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Atmospheric Imaging Computation

e Purpose:

¢ To compensate for the degradation of astronomical
image quality caused by the effects of atmospheric
turbulence.

e T'wo stages of approach:

¢ Partially nullify optical distortions by a deformable
mirror (DM) operated from a closed-loop adaptive
optics (AO) system.

¢ Minimize noise or blur via off-line post-processing
deconvolution techniques (not this talk).

e Challenges:
¢ Atmospheric turbulence can only be measured adap-
tively.

¢ Need theory to pass atmospheric measurements to
knowledge of actuating the DM.

¢ Require fast performance of large-scale data process-
ing and computations.



A Simplified AO System
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Basic Notation

e Three quantities:

o ¢(t) = turbulence-induced phase profile at time ¢.

o a(t) = deformable mirror (DM) actuator command
at time ¢.

o s(t) = wavefront slope sensor (WFS) measurement
at time ¢t and with no correction.
e T'wo transformations:
o H := transformation from actuator commands to
resulting phase profile adjustments.

o (G := transformation from actuator commands to
slope sensor measurement adjustments.



From Actuator to DM Surface

e [ is used to describe the DM surface change due to the
application of actuators.

e ;(Z) = influence function on the DM surface at position
Z with an unit adjustment to the ¢th actuator.

e Assuming m actuators and linear response of actuators
to the command, model the DM surface by

BT, t) = 3 ai(t)ri(7).

¢ Sampled at n DM surface positions, can write

AN

¢(t) = Hal(t)
> H = (7“@(3_7)]» e R,
> d(t) = [o(Z1,1),...,0(F, t)]" € R = discrete

corrected phase profile at time ¢.




From Actuator to WFS Measurement

e (& is used to describe the WES slope measurement as-
sociated with the actuator command a.

e Consider the H-WF'S model where
s;i(t) == — [dZ(VW;(Z)p(Z,t), j=1,... L.
¢ W; = given specifications of jth subaperture.
e The measurement corresponding to ¢(Z, ) would be

3(t) = 3 (= [ dT(VW;(@)ri(@)) ai(t).
G

o Can write

s(t) = Gal(t)
where G = [GU] e R>m,

¢ The DM actuators are not capable of producing the
exact wavefront phase ¢(Z,t) due to its finiteness

of degrees of freedom. So s = Ga is not an exact
measurement.




A Closed-loop AO Control Model

Open-loop Closed-loop
Sensor M easurements Sensor M easurements
S As=s-Ga
b
Corrected ‘oo (Estimated Residual
Sensor s=6ka Phase Error)
M easurement
1
Actuator
Command
a
Loop Compensation
I p~omp Reconstructor
Corrected A
Phase Profile ¢=Ha
(0 Ado=¢-Ha
Open-loop Closed-loop

Phase Profile Phase Profile



What 1s Available?

e T'wo residuals that are available in a closed-loop AO
system:

o Ap(t) == ¢(t) — Ha(t)
> Represents the residual phase error remaining af-

ter the AO correction.

> Also means instantaneous closed-loop wavefront
distortion at time ¢.

o As(t) == s(t) — Galt)
> Represents feedback applied to s(t) by DM actu-
ator adjustment.

> Also means observable wavefront sensor measure-
ment at time t.

e In practice, there is a servo lag or delay in time At i.e.,
it is likely
o Ap(t) .= ¢(t) — Halt — At).
o As(t) == s(t) — Ga(t — At).

Thus the data collected are not perfect.
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Open-loop Model

e Assume a linear relationship between open-loop WES
measurement s and turbulence-induced phase profile ¢:

s=Weo+e| (1)

& € = measurement noise with mean zero.

¢ In the H-WFS model, W represents a quadrature of
the integral operator evaluated at designated posi-
tions Z;, 7 =1,...n.

e Want to estimate ¢ using ¢ from the model

~

¢ — Eopens
so that the variance
N2
Ellle — o]
1S minimized.
¢ The wave front reconstruction matrix Epep 15 given

by
Eopen = Elps’(E]ss™]) .

¢ For unbiased estimation, need to enforce the condi-
tion that Eopen,W = I.
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Closed-loop Model

e For the H-WF'S model, it is reasonable to assume the
relationship

WH =(. (2)
e Then
s = Wo+e
= W(Ha+ Ap) + ¢
= WHa+ (WA¢ +¢).
It follows that

As=WAP +e€|. (3)

o The closed-loop relationship (3) is identical to the
open-loop relationship (1).

e Can estimate the residual phase error A¢(t) using A¢(t)
from the model

A¢ — EclosedAS
o E.yseq = wavefront reconstruction matrix.

¢ For unbiased estimation, it requires that F ,s.qW =
I. Hence

EclosedG — eclosed(WH> = H.
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Actuator Control

e An Ideal Control:

¢ A = residual error after DM correction by current
command a,.

¢ New command a should reduce the residual error,
1.e., want to

win|| Ha — g
¢ Define Aa := a, — a., then want to
min | HAa — Ad||.
o But A¢ is not observable directly. It has to be esti-
mated from As.

e Eistimating Aa directly from As:
Aa = MAs (4)




An Inverse Problem
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Actuator Control with Temporary Latency

e Due to finite bandwidth of the control loop, As is not
immediately available.

e Time line for the scenario of a 2-cycle delay,

estimate A¢ (1)

measure A s(t) command a(t+2At) active

e ARMA control scheme:
a(t + 2At) = kﬁo cra(t + (1 — k)At)

]:

a2 = sh_ a1 4510 b MAST) r = 0,1, ..
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Expected Effect on the AO System

® Suppose

o E[s(t)] is independent of time ¢ throughout the cycle
of computation.

o Matrix =1_q b;M; is of full column rank.
e Then

o The WFS feedback measurement As(™ is eventually
nullified by the actuators, i.e.,

Els] =G lim Ela™].

¢ The expected residual phase error is inversely related
to the expected WFS measurement noise € via

0=W lim E[A¢™] + E[e].
e Compare with the ideal control:

o Even if £le] = 0, not necessarily E[|| lim,—oo Ady|*]
will be small because W has non-trivial null space.
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Almost Sure Convergence

e Each control a\"t7) is a random variable = The control
scheme is a stochastic process.

e Each control AU is also a realization of the corre-
sponding random variable = The control scheme is a
deterministic iteration.

e Convergence of deterministic iteration on independent
random samples => Almost sure convergence of stochas-
tic process.

e Need fast convergence:

¢ Stationary statistic is not realistic.
© Atmospheric turbulence changes rapidly.

¢ Can only assume stationary statistic for a short pe-
riod of time.
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e Define

r+2) gt )T e = 0,1,

A9 = [a/
b = [io b;M;Gs',0,...,0]"
]:

e The ARMA scheme becomes
Ar2 = Aar—l—l +b

where A is the m(q + 2) x m(q + 2) matrix

_ Colm Cllm — boMlG ce Cq—l—llm — quqG _
I, 0 0
A=1| 0 I,
0 0 coo Ay 0

e Almost convergence <= Spectral radius p(A) of A is
less than one.

e Asymptotic convergence factor is precisely p(A).
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Numerical Simulation

e Consider the 2-cycle delay scheme

a(t + 2At) = a(t + At) + 0.6 H'WTAs(t).

e Test data:
surface positions n = 5)
number of actuators m = 4
number of subapertures ¢ = 3
size of random samples z = 2500
H = rand(n, m)
W = rand(¢,n)
G = WH
L, = rand(n,n)
L. = diag(rand((,1))
e = zeros(n, 1)
[e = zeros(l, 1)

e Random samples:

¢ = pg*xones(l,z) + Ly * randn(n, 2),
e = pe*xones(l,z) + L x randn(f, z).



