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Multivariate Eigenvalue Problem (MEP)

Find real scalars λ1, . . . , λm and a real vector x ∈ Rn such
that

Ax = Λx

||xi|| = 1, i = 1, . . . , m,

where
• A ∈ Rn×n is SPD, and is block partitioned into

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 . . . A1m

A21 A22 . . . A2m
... ... ...

Am1 Am2 . . . Amm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

– Aii ∈ Rni×ni.
– ∑m

i=1 ni = n.
• Λ = diag{λ1I

[n1], . . . , λmI [nm]},
– I [ni]:=The identity matrix of dimension ni.

• x = [xT
1 , . . . , xT

m]T ,
– xi ∈ Rni.
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Relation to Other Problems

• MEP is a classical symmetric eigenvalue problem when
m = 1.

• MEP is fundamentally different from the so called mul-
tiparameter eigenvalue problem.

• MEP originates from the determination of canonical
correlation coefficients for multivariate statistics.
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Statistics Background

• X̃ := (X1, . . . ,Xn) denotes an n-dimensional random
variable with a certain distribution function.

• Row vectors [xξ1, . . . , xξn], ξ = 1, . . . , k denote a ran-
dom sample of size k for X̃ ,
– X := [xξi] is the k × n sample matrix.

• Assume
– Sample mean µi = 0 for each Xi.
– No degenerate component and no linear dependence

among Xi.
Then
– Matrix ∆ := XTX represents the covariance matrix

of the random sample X .
– ∆ is SPD.
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Regroup of Variables

• Divide variables into groups X̃ = (X̃1, . . . , X̃m),
– X̃i is an ni-dimensional random variable.
– Correspondingly, ∆ = [∆ij] and X = [X1, . . . , Xm].
– ∆ii is the covariance matrix of the k × ni sample

block Xi.
• Combining all ni variables in X̃i linearly into a single

new variable Zi through coefficients bi ∈ Rni,
– Sample matrix X is transformed into Z := XB :=

[Z1, . . . , Zm] where

B :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 0 . . . 0
0 b2 0
... . . . ...
0 . . . bm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

– Covariance matrix corresponding to Z is given by

Ω := ZTZ = BT∆B.
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An Example (m = 2)

• Desire to use Z1 to predict Z2,
– Need to find b1 and b2 so that the correlation coeffi-

cient between Z1 and Z2 is as large as possible.
• Covariance matrix of Z is

Ω =

⎡
⎢⎢⎣
bT
1 ∆11b1 bT

1 ∆12b2

bT
2 ∆21b1 bT

2 ∆11b2

⎤
⎥⎥⎦ .

• Correlation coefficient ρ to be maximized is

ρ =
bT
1 ∆12b2√

bT
1 ∆11b1

√
bT
2 ∆11b2

.

• Normalize the variances of Z1 and Z2 to unity. The
maximal correlation problem (MCP) becomes

Maximize bT∆b

Subject to bT
i ∆iibi = 1, for i = 1, 2

where b := [bT
1 , bT

2 ]T .
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Change MCP to MEP

• Each ∆ii is SPD, so the Cholesky decomposition ∆ii =
TT

i Ti exists.
• Define

T := diag{T1, T2}
x := Tb := [xT

1 , xT
2 ]T ,

A := T−T∆T−1.

MCP is transformed into

Maximize xTAx

Subject to xT
i xi = 1, i = 1, 2.

• MEP follows from differentiating the Lagrangian func-
tion

φ(x, λ1, λ2) := xTAx − 2∑
i=1

λi(x
T
i xi − 1)

with λ1 and λ2 as the Lagrange multipliers.
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Maximal Correlation When m > 2

• Heuristic observation:
– The closer to orthogonality any two sample vectors

Zi, Zj are, the closer to zero the correlation coeffi-
cients will be.

– The more similar the vectors Z1, . . . , Zm are to each
other, the more closely the correlation coefficients
will approach unity.

• MCP requires the sum of all off-diagonal elements of Ω
be maximized subject to the condition that the diagonal
elements of Ω be unity.

• Same procedure as fo m = 2 to leads MCP to

Maximize xTAx

Subject to xT
i xi = 1, i = 1, m,

and, then, to MEP.
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What Are the Difficulties?

• MEP represents a non-linear algebraic system in n + m
unknowns.

• When m = 1,
– Counting multiplicity, there are exactly n eigenval-

ues.
– Counting negative signs, there are exactly 2n eigen-

vectors.
• When m > 1, no discussion on the cardinality of solu-

tions to MEP,
– Characteristic polynomial is not applicable to MEP.

• How to compute a multivariate eigenvalue and the cor-
responding eigenvector?
– Horst proposed an iterative procedure without a proof.
– Not heard of any other numerical method since Horst
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Homotopy Method and Cardinality

• MEP is a nonlinear system:

F (x, Λ) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λx − Ax
xT

1 x1−1
2...

xT
mxm−1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

– F : Rn × Rm −→ Rn × Rm.
• The simple MEP:

Dx = Λx

||xi|| = 1, i = 1, . . . , m.

with D = diag{d(1)
1 , . . . , d(1)

n1
, . . . , d

(m)
1 , . . . , d(m)

nm
} has

exactly ∏m
i=1 2ni solutions,

– For i = 1, . . . , m,

λi = d
(i)
ji ,

xi = ±e
[ni]
ji ,

∗ ji = 1, . . . , ni.
∗ e[t]

s := sth column of I [t].
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Homotopy Function

• Define H : Rn × Rm × R −→ Rn × Rm by

H(x, Λ, t; D) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λx − [D + t(A − D)]x
xT

1 x1−1
2...

xT
mxm−1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

– D is a diagonal matrix whose elements will be spec-
ified.

• Basic Ideas:
– The set Γ := {(x, Λ, t)|H(x, Λ, t) = 0} is a one

dimensional smooth submanifold in Rn × Rm × R.
– No homotopy curve will escape to infinity or turn

back.
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Major Theorem

For each (x, Λ, t) ∈ Rn×Rm×R such that H(x, Λ, t) = 0,
the matrix

D(x,Λ)H =

⎡
⎢⎢⎣
A B
BT 0

⎤
⎥⎥⎦

where

A = A(Λ, t, D) := Λ − (D + t(A − D)).

and

B :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 . . . 0
0 x2 . . . 0
... . . . ...
0 . . . xm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

has rank n + m.
• If H(x, Λ, t) = 0, then Ax = 0.
• None of the m columns of B can be in the range of A.
• A is at least of rank n − m.
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Auxiliary Lemma

The set of D such that the matrix Λ− (D + t(A−D)) is
of rank less than n−m for some Λ and some t ∈ (0, 1) is of
measure zero.

• If the rank of A is less than n − m, then one of the
diagonal blocks

Aii = λiI
[ni] − (1 − t)diag(d

(i)
1 , . . . , d(i)

ni
) − tAii.

must be rank deficient by at least two.
• For some τ ∈ (0,∞) the matrix τD(i) + Aii has an

eigenvalue with multiplicity at least two,

– D(i) := diag(d
(i)
1 , . . . , d(i)

ni
).

• For any symmetric matrix M , the set

Er := {diagonal D|M + D rank deficient by r}
has dimension ≤ dim(M) − 3 for r ≥ 2.

• The set
⋃

τ∈(0,∞)
{D(i)|τD(i) + Aii has multiple eigenvalues}

is of dimension at most ni − 1.
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Homotopy Curves

For i = 1, . . . , m, the solution to the initial value problem

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
...

xm

λ1
...

λm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣
A B
BT 0

⎤
⎥⎥⎦
−1 ⎡

⎢⎢⎣
−C
0

⎤
⎥⎥⎦

xi(0) = ±e
[ni]
ji

λi(0) = d
(i)
ji

is a curve in Rn × Rm that extends from t = 0 to t = 1.
• The (MEP) has exactly ∏m

i=1 2ni solutions.
• The positive definiteness of the matrix A is not needed

in the proof.
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Horst’s Algorithm

• Block form:

Given x(0) = (x
(0)
1

T
, . . . , x(0)

m
T
)T with ||x(0)

i || = 1, do
for k = 1, 2, . . .

for i = 1, . . . , m

y
(k)
i :=

m∑
j=1

Aijx
(k)
j ,

λ
(k)
i := ||y(k)

i ||,
x

(k+1)
i :=

y
(k)
i

λ
(k)
i

.

end
end

– Define x
(k+1)
i := x

(k)
i in case ||y(k)

i || = 0.
• Compact form:

Ax(k) = Λ(k)x(k+1),

– x(k) := [x
(k)
1

T
, . . . , x(k)

m
T
]T

– Λ(k) := diag{λ(k)
1 I [n1], . . . , λ(k)

m I [nm]}.
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Is This a Power Method?

• Horst’s iteration may be viewed as a generalization of
the classical power method.

• The convergence property of this method is not nearly
obvious,
– Without the positive definiteness, the method may

fail to converge.
– A limit point of the method may depend upon the

starting point.
– MCP may have multiple local solutions.
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Convergence!

• The sequence {r(x(k))} where

r(x) := xTAx.

is a monotonically increasing sequence and converges.
– Key fact,

r(x(k+1)) − r(x(k))

= (x(k+1) − x(k))T (A + Λ(k))(x(k+1) − x(k)).

• The residual {δx(k)} where

δ(x) := Ax − Λx

converges to zero.
– Key fact,

δ(x(k)) = Λ(k)(x(k+1) − x(k)).
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Convergence?

• Is this enough to prove convergence of {x(k)}?
r(x(k+1)) − r(x(k)) ≥ κ||x(k+1) − x(k)||2

• The sequence {x(k)} does have have cluster point(s),
– Every cluster point x∗ solves MEP with eigenvalues

λ∗
i := || ∑m

j=1 Aijx
∗
j ||.

• A lemma from real analysis,
– Let {ak} be a bounded sequence of real numbers with

the proper |ak+1 − ak| −→ 0 as k −→ ∞. If there
are only finitely many limit points for the sequence,
then {ak} converges to a unique limit point.

• The fact of finite number of solutions of MEP proves
that
– The sequence {Λ(k)} converges.
– The sequence {x(k)} converges.
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Dependence on Starting Points

Consider the positive definite matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.3299 2.3230 −1.3711 −0.0084 −0.7414
2.3230 3.1181 1.0959 0.1285 0.0727

−1.3711 1.0959 6.4920 −1.9883 −0.1878
−0.0084 0.1285 −1.9883 2.4591 1.8463
−0.7414 0.0727 −0.1878 1.8463 5.8875

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with m = 2, n1 = 2 and n2 = 3.
• If x(0) = [0.9777, 0.2098, 0.5066, 0.5069, 0.6975]T , then

x∗ = [0.9357, 0.3528,−0.9341, 0.3508, 0.0667]T ,

λ∗
1 = 6.5186,

λ∗
2 = 8.2116.

• If x(0) = [0.7914, 0.6114, 0.4753, 0.2517,−0.8431]T , then

x∗∗ = [0.7166, 0.6975, 0.5654,−0.4327,−0.7022]T ,

λ∗∗
1 = 6.2405,

λ∗∗
2 = 7.8607.
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Random Test

• Approximately 60% randomly generated starting points
converge to x∗ while all the remaining converge to x∗∗,
– Out of the 24 solutions, there are two local maxima

to the maximal correlation problem.
– Horst’s algorithm has a substantial possibility of not

converging to the absolute maximal correlation.

21



Multivariate Shifting

• (A − Γ)x = Λx if and only if Ax = (Γ + Λ)x,
– Shifting is a possible strategy to find other solution

of MEP.
• How do limit points depend on the starting value and

on the shift parameters?
• For what Γ will the matrix A−Γ become positive semi-

definite?
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Gauss-Seidel Algorithm

• Block form:

Given x(0) = (x
(0)
1

T
, . . . , x(0)

m
T
)T with ||x(0)

i || = 1, do
for k = 1, 2, . . .

for i = 1, . . . , m

y
(k)
i :=

i−1∑
j=1

Aijx
(k+1)
j +

m∑
j=i

Aijx
(k)
j

λ
(k)
i := ||y(k)

i ||,
x

(k+1)
i :=

y
(k)
i

λ
(k)
i

.

end
end

• Compact form:

(D + U)x(k) = (Λ(k) − UT )x(k+1),

– A = D + UT + U .
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SOR algorithm

• Block form:

Given x(0) = (x
(0)
1

T
, . . . , x(0)

m
T
)T with ||x(0)

i || = 1, do
for k = 1, 2, . . .

for i = 1, . . . , m

y
(k)
i :=

i−1∑
j=1

Aijx
(k+1)
j +

m∑
j=i

Aijx
(k)
j

ξ
(k)
i := ||y(k)

i ||,
z

(k+1)
i :=

y
(k)
i

ξ
(k)
i

.

y
(k)
i := ωiz

(k+1)
i + (1 − ωi)x

(k)
i

λ
(k)
i := ||y(k)

i ||,
x

(k+1)
i :=

y
(k)
i

λ
(k)
i

.

end
end

– Relaxation parameters ωi may be different.
– The scaling may be done differently.

• Compact form:

[(I−Ω)Ξ(k) +Ω(D+U)]x(k) = (Ξ(k)Λ(k)−ΩUT )x(k+1),

– Ξ(k) := diag{ξ(k)
1 I [n1], . . . , ξ(k)

m I [nm]}.
– Ω := diag{ω1I

[n1]. . . . , ωmI [nm]}.
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Future Research

A partial list of problems includes
• Proof of convergence,

– This can be done.
• Rate of convergence.
• Acceleration of convergence.
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