}_{i i}=\lambda_{i} I^{\left[n_{i}\right]}-(1-t) \operatorname{diag}\left(d_{1}^{(i)}, \ldots, d_{n_{i}}^{(i)}\right)-t A_{i i}
$$

must be rank deficient by at least two.

- For some $\tau \in(0, \infty)$ the matrix $\tau D^{(i)}+A_{i i}$ has an eigenvalue with multiplicity at least two,
$-D^{(i)}:=\operatorname{diag}\left(d_{1}^{(i)}, \ldots, d_{n_{i}}^{(i)}\right)$.
- For any symmetric matrix M, the set

$$
E_{r}:=\{\text { diagonal } D \mid M+D \text { rank deficient by } r\}
$$

has dimension $\leq \operatorname{dim}(M)-3$ for $r \geq 2$.

- The set

$$
\underset{\tau \in(0, \infty)}{\cup}\left\{D^{(i)} \mid \tau D^{(i)}+A_{i i} \text { has multiple eigenvalues }\right\}
$$

is of dimension at most $n_{i}-1$.

Homotopy Curves

For $i=1, \ldots, m$, the solution to the initial value problem

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m} \\
d t \\
\lambda_{1} \\
\vdots \\
\lambda_{m}
\end{array}\right] } & =\left[\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
\mathcal{B}^{T} & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
-\mathcal{C} \\
0
\end{array}\right] \\
x_{i}(0) & = \pm e^{\left[n_{i}\right]} \\
\lambda_{i}(0) & =d_{j_{i}}^{(i)}
\end{aligned}
$$

is a curve in $R^{n} \times R^{m}$ that extends from $t=0$ to $t=1$.

- The (MEP) has exactly $\Pi_{i=1}^{m} 2 n_{i}$ solutions.
- The positive definiteness of the matrix A is not needed in the proof.

Horst's Algorithm

- Block form:

Given $x^{(0)}=\left(x_{1}^{(0)^{T}}, \ldots, x_{m}^{(0)^{T}}\right)^{T}$ with $\left\|x_{i}^{(0)}\right\|=1$, do
for $k=1,2, \ldots$
for $i=1, \ldots, m$

$$
\begin{aligned}
y_{i}^{(k)} & :=\sum_{j=1}^{m} A_{i j} x_{j}^{(k)}, \\
\lambda_{i}^{(k)} & :=\left\|y_{i}^{(k)}\right\| \\
x_{i}^{(k+1)} & :=\frac{y_{i}^{(k)}}{\lambda_{i}^{(k)}} .
\end{aligned}
$$

end
end

- Define $x_{i}^{(k+1)}:=x_{i}^{(k)}$ in case $\left\|y_{i}^{(k)}\right\|=0$.
- Compact form:

$$
\begin{gathered}
A x^{(k)}=\Lambda^{(k)} x^{(k+1)} \\
-x^{(k)}:=\left[x_{1}^{(k)^{T}}, \ldots, x_{m}^{(k)}\right]^{T} \\
-\Lambda^{(k)}:=\operatorname{diag}\left\{\lambda_{1}^{(k)} I^{\left[n_{1}\right]}, \ldots, \lambda_{m}^{(k)} I^{\left[n_{m}\right]}\right\} .
\end{gathered}
$$

Is This a Power Method?

- Horst's iteration may be viewed as a generalization of the classical power method.
- The convergence property of this method is not nearly obvious,
- Without the positive definiteness, the method may fail to converge.
- A limit point of the method may depend upon the starting point.
- MCP may have multiple local solutions.

Convergence!

- The sequence $\left\{r\left(x^{(k)}\right)\right\}$ where

$$
r(x):=x^{T} A x
$$

is a monotonically increasing sequence and converges.

- Key fact,

$$
\begin{aligned}
& r\left(x^{(k+1)}\right)-r\left(x^{(k)}\right) \\
= & \left(x^{(k+1)}-x^{(k)}\right)^{T}\left(A+\Lambda^{(k)}\right)\left(x^{(k+1)}-x^{(k)}\right)
\end{aligned}
$$

- The residual $\left\{\delta x^{(k)}\right\}$ where

$$
\delta(x):=A x-\Lambda x
$$

converges to zero.

- Key fact,

$$
\delta\left(x^{(k)}\right)=\Lambda^{(k)}\left(x^{(k+1)}-x^{(k)}\right)
$$

Convergence?

- Is this enough to prove convergence of $\left\{x^{(k)}\right\}$?

$$
r\left(x^{(k+1)}\right)-r\left(x^{(k)}\right) \geq \kappa\left\|x^{(k+1)}-x^{(k)}\right\|^{2}
$$

- The sequence $\left\{x^{(k)}\right\}$ does have have cluster point(s),
- Every cluster point x^{*} solves MEP with eigenvalues $\lambda_{i}^{*}:=\left\|\Sigma_{j=1}^{m} A_{i j} x_{j}^{*}\right\|$.
- A lemma from real analysis,
- Let $\left\{a_{k}\right\}$ be a bounded sequence of real numbers with the proper $\left|a_{k+1}-a_{k}\right| \longrightarrow 0$ as $k \longrightarrow \infty$. If there are only finitely many limit points for the sequence, then $\left\{a_{k}\right\}$ converges to a unique limit point.
- The fact of finite number of solutions of MEP proves that
- The sequence $\left\{\Lambda^{(k)}\right\}$ converges.
- The sequence $\left\{x^{(k)}\right\}$ converges.

Dependence on Starting Points

Consider the positive definite matrix

$$
A=\left[\begin{array}{rrrrr}
4.3299 & 2.3230 & -1.3711 & -0.0084 & -0.7414 \\
2.3230 & 3.1181 & 1.0959 & 0.1285 & 0.0727 \\
-1.3711 & 1.0959 & 6.4920 & -1.9883 & -0.1878 \\
-0.0084 & 0.1285 & -1.9883 & 2.4591 & 1.8463 \\
-0.7414 & 0.0727 & -0.1878 & 1.8463 & 5.8875
\end{array}\right]
$$

with $m=2, n_{1}=2$ and $n_{2}=3$.

- If $x^{(0)}=[0.9777,0.2098,0.5066,0.5069,0.6975]^{T}$, then

$$
\begin{aligned}
x^{*} & =[0.9357,0.3528,-0.9341,0.3508,0.0667]^{T} \\
\lambda_{1}^{*} & =6.5186 \\
\lambda_{2}^{*} & =8.2116
\end{aligned}
$$

- If $x^{(0)}=[0.7914,0.6114,0.4753,0.2517,-0.8431]^{T}$, then

$$
\begin{aligned}
& x^{* *}=[0.7166,0.6975,0.5654,-0.4327,-0.7022]^{T} \\
& \lambda_{1}^{* *}=6.2405 \\
& \lambda_{2}^{* *}=7.8607
\end{aligned}
$$

Random Test

- Approximately 60% randomly generated starting points converge to x^{*} while all the remaining converge to $x^{* *}$, - Out of the 24 solutions, there are two local maxima to the maximal correlation problem.
- Horst's algorithm has a substantial possibility of not converging to the absolute maximal correlation.

Multivariate Shifting

- $(A-\Gamma) x=\Lambda x$ if and only if $A x=(\Gamma+\Lambda) x$, - Shifting is a possible strategy to find other solution of MEP.
- How do limit points depend on the starting value and on the shift parameters?
- For what Γ will the matrix $A-\Gamma$ become positive semidefinite?

Gauss-Seidel Algorithm

- Block form:

Given $x^{(0)}=\left(x_{1}^{(0)^{T}}, \ldots, x_{m}^{(0)^{T}}\right)^{T}$ with $\left\|x_{i}^{(0)}\right\|=1$, do
for $k=1,2, \ldots$
for $i=1, \ldots, m$

$$
\begin{aligned}
y_{i}^{(k)} & :=\sum_{j=1}^{i-1} A_{i j} x_{j}^{(k+1)}+\sum_{j=i}^{m} A_{i j} x_{j}^{(k)} \\
\lambda_{i}^{(k)} & :=\left\|y_{i}^{(k)}\right\|, \\
x_{i}^{(k+1)} & :=\frac{y_{i}^{(k)}}{\lambda_{i}^{(k)}} .
\end{aligned}
$$

end
end

- Compact form:

$$
\begin{aligned}
& \quad(D+U) x^{(k)}=\left(\Lambda^{(k)}-U^{T}\right) x^{(k+1)} \\
& -A=D+U^{T}+U
\end{aligned}
$$

SOR algorithm

- Block form:

Given $x^{(0)}=\left(x_{1}^{(0)^{T}}, \ldots, x_{m}^{(0)^{T}}\right)^{T}$ with $\left\|x_{i}^{(0)}\right\|=1$, do
for $k=1,2, \ldots$
for $i=1, \ldots, m$

$$
\begin{aligned}
y_{i}^{(k)} & :=\sum_{j=1}^{i-1} A_{i j} x_{j}^{(k+1)}+\sum_{j=i}^{m} A_{i j} x_{j}^{(k)} \\
\xi_{i}^{(k)} & :=\left\|\bar{y}_{i}^{(k)}\right\|, \\
\bar{z}_{i}^{(k+1)} & :=\frac{\bar{y}_{i}^{(k)}}{\xi_{i}^{(k)}} . \\
y_{i}^{(k)} & :=\omega_{i} \bar{z}_{i}^{(k+1)}+\left(1-\omega_{i}\right) x_{i}^{(k)} \\
\lambda_{i}^{(k)} & :=\left\|y_{i}^{(k)}\right\|, \\
x_{i}^{(k+1)} & :=\frac{y_{i}^{(k)}}{\lambda_{i}^{(k)}} .
\end{aligned}
$$

end
end

- Relaxation parameters ω_{i} may be different.
- The scaling may be done differently.
- Compact form:

$$
\begin{aligned}
& {\left[(I-\Omega) \Xi^{(k)}+\Omega(D+U)\right] x^{(k)}=\left(\Xi^{(k)} \Lambda^{(k)}-\Omega U^{T}\right) x^{(k+1)},} \\
& -\Xi^{(k)}:=\operatorname{diag}\left\{\xi_{1}^{(k)} I^{\left[n_{1}\right]}, \ldots, \xi_{m}^{(k)} I^{\left[n_{m}\right]}\right\} . \\
& -\Omega:=\operatorname{diag}\left\{\omega_{1} I^{\left[n_{1}\right]} \ldots, \omega_{m} I^{\left[n_{m}\right]}\right\} .
\end{aligned}
$$

Future Research

A partial list of problems includes

- Proof of convergence,
- This can be done.
- Rate of convergence.
- Acceleration of convergence.

