On an Adaptive Control Algorithm for Adaptive Optics Applications

by

Moody T. Chu (NC State)

with thanks to

Brent L. Ellerbroek (Gemini Observatory) Robert J. Plemmons (Wake Forest) Xiaobai Sun (Duke) Victor P. Pauca (Duke)

October 11, 1999

Outline

- Imaging through the Atmosphere
- Adaptive Optics System
 - \diamond Basic Relationships
 - \diamond Open-loop Model
 - \diamond Closed-loop Model
- Adaptive Optics Control
 - \diamond An Ideal Control
 - \diamond An Inverse Problem
 - \diamond Temporary Latency
- Numerical Illustration

Atmospheric Imaging Computation

• Purpose:

- ♦ To compensate for the degradation of astronomical image quality caused by the effects of atmospheric turbulence.
- Two stages of approach:
 - ◇ Partially nullify optical distortions by a deformable mirror (DM) operated from a closed-loop adaptive optics (AO) system.
 - ♦ Minimize noise or blur via off-line post-processing deconvolution techniques (not this talk).
- Challenges:
 - Atmospheric turbulence can only be measured adap-tively.
 - Need theory to pass atmospheric measurements to knowledge of actuating the DM.
 - Require fast performance of large-scale data processing and computations.

A Simplified AO System

- Three quantities:
 - $\diamond \phi(t) =$ turbulence-induced phase profile at time t.
 - a(t) = deformable mirror (DM) actuator command at time t.
 - $\diamond s(t) =$ wavefront slope sensor (WFS) measurement at time t and with no correction.
- Two transformations:
 - $\diamond H$:= transformation from actuator commands to resulting phase profile adjustments.
 - $\diamond G$:= transformation from actuator commands to slope sensor measurement adjustments.

From Actuator to DM Surface

- *H* is used to describe the DM surface change due to the application of actuators.
- $r_i(\vec{x}) =$ influence function on the DM surface at position \vec{x} with an unit adjustment to the *i*th actuator.
- Assuming m actuators and linear response of actuators to the command, model the DM surface by

$$\hat{\phi}(\vec{x},t) = \sum_{i=1}^{m} a_i(t) r_i(\vec{x}).$$

 \diamond Sampled at n DM surface positions, can write

$$\hat{\phi}(t) = Ha(t)$$

 $\triangleright H = (r_i(\vec{x}_j)) \in R^{n \times m}.$ $\triangleright \hat{\phi}(t) = [\hat{\phi}(\vec{x}_1, t), \dots, \hat{\phi}(\vec{x}_n, t)]^T \in R^n = \text{discrete}$ corrected phase profile at time t.

From Actuator to WFS Measurement

- G is used to describe the WFS slope measurement associated with the actuator command a.
- Consider the H-WFS model where

$$s_j(t) := -\int d\vec{x} (\nabla W_j(\vec{x})\phi(\vec{x},t), \quad j = 1, \dots, \ell.$$

 $\diamond W_j = \text{given specifications of } j \text{th subaperture.}$

• The measurement corresponding to $\hat{\phi}(\vec{x},t)$ would be

$$\hat{s}_j(t) = \sum_{i=1}^m \underbrace{\left(-\int d\vec{x} (\nabla W_j(\vec{x})r_i(\vec{x})\right)}_{G_{ji}} a_i(t).$$

 \diamond Can write

wher

$$\hat{s}(t) = Ga(t)$$

e $G = [G_{ij}] \in R^{\ell \times m}.$

 \diamond The DM actuators are *not* capable of producing the exact wavefront phase $\phi(\vec{x}, t)$ due to its finiteness of degrees of freedom. So $\hat{s} = Ga$ is not an exact measurement.

A Closed-loop AO Control Model

• Two residuals that are available in a *closed-loop* AO system:

$$\diamond \ \Delta \phi(t) := \phi(t) - Ha(t)$$

- Represents the residual phase error remaining after the AO correction.
- \triangleright Also means instantaneous closed-loop wavefront distortion at time t.

$$\diamond \, \Delta s(t) := s(t) - Ga(t)$$

- \triangleright Represents feedback applied to s(t) by DM actuator adjustment.
- \triangleright Also means *observable* wavefront sensor measurement at time t.
- In practice, there is a servo lag or delay in time Δt , i.e., it is likely

$$\diamond \Delta \phi(t) := \phi(t) - Ha(t - \Delta t).$$

$$\diamond \Delta s(t) := s(t) - Ga(t - \Delta t).$$

Thus the data collected are not perfect.

• Assume a linear relationship between open-loop WFS measurement s and turbulence-induced phase profile ϕ :

$$s = W\phi + \epsilon.$$
(1)

 $\diamond \epsilon$ = measurement noise with mean zero.

- ♦ In the H-WFS model, W represents a quadrature of the integral operator evaluated at designated positions \vec{x}_j , j = 1, ..., n.
- Want to estimate ϕ using $\tilde{\phi}$ from the model

$$\tilde{\phi} = E_{open}s$$

so that the variance

$$\mathcal{E}[\|\phi - \tilde{\phi}\|^2]$$

is minimized.

 \diamond The wave front reconstruction matrix E_{open} is given by

$$E_{open} = \mathcal{E}[\phi s^T] (\mathcal{E}[ss^T])^{-1}.$$

 \diamond For unbiased estimation, need to enforce the condition that $E_{open}W = I$.

• For the H-WFS model, it is reasonable to assume the relationship

$$WH = G. \tag{2}$$

• Then

$$s = W\phi + \epsilon$$

= W(Ha + \Delta \phi) + \epsilon
= WHa + (W\Delta \phi + \epsilon).

It follows that

$$\Delta s = W \Delta \phi + \epsilon \,. \tag{3}$$

- \diamond The closed-loop relationship (3) is identical to the open-loop relationship (1).
- Can estimate the residual phase error $\Delta \phi(t)$ using $\Delta \tilde{\phi}(t)$ from the model

$$\Delta \tilde{\phi} = E_{closed} \Delta s$$

- $\diamond E_{closed}$ = wavefront reconstruction matrix.
- \diamond For unbiased estimation, it requires that $E_{closed}W = I$. Hence

$$E_{closed}G = e_{closed}(WH) = H.$$

- An Ideal Control:
 - $\diamond \Delta \phi$ = residual error after DM correction by current command a_c .
 - \diamond New command a_+ should reduce the residual error, i.e., want to

$$\min_{a} \|Ha - \phi\|.$$

 \diamond Define $\Delta a := a_+ - a_c$, then want to

$$\min_{\Delta a} \|H\Delta a - \Delta\phi\|.$$

- ♦ But $\Delta \phi$ is not observable directly. It has to be estimated from Δs .
- Estimating Δa directly from Δs :

$$\Delta a = M \Delta s \tag{4}$$

Actuator Control with Temporary Latency

- Due to finite bandwidth of the control loop, Δs is not immediately available.
- Time line for the scenario of a 2-cycle delay,

• ARMA control scheme:

$$a(t+2\Delta t) := \sum_{k=0}^{p} c_k a(t+(1-k)\Delta t) + \sum_{j=0}^{q} b_j M_j \Delta s(t-j\Delta t).$$

$$a^{(r+2)} = \sum_{k=0}^{p} c_k a^{(r+1-k)} + \sum_{j=0}^{q} b_j M_j \Delta s^{(r-j)}, r = 0, 1, \dots$$

Expected Effect on the AO System

- Suppose
 - $\diamond \mathcal{E}[s(t)]$ is independent of time t throughout the cycle of computation.
 - \diamond Matrix $\Sigma_{j=0}^{q} b_j M_j$ is of full column rank.

• Then

 \diamond The WFS feedback measurement $\Delta s^{(n)}$ is eventually nullified by the actuators, i.e.,

$$\mathcal{E}[s] = G \lim_{n \to \infty} \mathcal{E}[a^{(n)}].$$

 \diamond The expected residual phase error is inversely related to the expected WFS measurement noise ϵ via

$$0 = W \lim_{n \to \infty} \mathcal{E}[\Delta \phi^{(n)}] + \mathcal{E}[\epsilon].$$

- Compare with the ideal control:
 - ♦ Even if $\mathcal{E}[\epsilon] = 0$, not necessarily $\mathcal{E}[\|\lim_{n\to\infty} \Delta \phi_n\|^2]$ will be small because W has non-trivial null space.

Almost Sure Convergence

- Each control $a^{(r+j)}$ is a random variable \implies The control scheme is a stochastic process.
- Each control $A^{(r+j)}$ is also a realization of the corresponding random variable \implies The control scheme is a deterministic iteration.
- Convergence of deterministic iteration on independent random samples \implies Almost sure convergence of stochastic process.
- Need fast convergence:
 - \diamond Stationary statistic is not realistic.
 - \diamond Atmospheric turbulence changes rapidly.
 - ♦ Can only assume stationary statistic for a short period of time.

• Define

$$\mathbf{a}_{r+2} := [a^{(r+2)}, a^{(r+1)}, \dots a^{(r-q+1)}]^T, \quad r = 0, 1, \dots$$
$$\mathbf{b} := [\sum_{j=0}^q b_j M_j Gs', 0, \dots, 0]^T.$$

• The ARMA scheme becomes

$$\mathbf{a}_{r+2} = A\mathbf{a}_{r+1} + \mathbf{b}$$

where A is the $m(q+2) \times m(q+2)$ matrix

$$A := \begin{bmatrix} c_0 I_m & c_1 I_m - b_0 M_1 G & \dots & c_{q+1} I_m - b_q M_q G \\ I_m & 0 & 0 \\ 0 & I_m \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & I_m & 0 \end{bmatrix}$$

- Almost convergence \iff Spectral radius $\rho(A)$ of A is less than one.
- Asymptotic convergence factor is precisely $\rho(A)$.

Numerical Simulation

• Consider the 2-cycle delay scheme

 $a(t+2\Delta t) = a(t+\Delta t) + 0.6 H^{\dagger} W^{\dagger} \Delta s(t). \label{eq:alpha}$

• Test data:

surface positions n	=	5
number of actuators m	=	4
number of subapertures ℓ	=	3
size of random samples z	=	2500
Н	=	rand(n,m)
W	=	$rand(\ell,n)$
G	=	WH
L_{ϕ}	=	rand(n, n)
L_{ϵ}	=	$diag(rand(\ell, 1))$
μ_{ϕ}	=	zeros(n,1)
μ_ϵ	=	$zeros(\ell,1)$

• Random samples:

$$\phi = \mu_{\phi} * ones(1, z) + L_{\phi} * randn(n, z),$$

$$\epsilon = \mu_{\epsilon} * ones(1, z) + L_{\epsilon} * randn(\ell, z).$$