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Multivariate Eigenvalue Problem (MEP)

Find real scalars Ay, ..., A, and a real vector x € R" such
that
Ax = Ax
|z = 1, i=1,...,m,
where

e A c R""is SPD, and is block partitioned into

A A o A |

At Ape oo A |
— A;; € RV

o A =diag{\ 1™ ... X\, I}
— I":=The identity matrix of dimension n;.
T g

or=|r7,...,%,,

—x; € R™.

)



Relation to Other Problems

e MEP is a classical symmetric eigenvalue problem when
m = 1.

e MEP is fundamentally different from the so called mul-
tiparameter eigenvalue problem.

e MEP originates from the determination of canonical
correlation coefficients for multivariate statistics.



Statistics Background

o X = (Xy,...,X,) denotes an n-dimensional random
variable with a certain distribution function.
e Row vectors [z¢i, ..., %e), £ = 1,...,k denote a ran-
dom sample of size k for X
— X = [xg] is the k x n sample matrix.
e Assume
— Sample mean u; = 0 for each A;.
— No degenerate component and no linear dependence
among AX;.
Then
— Matrix A := X X represents the covariance matrix

of the random sample X.
— A'is SPD.



Regroup of Variables

e Divide variables into groups X = (X1, ..., Xon),
— X, is an n;-dimensional random variable.
— Correspondingly, A = [A;;] and X = [ X, ..., X,].
— /A\;; is the covariance matrix of the k x n; sample
block X.
e Combining all n; variables in X; linearly into a single
new variable Z; through coefficients b; € R,

— Sample matrix X is transformed into Z .= X B =
\Z1, ..., Zy] where

by 0 ... 0]
R
0 b

— Covariance matrix corresponding to Z is given by

O =27'7=B'AB.



An Example (m = 2)

e Desire to use 21 to predict 2o,
— Need to find by and by so that the correlation coeffi-
cient between Z; and Z5 is as large as possible.
e Covariance matrix of Z is

_ b?Allbl b{Alng
bgﬁglbl bgﬁllbg .

e Correlation coefficient p to be maximized is

B b?AlQbQ
SR NN VN

e Normalize the variances of Z; and Z5 to unity. The
maximal correlation problem (MCP) becomes

Maximize b’ Ab
Subject to bZTAZ-Z-bZ- =1, fori=1,2

where b := [b], bl]1.
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Change MCP to MEP

e Fach A;; is SPD, so the Cholesky decomposition A;; =
TIT; exists.

e Define
T = diag{Tl,Tg}
r = Tb:=[x],z5]",
A =T tAT L

MCP 1is transformed into

Maximize ! Ax
Subject to xZTxZ =1, 1=1,2.
e MEP follows from differentiating the Lagrangian func-
tion

oz, A1, \o) = x! Ax — %1 Ni(zlx; — 1)

with A1 and A9 as the Lagrange multipliers.



Maximal Correlation When m > 2

e Heuristic observation:

— The closer to orthogonality any two sample vectors
Z;, Z; are, the closer to zero the correlation coeffi-
cients will be.

— The more stmilar the vectors 2, ..., Z,, are to each
other, the more closely the correlation coefficients
will approach unity.

e MCP requires the sum of all off-diagonal elements of €2
be maximized subject to the condition that the diagonal
elements of {2 be unity.

e Same procedure as fo m = 2 to leads MCP to

Maximize z! Az
Subject to a:ZTxZ =1, 1=1m,

and, then, to MEP.



What Are the Difficulties?

e MEP represents a non-linear algebraic system in n+m
unknowns.
e When m =1,
— Counting multiplicity, there are exactly n eigenval-
ues.
— Counting negative signs, there are exactly 2n eigen-
vectors.
e When m > 1, no discussion on the cardinality of solu-
tions to MEP,
— Characteristic polynomial is not applicable to MEP.
e How to compute a multivariate eigenvalue and the cor-
responding eigenvector?
— Horst proposed an iterative procedure without a proof.
— Not heard of any other numerical method since Horst
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Homotopy Method and Cardinality

e MEP is a nonlinear system:

Ax — Az |

x{xl—l

F(x,\) = 2 = 0,

x%xm—l

- 2
—F:R'"<XR" — R"x R™
e The simple MEP:

Dx = Ax

x| = 1, i=1,...,m.
with D = diag{d{",...,dD, ... d{"™ ... d™} has
exactly 1" ; 2n; solutions,
—Fore=1,...,m

)

A o= dY

Ji
n
T, = :I:eg-/],
*]221,,’”@

% elll:= s column of 11¥.
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Homotopy Function

e Define H : R" X R x R — R" x R™ by
Az — [D +t(A— D)z |

x{xl—l

H(x,\t; D) = 2 :
z%x%—l

2

— D is a diagonal matrix whose elements will be spec-
ified.
e Basic Ideas:
— The set I' == {(z, A, t)|H(x,A,t) = 0} is a one
dimensional smooth submanifold in R" x R™ X R.

— No homotopy curve will escape to infinity or turn
back.
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Major Theorem

For each (z, A, t) € R"x R™ x R such that H(x, A, t) =0,

the matrix

Do = | gr
where
A=ANt,D)=AN—(D+t(A-D)).
and
ry 0 . 0
B 0 a9 O
0 . :z:m

has rank n + m.
o If H(z,A,t) =0, then Ax = 0.
e None of the m columns of B can be in the range of A.
o A is at least of rank n — m.
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Auxiliary Lemma

The set of D such that the matrix A — (D +¢(A — D)) is
of rank less than n — m for some A and some t € (0, 1) is of
measure zero.

o If the rank of A is less than n — m, then one of the
diagonal blocks

Ay = NI — (1 = tdiag(dV, ..., dD) — tA;.

Y ’]’LZ

must be rank deficient by at least two.

e For some 7 € (0,00) the matrix 7D + A;; has an
eigenvalue with multiplicity at least two,
— DO = diag(d\”, ..., d").

Y nZ
e For any symmetric matrix M, the set

E, .= {diagonal D|M + D rank deficient by r}

has dimension < dim(M ) — 3 for r > 2.
e The set

U ){D(i)‘TD(i> + A;; has multiple eigenvalues}

7€(0,00

1s of dimension at most n; — 1.
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Homotopy Curves

For 1 =1,...,m, the solution to the initial value problem
e
d|az,| [AB][-C
dt| M\ | |BO 0
L Am J
z;(0) = :I:eE-?A
M (0) = djf

is a curve in R" x R™ that extends from ¢t =0 to ¢t = 1.
e The (MEP) has exactly 1", 2n; solutions.
e The positive definiteness of the matrix A is not needed
in the proof.
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Horst’s Algorithm

e Block form:

T
Given 2 = (:c(lo) e ,xfg)T)T with HZCZ(-O)H =1, do
for k=1,2,...
fori=1,...,m

yz'(k) = g’f Aijxgk)a
7=1

A= Iyl

k
(k+1) o £
. =\
end
end
— Define 21" = 2 in case ||yl(k)|| = (.

e Compact form:

A ) — AR (k1)
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[s This a Power Method?

e Horst’s iteration may be viewed as a generalization of
the classical power method.
e The convergence property of this method is not nearly

obvious,
— Without the positive definiteness, the method may

fail to converge.
— A limit point of the method may depend upon the

starting point.
— MCP may have multiple local solutions.

17



Convergence!

e The sequence {r(z*))} where
r(z) =z’ Ax.

is a monotonically increasing sequence and converges.
— Key fact,

T(x(k‘l—l)) o T(Qi(k))
(x(kﬂ) _ ng(k))Y”(A 4 A(k))<x(k+1) _ x(k)).

e The residual {62*)} where
d(z) = Ax — Az

converges to zero.
— Key fact,

(5@(/6)) _ A(k)(w(kﬂ) _ J;(k)»
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Convergence?

e [s this enough to prove convergence of {z¥)}?
T(le(k+1)) . T(ﬂf(k)> > l€||flj(k+1) . SIZ(k)HQ

e The sequence {2¥)} does have have cluster point(s),

— Every cluster point * solves MEP with eigenvalues

A= (=il Al
e A lemma from real analysis,

— Let {ax} be a bounded sequence of real numbers with
the proper |ajy1 — ag] — 0 as k — oo. If there
are only finitely many limit points for the sequence,
then {ay} converges to a unique limit point.

e The fact of finite number of solutions of MEP proves
that

— The sequence {A*
— The sequence {x*

)} converges.
)} converges.
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Dependence on Starting Points

Consider the positive definite matrix

4.3299 2.3230 —1.3711 —0.0084 —0.7414 |
2.3230 3.1181 1.0959  0.1285  0.0727
A=1]-13711 1.0959 6.4920 —1.9883 —0.1878
—0.0084 0.1285 —1.9883  2.4591  1.8463
- —0.7414 0.0727 —0.1878 1.8463  5.8875 |

with m =2, ny =2 and ny = 3.
o If (9 =[0.9777,0.2098, 0.5066, 0.5069, 0.6975]", then

¥ = [0.9357,0.3528, —0.9341, 0.3508, 0.0667]”
A = 6.5186,
A5 = 8.2116.

o If (0 = [0.7914,0.6114, 0.4753,0.2517, —0.8431]7, then

T = [0.7166,0.6975,0.5654, —0.4327, —0.7022]""
N = 6.2405,
Ny = 7.8607.
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Random Test

e Approximately 60% randomly generated starting points
converge to x* while all the remaining converge to x™**,
— Out of the 24 solutions, there are two local maxima
to the maximal correlation problem.
— Horst’s algorithm has a substantial possibility of not
converging to the absolute maximal correlation.
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Multivariate Shifting

o (A— Tz = Az if and only if Ax = (I'+ A)x,
— Shifting is a possible strategy to find other solution
of MEP.
e How do limit points depend on the starting value and
on the shift parameters?
e For what [' will the matrix A —I" become positive semi-

definite?
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Gauss-Seidel Algorithm

e Block form:
Given 2 = (:c(lo) e ,xfg)T)T with HZCZ(-O)H =1, do
for k=1,2,...
fori=1,...,m
1—1 m
yz(k) = 'Zl Aij$§k+1) + ZAZjﬁCgk)
j= j=i
k k
A= 1l
k
ey Y
end
end

e Compact form:

(D +U)z™ = (AW — yT)zk+1),
—A=D+U"+U.
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SOR algorithm

e Block form:

T
Given () = (:1:(10) e ,x;g)T)T with \|:C§O)|| =1, do
for k=1,2,...
fore=1,...,m
1—1 m
yz(k) = 'Zl Aijflfg'kJrl) + ZAwﬁlf;k)
j= j=i
k (K
&Y = 11,
(k)
k) _ Ui
i (k)"
W e e (1 el
k k
A= ),
(k)
(k+1) . Yi
end
end

— Relaxation parameters w; may be different.
— The scaling may be done differently.
e Compact form:

(I—Q=W 4+ QD +U))z® = (EWAW —QUT)gk+D),
— 20 = diag{eM im0 plnnly

— Q= diag{w ™. ... w, 1"}
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Future Research

A partial list of problems includes
e Proof of convergence,
— This can be done.
e Rate of convergence.
e Acceleration of convergence.
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