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Motivation

What is the simplest form to which a family of matrices depending smoothly on the parameters can be reduced by a change of coordinates
depending smoothly on the parameters?

– V. I. Arnold

Geometric Methods in the Theory of Ordinary Differential Equations, 1988

• What is the simplest form referred to here?

• What kind of continuous change can be employed?
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Realization Process

• Realization process, in a sense, means any deducible procedure that we use to rationalize and solve problems.

� The simplest form refers to the agility to think and draw conclusions.

• In mathematics, a realization process often appears in the form of an iterative procedure or a differential equation.

� The steps taken for the realization, i.e., the changes, could be discrete or continuous.
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Continuous Realization

• Two abstract problems:

� One is a make-up and is easy.

� The other is the real problem and is difficult.

• A bridge:

� A continuous path connecting the two problems.

� A path that is easy to follow.

• A numerical method:

� A method for moving along the bridge.

� A method that is readily available.
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Build the Bridge

• Specified guidance is available.

� The bridge is constructed by monitoring the values of certain specified functions.

� The path is guaranteed to work.

� Such as the projected gradient method.

• Only some general guidance is available.

� A bridge is built in a straightforward way.

� No guarantee the path will be complete.

� Such as the homotopy method.

• No guidance at all.

� A bridge is built seemingly by accident.

� Usually deeper mathematical theory is involved.

� Such as the isospectral flows.
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Characteristics of a Bridge

• A bridge, if it exists, usually is characterized by an ordinary differential equation.

• The discretization of a bridge, or a numerical method in travelling along a bridge, usually produces an iterative scheme.
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Two Examples

• Eigenvalue Computation

• Constrained Least Squares Approximation
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The Eigenvalue Problem

• The mathematical problem:

� A symmetric matrix A0 is given.

� Solve the equation
A0x = λx

for a nonzero vector x and a scalar λ.

• An iterative method :

� The QR decomposition:
A = QR

where Q is orthogonal and R is upper triangular.

� The QR algorithm (Francis’61):

Ak = QkRk

Ak+1 = RkQk.

� The sequence {Ak} converges to a diagonal matrix.

� Every matrix Ak has the same eigenvalues of A0, i.e., (Ak+1 = QT
k AkQk).
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• A continuous method:

� Lie algebra decomposition:
X = Xo + X+ + X−

where Xo is the diagonal, X+ the strictly upper triangular, and X− the strictly lower triangular part of X.

� Define Π0(X) := X− − X−�
.

� The Toda lattice (Symes’82, Deift el al’83):

dX

dt
= [X, Π0(X)]

X(0) = X0.

� Sampled at integer times, {X(k)} gives the same sequence as does the QR algorithm applied to the matrix A0 = exp(X0).

• Evolution starts from X0 and converges to the limit point of Toda flow, which is a diagoal matrix, maintains the spectrum.

� The construction of the Toda lattice is based on the physics.

� This is a Hamiltonian system.

� A certain physical quantities are kept at constant, i.e., this is a completely integrable system.

� The convergence is guaranteed by “nature”?
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Least Squares Matrix Approximation

• The mathematical problem:

� A symmetric matrix N and a set of real values {λ1, . . . , λn} are given.

� Find a least squares approximation of N that has the prescribed eigenvalues.

• A standard formulation:

Minimize F (Q) :=
1

2
||QT ΛQ − N ||2

Subject to QT Q = I.

� Equality Constrained Optimization:

� Augmented Lagrangian methods.

� Sequential quadratic programming methods.

� None of these techniques is easy.

� The constraint carries lots of redudancies.
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• A continuous approach:

� The projection of the gradient of F can easily be calculated.

� Projected gradient flow (Brocket’88, Chu&Driessel’90):

dX

dt
= [X, [X,N ]]

X(0) = Λ.

� X := QT ΛQ.

� Flow X(t) moves in a descent direction to reduce ||X − N ||2.
� The optimal solution X can be fully characterized by the spectral decomposition of N and is unique.

• Evolution starts from an initial value and converges to the limit point, which solves the least squares problem.

� The flow is built on the basis of systematically reducing the difference between the current position and the target position.

� This is a descent flow.
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Equivalence

• (Bloch’90) Suppose X is tridiagonal. Take
N = diag{n, . . . , 2, 1},

then
[X,N ] = Π0(X).

• A gradient flow hence becomes a Hamiltonian flow.
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Basic Form

• Lax dynamics:

dX(t)

dt
:= [X(t), k1(X(t))]

X(0) := X0.

• Parameter dynamics:

dg1(t)

dt
:= g1(t)k1(X(t))

g1(0) := I.

and

dg2(t)

dt
:= k2(X(t))g2(t)

g2(0) := I.

� k1(X) + k2(X) = X.
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Similarity Property

X(t) = g1(t)
−1X0g1(t) = g2(t)X0g2(t)

−1.

• Define Z(t) = g1(t)X(t)g1(t)
−1.

• Check

dZ

dt
=

dg1

dt
Xg−1

1 + g1
dX

dt
g−1
1 + g1X

dg−1
1

dt
= (g1k1(X))Xg−1

1

+g1(Xk1(X) − k1(X)X)g−1
1

+g1X(−k1(X)g−1
1 )

= 0.

• Thus Z(t) = Z(0) = X(0) = X0.
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Decomposition Property

exp(tX0) = g1(t)g2(t).

• Trivially exp(X0t) satisfies the IVP
dY

dt
= X0Y, Y (0) = I.

• Define Z(t) = g1(t)g2(t).

• Then Z(0) = I and

dZ

dt
=

dg1

dt
g2 + g1

dg2

dt
= (g1k1(X))g2 + g1(k2(X)g2)

= g1Xg2

= X0Z (by Similarity Property).

• By the uniqueness theorem in the theory of ordinary differential equations, Z(t) = exp(X0t).
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Reversal Property

exp(tX(t)) = g2(t)g1(t).

• By Decomposition Property,

g2(t)g1(t) = g1(t)
−1exp(X0t)g1(t)

= exp(g1(t)
−1X0g1(t)t)

= exp(X(t)t).
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Abstraction

• QR-type Decomposition:

� Lie algebra decomposition of gl(n) ⇐⇒ Lie group decomposition of Gl(n) in the neighborhood of I.

� Arbitrary subspace decomposition gl(n) ⇐⇒ Factorization of a one-parameter semigroup in the neighborhood of I as the product of two
nonsingular matrices , i.e.,

exp(X0t) = g1(t)g2(t).

� The product g1(t)g2(t) will be called the abstract g1g2 decomposition of exp(X0t).

• QR-type Algorithm:

� By setting t = 1, we have

exp(X(0)) = g1(1)g2(1)

exp(X(1)) = g2(1)g1(1).

� The dynamical system for X(t) is autonomous =⇒ The above phenomenon will occur at every feasible integer time.

� Corresponding to the abstract g1g2 decomposition, the above iterative process for all feasible integers will be called the abstract g1g2 algorithm.
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Matrix Groups

• A subset of nonsingular matrices (over any field) which are closed under matrix multiplication and inversion is called a matrix group.

� Matrix groups are central in many parts of mathematics and applications.

• A smooth manifold which is also a group where the multiplication and the inversion are smooth maps is called a Lie group.

� The most remarkable feature of a Lie group is that the structure is the same in the neighborhood of each of its elements.

• (Howe’83) Every (non-discrete) matrix group is in fact a Lie group.

� Algebra and geometry are intertwined in the study of matrix groups.

• Lots of realization processes used in numerical linear algebra are the results of group actions.
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Group Subgroup Notation Characteristics

General linear Gl(n) {A ∈ R
n×n| det(A) �= 0}

Special linear Sl(n) {A ∈ Gl(n)| det(A) = 1}

Upper triangular U(n) {A ∈ Gl(n)|A is upper triangular}

Unipotent Unip(n) {A ∈ U(n)|aii = 1 for all i}

Orthogonal O(n) {Q ∈ Gl(n)|Q�Q = I}

Generalized orthogonal OS(n) {Q ∈ Gl(n)|Q�SQ = S}; S is a fixed matrix

Symplectic Sp(2n) OJ(2n); J :=

[
0 I

−I 0

]

Lorentz Lor(n, k) OL(n + k); L := diag{1, . . . , 1︸ ︷︷ ︸
n

,−1, . . . − 1︸ ︷︷ ︸
k

}

Affine Aff(n)

{[
A t
0 1

]
| A ∈ Gl(n), t ∈ R

n

}

Translation T rans(n)

{[
I t
0 1

]
| t ∈ R

n

}

Isometry Isom(n)

{[
Q t
0 1

]
| Q ∈ O(n), t ∈ R

n

}

Center of G Z(G) {z ∈ G|zg = gz, for every g ∈ G}, G is a given group

Product of G1 and G2 G1 × G2 {(g1, g2)|g1 ∈ G1, g2 ∈ G2}; (g1, g2) ∗ (h1, h2) := (g1h1, g2h2); G1 and G2 are given groups

Quotient G/N {Ng|g ∈ G}; N is a fixed normal subgroup of G

Hessenberg Hess(n) Unip(n)/Zn
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Group Actions

• A function µ : G × V −→ V is said to be a group action of G on a set V if and only if

� µ(gh,x) = µ(g, µ(h,x)) for all g, h ∈ G and x ∈ V.

� µ(e,x) = x, if e is the identity element in G.

• Given x ∈ V, two important notions associated with a group action µ:

� The stabilizer of x is
StabG(x) := {g ∈ G|µ(g,x) = x}.

� The orbit of x is
OrbG(x) := {µ(g,x)|g ∈ G}.
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Set V Group G Action µ(g, A) Application

R
n×n Any subgroup g−1Ag conjugation

R
n×n O(n) g�Ag orthogonal similarity

R
n×n × . . . × R

n×n︸ ︷︷ ︸
k

Any subgroup (g−1A1g, . . . , g−1Akg) simultaneous reduction

S(n) × SPD(n) Any subgroup (g�Ag, g�Bg) symm. positive definite
pencil reduction

R
n×n × R

n×n O(n) ×O(n) (g�
1 Ag2, g

�
1 Bg2) QZ decomposition

R
m×n O(m) ×O(n) g�

1 Ag2 singular value decomp.

R
m×n × R

p×n O(m) ×O(p) × Gl(n) (g�
1 Ag3, g

�
2 Bg3) generalized

singular value decomp.
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Some Exotic Group Actions (yet to be studied!)

• In numerical analysis, it is customary to use actions of the orthogonal group to perform the change of coordinates for the sake of cost efficiency
and numerical stability.

� What could be said if actions of the isometry group are used?

� Being isometric, stability is guaranteed.

� The inverse of an isometry matrix is easy. [
Q t
0 1

]−1

=

[
Q� −Q�t
0 1

]
.

� The isometry group is larger than the orthogonal group.

• What could be said if actions of the orthogonal group plus shift are used?

µ((Q, s), A) := Q�AQ + sI, Q ∈ O(n), s ∈ R+.

• What could be said if action of the orthogonal group with scaling are used?

µ((Q, s), A) := sQ�AQ, Q ∈ O(n), s ∈ R×,

or
µ((Q, s, t), A) := diag{s}Q�AQdiag{t}, Q ∈ O, s, t ∈ R

n
×.
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Tangent Space and Project Gradient

• Given a group G and its action µ on a set V, the associated orbit OrbG(x) characterizes the rule by which x is to be changed in V.

� Depending on the group G, an orbit is often too “wild” to be readily traced for finding the “simplest form” of x.

� Depending on the applications, a path/bridge/highway/differential equation needs to be built on the orbit to connect x to its simplest form.

• A differential equation on the orbit OrbG(x) is equivalent to a differential equation on the group G.

� Lax dynamics on X(t).

� Parameter dynamics on g1(t) or g2(t).

• To stay in either the orbit or the group, the vector field of the dynamical system must be distributed in the tangent space of the corresponding
manifold.

• Most of the tangent spaces for the matrix groups can be calculated explicitly.

• If some kind of objective function has been used to control the connecting bridge, its gradient should be projected to the tangent space.
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Tangent Space in General

• Given a matrix group G ≤ Gl(n), the tangent space to G at A ∈ G can be defined as

TAG := {γ′(0)|γ is a differentiable curve in G with γ(0) = A}.

• The tangent space � = TIG at the identity I is critical.

� � is a Lie subalgebra in R
n×n, i.e.,

If α′(0), β′(0) ∈ �, then [α′(0), β′(0)] ∈ �

� The tangent space of a matrix group has the same structure everywhere, i.e.,

TAG = A�.

� TIG can be characterized as the logarithm of G, i.e.,

� = {M ∈ R
n×n| exp(tM) ∈ G, for all t ∈ R}.
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Group G Algebra � Characteristics

Gl(n) gl(n) R
n×n

Sl(n) sl(n) {M ∈ gl(n)|trace(M) = 0}

Aff(n) aff(n) {
[

M t
0 0

]
|M ∈ gl(n), t ∈ R

n}

O(n) o(n) {K ∈ gl(n)|K is skew-symmetric}

Isom(n) isom(n) {
[

K t
0 0

]
|K ∈ o(n), t ∈ R

n}

G1 × G2 T(e1,e2)G1 × G2 �1 × �2
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An Illustration of Projection

• The tangent space of O(n) at any orthogonal matrix Q is
TQO(n) = QK(n)

where
K(n) = {All skew-symmetric matrices}.

• The normal space of O(n) at any orthogonal matrix Q is
NQO(n) = QS(n).

• The space R
n×n is split as

R
n×n = QS(n) ⊕ QK(n).

• A unique orthogonal splitting of X ∈ R
n×n:

X = Q(QT X) = Q

{
1

2
(QT X − XT Q)} + Q{1

2
(QT X + XT Q)

}
.

• The projection of X onto the tangent space TQO(n) is given by

ProjTQO(n)X = Q

{
1

2
(QT X − XT Q)

}
.
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Canoncial Forms

• A canonical form refers to a “specific structure” by which a certain conclusion can be drawn or a certain goal can be achieved.

• The superlative adjective “simplest” is a relative term which should be interpreted broadly.

� A matrix with a specified pattern of zeros, such as a diagonal, tridiagonal, or triangular matrix.

� A matrix with a specified construct, such Toeplitz, Hamiltonian, stochastic, or other linear varieties.

� A matrix with a specified algebraic constraint, such as low rank or nonnegativity.
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Canonical form Also know as Action

Bidiagonal J Quasi-Jordan Decomp., P−1AP = J ,
A ∈ R

n×n P ∈ Gl(n)

Diagonal Σ Sing. Value Decomp., U�AV = Σ,
A ∈ R

m×n (U, V ) ∈ O(m) ×O(n)

Diagonal pair (Σ1, Σ2) Gen. Sing. Value Decomp., (U�AX, V �BX) = (Σ1, Σ2),
(A,B) ∈ R

m×n × R
p×n (U, V,X) ∈ O(m) ×O(p) × Gl(n)

Upper quasi-triangular H Real Schur Decomp., Q�AQ = H,
A ∈ R

n×n Q ∈ O(n)

Upper quasi-triangular H Gen. Real Schur Decomp., (Q�AZ,Q�BZ) = (H,U),
Upper triangular U A,B ∈ Rn×n Q,Z ∈ O(n)

Symmetric Toeplitz T Toeplitz Inv. Eigenv. Prob., Q�diag{λ1, . . . , λn}Q = T ,
{λ1, . . . , λn} ⊂ R is given Q ∈ O(n)

Nonnegative N ≥ 0 Nonneg. inv. Eigenv. Prob., P−1diag{λ1, . . . , λn}P = N ,
{λ1, . . . , λn} ⊂ C is given P ∈ Gl(n)

Linear variety X Matrix Completion Prob., P−1{λ1, . . . , λn}P = X,
with fixed entries {λ1, . . . , λn} ⊂ C is given P ∈ Gl(n)
at fixed locations Xiν ,jν = aν , ν = 1, . . . , �

Nonlinear variety Test Matrix Construction, P−1ΛP = U�ΣV
with fixed singular values Λ = diag{λ1, . . . , λn} and P ∈ Gl(n), U, V ∈ O(n)

and eigenvalues Σ = diag{σ1, . . . σn} are given

Maximal fidelity Structured Low Rank Approx.
(
diag

(
USS�U�))−1/2

USV �,
A ∈ R

m×n (U, S, V ) ∈ O(m) × R
k
× ×O(n)



30 Objective Functions

Objective Functions

• The orbit of a selected group action only defines the rule by which a transformation is to take place.

• Properly formulated objective functions helps to control the construction of a bridge between the current point and the desired canonical form on
a given orbit.

� The bridge often assumes the form of a differential equation on the manifold.

� The vector field of the differential equation must distributed over the tangent space of the manifold.

� Corresponding to each differential equation on the orbit of a group action is a differential equation on the group, and vice versa.

• How to choose appropriate objective functions?
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Some Flows on OrbO(n)(X) under Conjugation

• Toda lattice arises from a special mass-spring system (Symes’82, Deift el al’83),

dX

dt
= [X, Π0(X)], Π0(X) = X− − X−�

,

X(0) = tridiagonal and symmetric.

� No specific objective function is used.

� Physics law governs the definition of the vector field.

� Generalization to general matrices is totally by brutal force and blindness (and by the then young and desperate researchers) (Chu’84,
Watkins’84).

dX

dt
= [X, Π0(G(X))], G(z) is analytic over spectrum of X(0).

� But nicely explains the pseudo-convergence and convergence behavior of the classical QR algorithm for general and normal matrices,
respectively.

� Sorting of eigenvalues at the limit point is observed, but not quite clearly understood.
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• Double bracket flow (Brockett’88),
dX

dt
= [X, [X,N ]], N = fixed and symmetric.

� This is the projected gradient flow of the objective function

Minimize F (Q) :=
1

2
||QT ΛQ − N ||2,

Subject to QT Q = I.

� Sorting is necessary in the first order optimality condition (Wielandt&Hoffman’53).

• Take a special N = diag{n, n − 1, . . . , 2, 1},

� X is tridiagonal and symmetric =⇒ Double bracket flow ≡ Toda lattice (Bloch’90).

� Bingo! The classical Toda lattice does have an objective function in mind.

� X is a general symmetric matrix =⇒ Double bracket = A specially scaled Toda lattice.

• Scaled Toda lattice (Chu’95),
dX

dt
= [X,K ◦ X], K = fixed and skew-symmetric.

� Flexible in componentwise scaling.

� Enjoy very general convergence behavior.

� But still no explicit objective function in sight.
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Some Flows on OrbO(m)×O(n)(X) under Equivalence

• Any flow on the orbit OrbO(m)×O(n)(X) under equivalence must be of the form

dX

dt
= X(t)h(t) − k(t)X(t), h(t) ∈ K(n), k(t) ∈ K(m).

• QZ flow (Chu’86),

dX1

dt
= X1Π0(X

−1
2 X1) − Π0(X1X

−1
2 )X1,

dX2

dt
= X2Π0(X

−1
2 X1) − Π0(X1X

−1
2 )X2, .

• SV D flow (Chu’86),

dY

dt
= Y Π0

(
Y (t)�Y (t)

)
− Π0

(
Y (t)Y (t)�

)
Y,

Y (0) = bidiagonal.

� The ”objective” in the design of this flow was to maintain the bidiagonal structure of Y (t) for all t.

� The flow gives rise to the Toda flows for Y �Y and Y Y �.
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Projected Gradient Flows

• Given

� A continuous matrix group G ⊂ Gl(n).

� A fixed X ∈ V where V ⊂ R
n×n be a subset of matrices.

� A differentiable map f : V −→ R
n×n with a certain “inherent” properties, e.g., symmetry, isospectrum, low rank, or other algebraic constraints.

� A group action µ : G × V −→ V.

� A projection map P from R
n×n onto a singleton, a linear subspace, or an affine subspace P ⊂ R

n×n where matrices in R carry a certain desired
structure, e.g., the canonical form.

• Consider the functional F : G −→ R

F (g) :=
1

2
‖f(µ(g,X)) − P (µ(g,X))‖2

F .

� Want to minimize F over G.

• Flow approach:

� Compute ∇F (g).

� Project ∇F (g) onto TgG.

� Follow the projected gradient until convergence.
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Some Old Examples

• Brockett’s double bracket flow (Brockett’88).

• Least squares approximation with spectral constraints (Chu&Driessel’90).

dX

dt
= [X, [X,P (X)]].

• Simultaneous reduction problem (Chu’91),

dXi

dt
=

[
Xi,

p∑
j=1

[Xj, P
T
j (Xj)]−[Xj, P

T
j (Xj)]

T

2

]

Xi(0) = Ai

• Nearest normal matrix problem (Chu’91),

dW

dt
=

[
W,

1

2
{[W, diag(W ∗)] − [W, diag(W ∗)]∗}

]
W (0) = A.
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• Matrix with prescribed diagonal entries and spectrum (Schur-Horn Theorem) (Chu’95),

Ẋ = [X, [diag(X) − diag(a), X]]

• Inverse generalized eigenvalue problem for symmetric-definite pencil (Chu&Guo’98).

Ẋ = −
(
(XW )T + XW

)
,

Ẏ = −
(
(Y W )T + Y W

)
,

W := X(X − P1(X)) + Y (Y − P2(Y )).

• Various structured inverse eigenvalue problems (Chu&Golub’02).

• Remember the list of applications that Nicoletta gave on Monday!!!???
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New Thoughts

• The idea of group actions, least squares, and the corresponding gradient flows can be generalized to other structures such as

� Stiefel manifold O(p, q) := {Q ∈ R
p×q|QT Q = Iq}.

� The manifold of oblique matrices OB(n) := {Q ∈ R
n×n|diag(Q�Q) = In}.

� Cone of nonnegative matrices.

� Semigroups.

� Low rank approximation.

• Using the product topology to describe separate groups and actions might broaden the applications.

• Any advantages of using the isometry group over the orthogonal group?
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Stochastic Inverse Eigenvalue Problem

• Construct a stochastic matrix with prescribed spectrum

� A hard problem (Karpelevic’51, Minc’88).
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Figure 1: Θ4 by the Karpelevič theorem.

� Would be done if the nonnegative inverse eigenvalue problem is solved – a long standing open question.
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• Least squares formulation:

Minimize F (g,R) :=
1

2
||gJg−1 − R ◦ R||2

Subject to g ∈ Gl(n), R ∈ gl(n).

� J = Real matrix carrying spectral information.

� ◦ = Hadamard product.

• Steepest descent flow:

dg

dt
= [(gJg−1)T , α(g,R)]g−T

dR

dt
= 2α(g,R) ◦ R.

� α(g,R) := gJg−1 − R ◦ R.
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• ASVD flow for g (Bunse-Gerstner et al’91, Wright’92):

g(t) = X(t)S(t)Y (t)T

ġ = ẊSY T + XṠY T + XSẎ T

XT ġY = XT Ẋ︸ ︷︷ ︸
Z

S + Ṡ + S Ẏ T Y︸ ︷︷ ︸
W

Define Q := XT ġY . Then

dS

dt
= diag(Q).

dX

dt
= XZ.

dY

dt
= Y W.

� Z,W are skew-symmetric matrices obtainable from Q and S.
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Nonnegative Matrix Factorization

• For various applications, given a nonnegative matrix A ∈ R
m×n, want to

min
0≤V ∈Rm×k,0≤H∈Rk×n

1

2
‖A − V H‖2

F .

� Relatively new techniques for dimension reduction applications.

� Image processing — no negative pixel values.

� Data mining — no negative frequencies.

� No firm theoretical foundation available yet (Tropp’03).

• Relatively easy by flow approach!

min
E∈Rm×k,F∈Rk×n

1

2
‖A − (E ◦ E)(F ◦ F )‖2

F .

• Gradient flow:

dV

dt
= V ◦ (A − V H)H�),

dH

dt
= H ◦ (V �(A − V H)).

� Once any entry of either V or H hits 0, it stays zero. This is a natural barrier!

� The first order optimality condition is clear.



42 New Thoughts

Image Articulation Library

• Assume images are composite objects in many articulations and poses.

• Factorization would enable the identification and classification of intrinsic “parts” that make up the object being imaged by multiple observations.

• Each column aj of a nonnegative matrix A now represents m pixel values of one image.

• The columns vk of V are k basis elements in R
m.

• The columns of H, belonging to R
k, can be thought of as coefficient sequences representing the n images in the basis elements.
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A ∈ R
19200×10 Representing 10 Gray-scale 120 × 160 Irises



44 New Thoughts

Basis Irises with k = 2
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(Wrong?) Basis Irises with k = 4



46 Conclusion

Conclusion

• Many operations used to transform matrices can be considered as matrix group actions.

• The view unifies different transformations under the same framework of tracing orbits associated with corresponding group actions.

� More sophisticated actions can be composed that might offer the design of new numerical algorithms.

� As a special case of Lie groups, (tangent space) structure of a matrix group is the same at every of its element. Computation is easy and
cheap.

• It is yet to be determined how a dynamical system should be defined over a group so as to locate the simplest form.

� The notion of “simplicity” varies according to the applications.

� Various objective functions should be used to control the dynamical systems.

� Usually offers a global method for solving the underlying problem.

• Continuous realization methods often enable to tackle existence problems that are seemingly impossible to be solved by conventional discrete
methods.

• Group actions together with properly formulated objective functions can offer a channel to tackle various classical or new and challenging problems.
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• Some basic ideas and examples have been outlined in this talk.

� More sophisticated actions can be composed that might offer the design of new numerical algorithms.

� The list of application continues to grow.

• New computational techniques for structured dynamical systems on matrix group will further extend and benefit the scope of this interesting topic.

� Need ODE techniques specially tailored for gradient flows.

� Need ODE techniques suitable for very large-scale dynamical systems.

� Help! Help! Help!


