Group Theory, Linear Transformations, and Flows: (Some) Dynamical Systems on Manifolds

Moody T. Chu

North Carolina State University

presented at

Workshop on Lie Group Methods and Control Theory June 30, 2004

Outline

- Motivation
 - $\diamond\,$ Realization Process
 - $\diamond\,$ A Case Study
- Basic Form
 - $\diamond\,$ Similarity Property
 - $\diamond\,$ Decomposition Property
 - $\diamond~{\rm Reversal}$ Property
- Matrix Groups and Group Actions
- Tangent Space and Projection
- Canonical Forms
- Objective Functions and Dynamical Systems
 - \diamond Examples
 - $\diamond~{\rm Least}$ Squares
- New Thoughts
- Conclusion

Motivation

What is the simplest form to which a family of matrices depending smoothly on the parameters can be reduced by a change of coordinates depending smoothly on the parameters?

– V. I. Arnold

Geometric Methods in the Theory of Ordinary Differential Equations, 1988

• What is the simplest form referred to here?

• What kind of continuous change can be employed?

Realization Process

- Realization process, in a sense, means any deducible procedure that we use to rationalize and solve problems.
 - $\diamond\,$ The simplest form refers to the agility to think and draw conclusions.
- In mathematics, a realization process often appears in the form of an iterative procedure or a differential equation.
 - $\diamond\,$ The steps taken for the realization, i.e., the changes, could be discrete or continuous.

Continuous Realization

- Two abstract problems:
 - $\diamond\,$ One is a make-up and is easy.
 - $\diamond\,$ The other is the real problem and is difficult.
- A bridge:
 - $\diamond\,$ A continuous path connecting the two problems.
 - $\diamond\,$ A path that is easy to follow.
- A numerical method:
 - $\diamond\,$ A method for moving along the bridge.
 - $\diamond\,$ A method that is readily available.

Build the Bridge

- Specified guidance is available.
 - $\diamond\,$ The bridge is constructed by monitoring the values of certain specified functions.
 - $\diamond\,$ The path is guaranteed to work.
 - $\diamond\,$ Such as the projected gradient method.
- Only some general guidance is available.
 - ♦ A bridge is built in a straightforward way.
 - $\diamond\,$ No guarantee the path will be complete.
 - $\diamond\,$ Such as the homotopy method.
- No guidance at all.
 - ♦ A bridge is built seemingly by accident.
 - ♦ Usually deeper mathematical theory is involved.
 - $\diamond\,$ Such as the isospectral flows.

Characteristics of a Bridge

- A bridge, if it exists, usually is characterized by an ordinary differential equation.
- The discretization of a bridge, or a numerical method in travelling along a bridge, usually produces an iterative scheme.

Two Examples

- Eigenvalue Computation
- Constrained Least Squares Approximation

The Eigenvalue Problem

• The mathematical problem:

- \diamond A symmetric matrix A_0 is given.
- $\diamond\,$ Solve the equation

 $A_0 x = \lambda x$

for a nonzero vector x and a scalar λ .

- $\bullet\,$ An iterative method :
 - $\diamond~$ The QR decomposition:

A = QR

where Q is orthogonal and R is upper triangular.

 \diamond The QR algorithm (Francis'61):

 $A_k = Q_k R_k$ $A_{k+1} = R_k Q_k.$

- \diamond The sequence $\{A_k\}$ converges to a diagonal matrix.
- ♦ Every matrix A_k has the same eigenvalues of A_0 , i.e., $(A_{k+1} = Q_k^T A_k Q_k)$.

- A continuous method:
 - ♦ Lie algebra decomposition:

$$X = X^o + X^+ + X^-$$

where X^o is the diagonal, X^+ the strictly upper triangular, and X^- the strictly lower triangular part of X. \diamond Define $\Pi_0(X) := X^- - X^{-\top}$.

♦ The Toda lattice (Symes'82, Deift el al'83):

$$\frac{dX}{dt} = [X, \Pi_0(X)]$$
$$X(0) = X_0.$$

 \diamond Sampled at integer times, $\{X(k)\}$ gives the same sequence as does the QR algorithm applied to the matrix $A_0 = exp(X_0)$.

- Evolution starts from X_0 and converges to the limit point of Toda flow, which is a diagoal matrix, maintains the spectrum.
 - $\diamond\,$ The construction of the Toda lattice is based on the physics.
 - \triangleright This is a Hamiltonian system.
 - ▷ A certain physical quantities are kept at constant, i.e., this is a *completely integrable* system.
 - ♦ The convergence is guaranteed by "nature"?

Least Squares Matrix Approximation

- The mathematical problem:
 - \diamond A symmetric matrix N and a set of real values $\{\lambda_1, \ldots, \lambda_n\}$ are given.
 - $\diamond\,$ Find a least squares approximation of N that has the prescribed eigenvalues.
- A standard formulation:

Minimize
$$F(Q) := \frac{1}{2} ||Q^T \Lambda Q - N||^2$$

Subject to $Q^T Q = I$.

- $\diamond\,$ Equality Constrained Optimization:
 - $\triangleright\,$ Augmented Lagrangian methods.
 - $\triangleright\,$ Sequential quadratic programming methods.
- $\diamond\,$ None of these techniques is easy.
 - $\triangleright\,$ The constraint carries lots of redudancies.

- A continuous approach:
 - $\diamond\,$ The projection of the gradient of F can easily be calculated.
 - ♦ Projected gradient flow (Brocket'88, Chu&Driessel'90):

$$\frac{dX}{dt} = [X, [X, N]]$$
$$X(0) = \Lambda.$$

 $\triangleright \ X := Q^T \Lambda Q.$

- \triangleright Flow X(t) moves in a descent direction to reduce $||X N||^2$.
- \diamond The optimal solution X can be fully characterized by the spectral decomposition of N and is unique.
- Evolution starts from an initial value and converges to the limit point, which solves the least squares problem.
 - ♦ The flow is built on the basis of systematically reducing the difference between the current position and the target position.
 - $\diamond\,$ This is a descent flow.

Equivalence

• (Bloch'90) Suppose X is tridiagonal. Take

then

$$N = \text{diag}\{n, \dots, 2, 1\},$$

 $[X, N] = \Pi_0(X).$

• A gradient flow hence becomes a Hamiltonian flow.

Basic Form

• Lax dynamics:

$$\frac{dX(t)}{dt} := [X(t), k_1(X(t))]$$

X(0) := X₀.

• Parameter dynamics:

and

$$\frac{dg_2(t)}{dt} := k_2(X(t))g_2(t) g_2(0) := I.$$

 $\frac{dg_1(t)}{dt} := g_1(t)k_1(X(t))$ $g_1(0) := I.$

 $\diamond \ k_1(X) + k_2(X) = X.$

Similarity Property

 $X(t) = g_1(t)^{-1} X_0 g_1(t) = g_2(t) X_0 g_2(t)^{-1}.$

- Define $Z(t) = g_1(t)X(t)g_1(t)^{-1}$.
- $\bullet~{\rm Check}$

$$\frac{dZ}{dt} = \frac{dg_1}{dt} X g_1^{-1} + g_1 \frac{dX}{dt} g_1^{-1} + g_1 X \frac{dg_1^{-1}}{dt}
= (g_1 k_1(X)) X g_1^{-1}
+ g_1 (X k_1(X) - k_1(X) X) g_1^{-1}
+ g_1 X (-k_1(X) g_1^{-1})
= 0.$$

• Thus $Z(t) = Z(0) = X(0) = X_0$.

Decomposition Property

 $exp(tX_0) = g_1(t)g_2(t).$

• Trivially $exp(X_0t)$ satisfies the IVP

$$\frac{dY}{dt} = X_0 Y, Y(0) = I.$$

- Define $Z(t) = g_1(t)g_2(t)$.
- Then Z(0) = I and

$$\frac{dZ}{dt} = \frac{dg_1}{dt}g_2 + g_1\frac{dg_2}{dt}$$

= $(g_1k_1(X))g_2 + g_1(k_2(X)g_2)$
= g_1Xg_2
= X_0Z (by Similarity Property).

• By the uniqueness theorem in the theory of ordinary differential equations, $Z(t) = exp(X_0 t)$.

Reversal Property

 $exp(tX(t)) = g_2(t)g_1(t).$

• By Decomposition Property,

 $g_{2}(t)g_{1}(t) = g_{1}(t)^{-1}exp(X_{0}t)g_{1}(t)$ = $exp(g_{1}(t)^{-1}X_{0}g_{1}(t)t)$ = exp(X(t)t).

Abstraction

• *QR*-type Decomposition:

- \diamond Lie algebra decomposition of $gl(n) \iff$ Lie group decomposition of Gl(n) in the neighborhood of I.
- \diamond Arbitrary subspace decomposition $gl(n) \iff$ Factorization of a *one-parameter semigroup* in the neighborhood of I as the product of two nonsingular matrices , i.e.,

 $exp(X_0t) = g_1(t)g_2(t).$

- \diamond The product $g_1(t)g_2(t)$ will be called the *abstract* g_1g_2 decomposition of $exp(X_0t)$.
- *QR*-type Algorithm:

 \diamond By setting t = 1, we have

 $exp(X(0)) = g_1(1)g_2(1)$ $exp(X(1)) = g_2(1)g_1(1).$

- \diamond The dynamical system for X(t) is autonomous \implies The above phenomenon will occur at every feasible integer time.
- \diamond Corresponding to the abstract g_1g_2 decomposition, the above iterative process for all feasible integers will be called the *abstract* g_1g_2 algorithm.

Matrix Groups

- A subset of nonsingular matrices (over any field) which are closed under matrix multiplication and inversion is called a *matrix group*.
 - ♦ Matrix groups are central in many parts of mathematics and applications.
- A smooth manifold which is also a group where the multiplication and the inversion are smooth maps is called a *Lie group*.
 - ♦ The most remarkable feature of a Lie group is that the structure is the same in the neighborhood of each of its elements.
- (Howe'83) Every (non-discrete) matrix group is in fact a Lie group.
 - $\diamond\,$ Algebra and geometry are intertwined in the study of matrix groups.
- Lots of realization processes used in numerical linear algebra are the results of group actions.

Group	Subgroup	Notation	Characteristics
General linear		$\mathcal{G}l(n)$	$\{A \in \mathbb{R}^{n \times n} \det(A) \neq 0\}$
	Special linear	$\mathcal{S}l(n)$	$\{A \in \mathcal{G}l(n) \det(A) = 1\}$
Upper triangular		$\mathcal{U}(n)$	$\{A \in \mathcal{G}l(n) A \text{ is upper triangular}\}$
	Unipotent	$\mathcal{U}nip(n)$	$\{A \in \mathcal{U}(n) a_{ii} = 1 \text{ for all } i\}$
Orthogonal		$\mathcal{O}(n)$	$\{Q\in \mathcal{G}l(n) Q^\top Q=I\}$
Generalized orthogonal		$\mathcal{O}_{S}(n)$	$\{Q \in \mathcal{G}l(n) Q^{\top}SQ = S\}; S \text{ is a fixed matrix}$
	Symplectic	$\mathcal{S}p(2n)$	$\mathcal{O}_J(2n); J := \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$
	Lorentz	$\mathcal{L}or(n,k)$	$\mathcal{O}_L(n+k); L := \operatorname{diag}\{\underbrace{1,\ldots,1}_n,\underbrace{-1,\ldots-1}_k\}$
Affine		$\mathcal{A}ff(n)$	$\left\{ \left[\begin{array}{cc} A & \mathbf{t} \\ 0 & 1 \end{array} \right] \mid A \in \mathcal{G}l(n), \mathbf{t} \in \mathbb{R}^n \right\}$
	Translation	$\mathcal{T}rans(n)$	$\left\{ \left[egin{array}{cc} I & {f t} \ {f 0} & 1 \end{array} ight] \mid {f t} \in {\mathbb R}^n ight\}$
	Isometry	$\mathcal{I}som(n)$	$\left\{ \left[\begin{array}{cc} Q & \mathbf{t} \\ 0 & 1 \end{array} \right] \mid Q \in \mathcal{O}(n), \mathbf{t} \in \mathbb{R}^n \right\}$
Center of G		Z(G)	$\{z \in G zg = gz, \text{ for every } g \in G\}, G \text{ is a given group}$
Product of G_1 and G_2		$G_1 \times G_2$	$\{(g_1, g_2) g_1 \in G_1, g_2 \in G_2\}; (g_1, g_2) * (h_1, h_2) := (g_1h_1, g_2h_2); G_1 \text{ and } G_2 \text{ are given groups}$
Quotient		G/N	$\{Ng g \in G\};$ N is a fixed normal subgroup of G
	Hessenberg	$\mathcal{H}ess(n)$	$\mathcal{U}nip(n)/\mathcal{Z}_n$

Group Actions

• A function $\mu: G \times \mathbb{V} \longrightarrow \mathbb{V}$ is said to be a group action of G on a set \mathbb{V} if and only if

- $\diamond \ \mu(gh, \mathbf{x}) = \mu(g, \mu(h, \mathbf{x})) \text{ for all } g, h \in G \text{ and } \mathbf{x} \in \mathbb{V}.$
- $\diamond \mu(e, \mathbf{x}) = \mathbf{x}$, if e is the identity element in G.
- Given $\mathbf{x} \in \mathbb{V}$, two important notions associated with a group action μ :
 - $\diamond~$ The $stabilizer~{\rm of}~{\bf x}$ is

 $Stab_G(\mathbf{x}) := \{ g \in G | \mu(g, \mathbf{x}) = \mathbf{x} \}.$

 $\diamond\,$ The orbit of ${\bf x}$ is

 $Orb_G(\mathbf{x}) := \{\mu(g, \mathbf{x}) | g \in G\}.$

Set \mathbb{V}	Group G	Action $\mu(g, A)$	Application
$\mathbb{R}^{n \times n}$	Any subgroup	$g^{-1}Ag$	conjugation
$\mathbb{R}^{n \times n}$	$\mathcal{O}(n)$	$g^{ op}Ag$	orthogonal similarity
$\underbrace{\mathbb{R}^{n \times n} \times \ldots \times \mathbb{R}^{n \times n}}_{k}$	Any subgroup	$(g^{-1}A_1g,\ldots,g^{-1}A_kg)$	simultaneous reduction
$\mathbb{S}(n) \times \mathbb{S}_{PD}(n)$	Any subgroup	$(g^{\top}Ag,g^{\top}Bg)$	symm. positive definite pencil reduction
$\mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n}$	$\mathcal{O}(n) \times \mathcal{O}(n)$	$(g_1^{ op}Ag_2,g_1^{ op}Bg_2)$	QZ decomposition
$\mathbb{R}^{m imes n}$	$\mathcal{O}(m) \times \mathcal{O}(n)$	$g_1^{\top}Ag_2$	singular value decomp.
$\mathbb{R}^{m \times n} \times \mathbb{R}^{p \times n}$	$\mathcal{O}(m) \times \mathcal{O}(p) \times \mathcal{G}l(n)$	$(g_1^{ op}Ag_3,g_2^{ op}Bg_3)$	generalized singular value decomp.

Some Exotic Group Actions (yet to be studied!)

- In numerical analysis, it is customary to use actions of the orthogonal group to perform the change of coordinates for the sake of cost efficiency and numerical stability.
 - ♦ What could be said if actions of the isometry group are used?
 - ▷ Being isometric, stability is guaranteed.
 - $\triangleright\,$ The inverse of an isometry matrix is easy.

$$\left[\begin{array}{cc} Q & \mathbf{t} \\ \mathbf{0} & 1 \end{array}\right]^{-1} = \left[\begin{array}{cc} Q^\top & -Q^\top \mathbf{t} \\ \mathbf{0} & 1 \end{array}\right].$$

- $\triangleright\,$ The isometry group is larger than the orthogonal group.
- What could be said if actions of the orthogonal group plus shift are used?

$$\mu((Q,s),A) := Q^{\top}AQ + sI, \quad Q \in \mathcal{O}(n), s \in \mathbb{R}_+.$$

• What could be said if action of the orthogonal group with scaling are used?

$$\mu((Q,s),A) := sQ^{\top}AQ, \quad Q \in \mathcal{O}(n), s \in \mathbb{R}_{\times},$$

or

$$\mu((Q, \mathbf{s}, \mathbf{t}), A) := \operatorname{diag}\{\mathbf{s}\}Q^{\top}AQ\operatorname{diag}\{\mathbf{t}\}, \quad Q \in \mathcal{O}, \mathbf{s}, \mathbf{t} \in \mathbb{R}^{n}_{\times}$$

Tangent Space and Project Gradient

- Given a group G and its action μ on a set \mathbb{V} , the associated orbit $Orb_G(\mathbf{x})$ characterizes the rule by which \mathbf{x} is to be changed in \mathbb{V} .
 - \diamond Depending on the group G, an orbit is often too "wild" to be readily traced for finding the "simplest form" of **x**.
 - \diamond Depending on the applications, a path/bridge/highway/differential equation needs to be built on the orbit to connect **x** to its simplest form.
- A differential equation on the orbit $Orb_G(\mathbf{x})$ is equivalent to a differential equation on the group G.
 - \diamond Lax dynamics on X(t).
 - \diamond Parameter dynamics on $g_1(t)$ or $g_2(t)$.
- To stay in either the orbit or the group, the vector field of the dynamical system must be distributed in the tangent space of the corresponding manifold.
- Most of the tangent spaces for the matrix groups can be calculated explicitly.
- If some kind of objective function has been used to control the connecting bridge, its gradient should be projected to the tangent space.

Tangent Space in General

• Given a matrix group $G \leq \mathcal{G}l(n)$, the *tangent space* to G at $A \in G$ can be defined as

 $\mathcal{T}_A G := \{\gamma'(0) | \gamma \text{ is a differentiable curve in } G \text{ with } \gamma(0) = A \}.$

- The tangent space $\mathfrak{g} = \mathcal{T}_I G$ at the identity I is critical.
 - $\diamond~\mathfrak{g}$ is a Lie subalgebra in $\mathbb{R}^{n\times n},$ i.e.,

If $\alpha'(0), \beta'(0) \in \mathfrak{g}$, then $[\alpha'(0), \beta'(0)] \in \mathfrak{g}$

♦ The tangent space of a matrix group has the same structure everywhere, i.e.,

 $\mathcal{T}_A G = A\mathfrak{g}.$

 $\diamond T_I G$ can be characterized as the *logarithm* of G, i.e.,

 $\mathfrak{g} = \{ M \in \mathbb{R}^{n \times n} | \exp(tM) \in G, \text{ for all } t \in \mathbb{R} \}.$

Group G	Algebra g	Characteristics
$\mathcal{G}l(n)$	gl(n)	$\mathbb{R}^{n imes n}$
$\mathcal{S}l(n)$	sl(n)	$\{M \in gl(n) \text{trace}(M) = 0\}$
$\mathcal{A}ff(n)$	aff(n)	$\left\{ \begin{bmatrix} M & \mathbf{t} \\ 0 & 0 \end{bmatrix} \mid M \in gl(n), \mathbf{t} \in \mathbb{R}^n \right\}$
$\mathcal{O}(n)$	o(n)	$\{K \in gl(n) K \text{ is skew-symmetric} \}$
$\mathcal{I}som(n)$	isom(n)	$\left\{ \left[\begin{array}{cc} K & \mathbf{t} \\ 0 & 0 \end{array} \right] \mid K \in o(n), \mathbf{t} \in \mathbb{R}^n \right\}$
$G_1 \times G_2$	$\mathcal{T}_{(e_1,e_2)}G_1 \times G_2$	$\mathfrak{g}_1 imes \mathfrak{g}_2$

An Illustration of Projection

• The tangent space of $\mathcal{O}(n)$ at any orthogonal matrix Q is

$$\mathcal{T}_Q \mathcal{O}(n) = Q \mathbb{K}(n)$$

where

 $\mathbb{K}(n) = \{ \text{All skew-symmetric matrices} \}.$

• The normal space of $\mathcal{O}(n)$ at any orthogonal matrix Q is

 $\mathcal{N}_Q \mathcal{O}(n) = Q \mathbb{S}(n).$

• The space $\mathbb{R}^{n \times n}$ is split as

 $\mathbb{R}^{n \times n} = Q\mathbb{S}(n) \oplus Q\mathbb{K}(n).$

• A unique orthogonal splitting of $X \in \mathbb{R}^{n \times n}$:

$$X = Q(Q^{T}X) = Q\left\{\frac{1}{2}(Q^{T}X - X^{T}Q)\right\} + Q\left\{\frac{1}{2}(Q^{T}X + X^{T}Q)\right\}.$$

• The projection of X onto the tangent space $\mathcal{T}_Q \mathcal{O}(n)$ is given by

$$\operatorname{Proj}_{\mathcal{T}_Q\mathcal{O}(n)} X = Q \left\{ \frac{1}{2} (Q^T X - X^T Q) \right\}.$$

Canoncial Forms

- A canonical form refers to a "specific structure" by which a certain conclusion can be drawn or a certain goal can be achieved.
- The superlative adjective "simplest" is a relative term which should be interpreted broadly.
 - ♦ A matrix with a specified pattern of zeros, such as a diagonal, tridiagonal, or triangular matrix.
 - ♦ A matrix with a specified construct, such Toeplitz, Hamiltonian, stochastic, or other linear varieties.
 - $\diamond\,$ A matrix with a specified algebraic constraint, such as low rank or nonnegativity.

Canonical Forms

Canonical form	Also know as	Action	
Bidiagonal J	Quasi-Jordan Decomp., $A \in \mathbb{R}^{n \times n}$	$P^{-1}AP = J,$ $P \in \mathcal{G}l(n)$	
Diagonal Σ	Sing. Value Decomp., $A \in \mathbb{R}^{m \times n}$	$U^{\top}AV = \Sigma, (U,V) \in \mathcal{O}(m) \times \mathcal{O}(n)$	
Diagonal pair (Σ_1, Σ_2)	Gen. Sing. Value Decomp., $(A, B) \in \mathbb{R}^{m \times n} \times \mathbb{R}^{p \times n}$	$(U^{\top}AX, V^{\top}BX) = (\Sigma_1, \Sigma_2), (U, V, X) \in \mathcal{O}(m) \times \mathcal{O}(p) \times \mathcal{G}l(n)$	
Upper quasi-triangular H	Real Schur Decomp., $A \in \mathbb{R}^{n \times n}$	$Q^{\top}AQ = H, Q \in \mathcal{O}(n)$	
Upper quasi-triangular H Upper triangular U	Gen. Real Schur Decomp., $A, B \in \mathbf{R}^{n \times n}$	$(Q^{\top}AZ, Q^{\top}BZ) = (H, U),$ $Q, Z \in \mathcal{O}(n)$	
Symmetric Toeplitz T	Toeplitz Inv. Eigenv. Prob., $\{\lambda_1, \ldots, \lambda_n\} \subset \mathbb{R}$ is given	$Q^{T} \operatorname{diag}\{\lambda_1, \dots, \lambda_n\} Q = T, Q \in \mathcal{O}(n)$	
Nonnegative $N \ge 0$	Nonneg. inv. Eigenv. Prob., $\{\lambda_1, \ldots, \lambda_n\} \subset \mathbb{C}$ is given	P^{-1} diag $\{\lambda_1, \dots, \lambda_n\}P = N,$ $P \in \mathcal{G}l(n)$	
Linear variety X with fixed entries at fixed locations	Matrix Completion Prob., $\{\lambda_1, \ldots, \lambda_n\} \subset \mathbb{C}$ is given $X_{i_{\nu}, j_{\nu}} = a_{\nu}, \nu = 1, \ldots, \ell$	$P^{-1}\{\lambda_1,\ldots,\lambda_n\}P = X,$ $P \in \mathcal{G}l(n)$	
Nonlinear variety with fixed singular values and eigenvalues	Test Matrix Construction, $\Lambda = \text{diag}\{\lambda_1, \dots, \lambda_n\}$ and $\Sigma = \text{diag}\{\sigma_1, \dots, \sigma_n\}$ are given	$P^{-1}\Lambda P = U^{\top}\Sigma V$ $P \in \mathcal{G}l(n), U, V \in \mathcal{O}(n)$	
Maximal fidelity	Structured Low Rank Approx. $A \in \mathbb{R}^{m \times n}$	$ (\operatorname{diag} (USS^{\top}U^{\top}))^{-1/2} USV^{\top}, (U, S, V) \in \mathcal{O}(m) \times \mathbb{R}^{k}_{\times} \times \mathcal{O}(n) $	

Objective Functions

- The orbit of a selected group action only defines the rule by which a transformation is to take place.
- Properly formulated objective functions helps to control the construction of a bridge between the current point and the desired canonical form on a given orbit.
 - $\diamond\,$ The bridge often assumes the form of a differential equation on the manifold.
 - $\diamond\,$ The vector field of the differential equation must distributed over the tangent space of the manifold.
 - ♦ Corresponding to each differential equation on the orbit of a group action is a differential equation on the group, and vice versa.
- How to choose appropriate objective functions?

Some Flows on $Orb_{\mathcal{O}(n)}(X)$ under Conjugation

• Toda lattice arises from a special mass-spring system (Symes'82, Deift el al'83),

$$\frac{dX}{dt} = [X, \Pi_0(X)], \quad \Pi_0(X) = X^- - X^{-\top},$$

$$X(0) = \text{tridiagonal and symmetric.}$$

- $\diamond\,$ No specific objective function is used.
 - $\triangleright\,$ Physics law governs the definition of the vector field.
- ◊ Generalization to general matrices is totally by brutal force and blindness (and by the then young and desperate researchers) (Chu'84, Watkins'84).

$$\frac{dX}{dt} = [X, \Pi_0(G(X))], \quad G(z) \text{ is analytic over spectrum of } X(0).$$

- ▷ But nicely explains the pseudo-convergence and convergence behavior of the classical QR algorithm for general and normal matrices, respectively.
- ▷ Sorting of eigenvalues at the limit point is observed, but not quite clearly understood.

• Double bracket flow (Brockett'88),

$$\frac{dX}{dt} = [X, [X, N]], \quad N = \text{fixed and symmetric.}$$

 $\diamond\,$ This is the projected gradient flow of the objective function

Minimize
$$F(Q) := \frac{1}{2} ||Q^T \Lambda Q - N||^2$$
,
Subject to $Q^T Q = I$.

▷ Sorting is necessary in the first order optimality condition (Wielandt&Hoffman'53).

- Take a special $N = \text{diag}\{n, n 1, ..., 2, 1\},\$
 - $\diamond X$ is tridiagonal and symmetric \implies Double bracket flow \equiv Toda lattice (Bloch'90).
 - ▷ Bingo! The classical Toda lattice does have an objective function in mind.
 - $\diamond X$ is a general symmetric matrix \Longrightarrow Double bracket = A specially scaled Toda lattice.
- Scaled Toda lattice (Chu'95),

$$\frac{dX}{dt} = [X, K \circ X], \quad K = \text{fixed and skew-symmetric.}$$

- $\diamond\,$ Flexible in componentwise scaling.
- $\diamond\,$ Enjoy very general convergence behavior.
- ♦ But still no explicit objective function in sight.

Some Flows on $Orb_{\mathcal{O}(m)\times\mathcal{O}(n)}(X)$ under Equivalence

• Any flow on the orbit $Orb_{\mathcal{O}(m)\times\mathcal{O}(n)}(X)$ under equivalence must be of the form

$$\frac{dX}{dt} = X(t)h(t) - k(t)X(t), \quad h(t) \in \mathbb{K}(n), \quad k(t) \in \mathbb{K}(m).$$

• QZ flow (Chu'86),

$$\frac{dX_1}{dt} = X_1 \Pi_0 (X_2^{-1} X_1) - \Pi_0 (X_1 X_2^{-1}) X_1,$$

$$\frac{dX_2}{dt} = X_2 \Pi_0 (X_2^{-1} X_1) - \Pi_0 (X_1 X_2^{-1}) X_2,.$$

• SVD flow (Chu'86),

$$\frac{dY}{dt} = Y \Pi_0 \left(Y(t)^\top Y(t) \right) - \Pi_0 \left(Y(t) Y(t)^\top \right) Y,$$

$$Y(0) = \text{bidiagonal.}$$

♦ The "objective" in the design of this flow was to maintain the bidiagonal structure of Y(t) for all t.
♦ The flow gives rise to the Toda flows for Y^TY and YY^T.

Projected Gradient Flows

• Given

- $\diamond \text{ A continuous matrix group } G \subset \mathcal{G}l(n).$
- \diamond A fixed $X \in \mathbb{V}$ where $\mathbb{V} \subset \mathbb{R}^{n \times n}$ be a subset of matrices.
- \diamond A differentiable map $f: \mathbb{V} \longrightarrow \mathbb{R}^{n \times n}$ with a certain "inherent" properties, e.g., symmetry, isospectrum, low rank, or other algebraic constraints.
- $\diamond \text{ A group action } \mu: G \times \mathbb{V} \longrightarrow \mathbb{V}.$
- ♦ A projection map P from $\mathbb{R}^{n \times n}$ onto a singleton, a linear subspace, or an affine subspace $\mathbb{P} \subset \mathbb{R}^{n \times n}$ where matrices in \mathbb{R} carry a certain desired structure, e.g., the canonical form.
- Consider the functional $F: G \longrightarrow \mathbb{R}$

$$F(g) := \frac{1}{2} \| f(\mu(g, X)) - P(\mu(g, X)) \|_F^2$$

- $\diamond~$ Want to minimize F over G.
- Flow approach:
 - \diamond Compute $\nabla F(g)$.
 - \diamond Project $\nabla F(g)$ onto $\mathcal{T}_g G$.
 - ♦ Follow the projected gradient until convergence.

Some Old Examples

• Brockett's double bracket flow (Brockett'88).

• Least squares approximation with spectral constraints (Chu&Driessel'90).

$$\frac{dX}{dt} = [X, [X, P(X)]].$$

• Simultaneous reduction problem (Chu'91),

$$\frac{dX_i}{dt} = \left[X_i, \sum_{j=1}^p \frac{[X_j, P_j^T(X_j)] - [X_j, P_j^T(X_j)]^T}{2}\right]$$
$$X_i(0) = A_i$$

• Nearest normal matrix problem (Chu'91),

$$\frac{dW}{dt} = \left[W, \frac{1}{2} \{ [W, diag(W^*)] - [W, diag(W^*)]^* \} \right]$$

W(0) = A.

• Matrix with prescribed diagonal entries and spectrum (Schur-Horn Theorem) (Chu'95),

$$\dot{X} = [X, [\operatorname{diag}(X) - \operatorname{diag}(a), X]]$$

• Inverse generalized eigenvalue problem for symmetric-definite pencil (Chu&Guo'98).

$$\dot{X} = -((XW)^{T} + XW),
\dot{Y} = -((YW)^{T} + YW),
W := X(X - P_{1}(X)) + Y(Y - P_{2}(Y)).$$

- Various structured inverse eigenvalue problems (Chu&Golub'02).
- Remember the list of applications that Nicoletta gave on Monday!!!???

New Thoughts

- The idea of group actions, least squares, and the corresponding gradient flows can be generalized to other structures such as
 - $\diamond \text{ Stiefel manifold } \mathcal{O}(p,q) := \{ Q \in \mathbb{R}^{p \times q} | Q^T Q = I_q \}.$
 - ♦ The manifold of oblique matrices $\mathcal{OB}(n) := \{Q \in \mathbb{R}^{n \times n} | \operatorname{diag}(Q^{\top}Q) = I_n \}.$
 - $\diamond\,$ Cone of nonnegative matrices.
 - $\diamond\,$ Semigroups.
 - $\diamond\,$ Low rank approximation.
- Using the product topology to describe separate groups and actions might broaden the applications.
- Any advantages of using the isometry group over the orthogonal group?

Stochastic Inverse Eigenvalue Problem

- Construct a stochastic matrix with prescribed spectrum
 - ♦ A hard problem (Karpelevic'51, Minc'88).

Figure 1: Θ_4 by the Karpelevič theorem.

♦ Would be done if the nonnegative inverse eigenvalue problem is solved – a long standing open question.

New Thoughts

• Least squares formulation:

Minimize
$$F(g, R) := \frac{1}{2} ||gJg^{-1} - R \circ R||^2$$

Subject to $g \in Gl(n), R \in gl(n).$

 $\diamond~J={\rm Real}$ matrix carrying spectral information.

 $\diamond \circ =$ Hadamard product.

• Steepest descent flow:

$$\frac{dg}{dt} = [(gJg^{-1})^T, \alpha(g, R)]g^{-T}$$
$$\frac{dR}{dt} = 2\alpha(g, R) \circ R.$$

 $\diamond \ \alpha(g,R) := gJg^{-1} - R \circ R.$

• ASVD flow for g (Bunse-Gerstner et al'91, Wright'92):

$$g(t) = X(t)S(t)Y(t)^{T}$$

$$\dot{g} = \dot{X}SY^{T} + X\dot{S}Y^{T} + XS\dot{Y}^{T}$$

$$X^{T}\dot{g}Y = \underbrace{X^{T}\dot{X}}_{Z}S + \dot{S} + S\underbrace{\dot{Y}^{T}Y}_{W}$$

Define $Q := X^T \dot{g} Y$. Then

$$\frac{dS}{dt} = \operatorname{diag}(Q).$$
$$\frac{dX}{dt} = XZ.$$
$$\frac{dY}{dt} = YW.$$

 $\diamond Z, W$ are skew-symmetric matrices obtainable from Q and S.

Nonnegative Matrix Factorization

• For various applications, given a nonnegative matrix $A \in \mathbb{R}^{m \times n}$, want to

$$\min_{0 \le V \in \mathbb{R}^{m \times k}, 0 \le H \in \mathbb{R}^{k \times n}} \frac{1}{2} \|A - VH\|_F^2.$$

- $\diamond\,$ Relatively new techniques for dimension reduction applications.
 - \triangleright Image processing no negative pixel values.
 - ▷ Data mining no negative frequencies.
- \diamond No firm theoretical foundation available yet (Tropp'03).
- Relatively easy by flow approach!

$$\min_{E \in \mathbb{R}^{m \times k}, F \in \mathbb{R}^{k \times n}} \frac{1}{2} \| A - (E \circ E)(F \circ F) \|_F^2$$

• Gradient flow:

$$\frac{dV}{dt} = V \circ (A - VH)H^{\top}),$$

$$\frac{dH}{dt} = H \circ (V^{\top}(A - VH)).$$

- \diamond Once any entry of either V or H hits 0, it stays zero. This is a natural barrier!
- $\diamond\,$ The first order optimality condition is clear.

Image Articulation Library

- Assume images are composite objects in many articulations and poses.
- Factorization would enable the identification and classification of intrinsic "parts" that make up the object being imaged by multiple observations.
- Each column \mathbf{a}_j of a nonnegative matrix A now represents m pixel values of one image.
- The columns \mathbf{v}_k of V are k basis elements in \mathbb{R}^m .
- The columns of H, belonging to \mathbb{R}^k , can be thought of as coefficient sequences representing the n images in the basis elements.

New Thoughts

$A \in \mathbb{R}^{19200 \times 10}$ Representing 10 Gray-scale 120×160 Irises

Basis Irises with k = 2

New Thoughts

(Wrong?) Basis Irises with k = 4

Conclusion

- Many operations used to transform matrices can be considered as matrix group actions.
- The view unifies different transformations under the same framework of tracing orbits associated with corresponding group actions.
 - ♦ More sophisticated actions can be composed that might offer the design of new numerical algorithms.
 - ◊ As a special case of Lie groups, (tangent space) structure of a matrix group is the same at every of its element. Computation is easy and cheap.
- It is yet to be determined how a dynamical system should be defined over a group so as to locate the simplest form.
 - $\diamond\,$ The notion of "simplicity" varies according to the applications.
 - ♦ Various objective functions should be used to control the dynamical systems.
 - \diamond Usually offers a global method for solving the underlying problem.
- Continuous realization methods often enable to tackle existence problems that are seemingly impossible to be solved by conventional discrete methods.
- Group actions together with properly formulated objective functions can offer a channel to tackle various classical or new and challenging problems.

Conclusion

- Some basic ideas and examples have been outlined in this talk.
 - \diamond More sophisticated actions can be composed that might offer the design of new numerical algorithms.
 - $\diamond\,$ The list of application continues to grow.
- New computational techniques for structured dynamical systems on matrix group will further extend and benefit the scope of this interesting topic.
 - $\diamond\,$ Need ODE techniques specially tailored for gradient flows.
 - $\diamond\,$ Need ODE techniques suitable for very large-scale dynamical systems.
 - \diamond Help! Help! Help!