Group Theory, Linear Transformations, and Flows: (Some) Dynamical Systems on Manifolds

Moody T. Chu
North Carolina State University

presented at

Workshop on Lie Group Methods and Control Theory
June 30, 2004

Outline

- Motivation
\diamond Realization Process
\diamond A Case Study
- Basic Form
\diamond Similarity Property
\diamond Decomposition Property
\diamond Reversal Property
- Matrix Groups and Group Actions
- Tangent Space and Projection
- Canonical Forms
- Objective Functions and Dynamical Systems
\diamond Examples
\diamond Least Squares
- New Thoughts
- Conclusion

Motivation

What is the simplest form to which a family of matrices depending smoothly on the parameters can be reduced by a change of coordinates depending smoothly on the parameters?

\author{

- V. I. Arnold
}

Geometric Methods in the Theory of Ordinary Differential Equations, 1988

- What is the simplest form referred to here?
- What kind of continuous change can be employed?

Realization Process

- Realization process, in a sense, means any deducible procedure that we use to rationalize and solve problems.
\diamond The simplest form refers to the agility to think and draw conclusions.
- In mathematics, a realization process often appears in the form of an iterative procedure or a differential equation.
\diamond The steps taken for the realization, i.e., the changes, could be discrete or continuous.

Continuous Realization

- Two abstract problems:
\diamond One is a make-up and is easy.
\diamond The other is the real problem and is difficult.
- A bridge:
\diamond A continuous path connecting the two problems.
\diamond A path that is easy to follow.
- A numerical method:
\diamond A method for moving along the bridge.
\diamond A method that is readily available.

Build the Bridge

- Specified guidance is available.
\diamond The bridge is constructed by monitoring the values of certain specified functions.
\diamond The path is guaranteed to work.
\diamond Such as the projected gradient method.
- Only some general guidance is available.
\diamond A bridge is built in a straightforward way.
\diamond No guarantee the path will be complete.
\diamond Such as the homotopy method.
- No guidance at all.
\diamond A bridge is built seemingly by accident.
\diamond Usually deeper mathematical theory is involved.
\diamond Such as the isospectral flows.

Characteristics of a Bridge

- A bridge, if it exists, usually is characterized by an ordinary differential equation.
- The discretization of a bridge, or a numerical method in travelling along a bridge, usually produces an iterative scheme.

Two Examples

- Eigenvalue Computation
- Constrained Least Squares Approximation

The Eigenvalue Problem

- The mathematical problem:
\diamond A symmetric matrix A_{0} is given.
\diamond Solve the equation

$$
A_{0} x=\lambda x
$$

for a nonzero vector x and a scalar λ.

- An iterative method :
\diamond The $Q R$ decomposition:

$$
A=Q R
$$

where Q is orthogonal and R is upper triangular.
\diamond The $Q R$ algorithm (Francis'61):

$$
\begin{aligned}
A_{k} & =Q_{k} R_{k} \\
A_{k+1} & =R_{k} Q_{k} .
\end{aligned}
$$

\diamond The sequence $\left\{A_{k}\right\}$ converges to a diagonal matrix.
\diamond Every matrix A_{k} has the same eigenvalues of A_{0}, i.e., $\left(A_{k+1}=Q_{k}^{T} A_{k} Q_{k}\right)$.

- A continuous method:
\diamond Lie algebra decomposition:

$$
X=X^{o}+X^{+}+X^{-}
$$

where X^{o} is the diagonal, X^{+}the strictly upper triangular, and X^{-}the strictly lower triangular part of X.
\diamond Define $\Pi_{0}(X):=X^{-}-X^{-\top}$.
\diamond The Toda lattice (Symes'82, Deift el al'83):

$$
\begin{aligned}
\frac{d X}{d t} & =\left[X, \Pi_{0}(X)\right] \\
X(0) & =X_{0}
\end{aligned}
$$

\diamond Sampled at integer times, $\{X(k)\}$ gives the same sequence as does the $Q R$ algorithm applied to the matrix $A_{0}=\exp \left(X_{0}\right)$.

- Evolution starts from X_{0} and converges to the limit point of Toda flow, which is a diagoal matrix, maintains the spectrum.
\diamond The construction of the Toda lattice is based on the physics.
\triangleright This is a Hamiltonian system.
\triangleright A certain physical quantities are kept at constant, i.e., this is a completely integrable system.
\diamond The convergence is guaranteed by "nature"?

Least Squares Matrix Approximation

- The mathematical problem:
\diamond A symmetric matrix N and a set of real values $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ are given.
\diamond Find a least squares approximation of N that has the prescribed eigenvalues.
- A standard formulation:

$$
\begin{aligned}
\text { Minimize } F(Q) & :=\frac{1}{2}\left\|Q^{T} \Lambda Q-N\right\|^{2} \\
\text { Subject to } Q^{T} Q & =I .
\end{aligned}
$$

\diamond Equality Constrained Optimization:
\triangleright Augmented Lagrangian methods.
\triangleright Sequential quadratic programming methods.
\diamond None of these techniques is easy.
\triangleright The constraint carries lots of redudancies.

- A continuous approach:
\diamond The projection of the gradient of F can easily be calculated.
\diamond Projected gradient flow (Brocket'88, Chu\&Driessel'90):

$$
\begin{aligned}
\frac{d X}{d t} & =[X,[X, N]] \\
X(0) & =\Lambda
\end{aligned}
$$

$\triangleright X:=Q^{T} \Lambda Q$.
\triangleright Flow $X(t)$ moves in a descent direction to reduce $\|X-N\|^{2}$.
\diamond The optimal solution X can be fully characterized by the spectral decomposition of N and is unique.

- Evolution starts from an initial value and converges to the limit point, which solves the least squares problem.
\diamond The flow is built on the basis of systematically reducing the difference between the current position and the target position.
\diamond This is a descent flow.

Equivalence

- (Bloch'90) Suppose X is tridiagonal. Take
then
- A gradient flow hence becomes a Hamiltonian flow.

Basic Form

- Lax dynamics:

$$
\begin{aligned}
\frac{d X(t)}{d t} & :=\left[X(t), k_{1}(X(t))\right] \\
X(0) & :=X_{0} .
\end{aligned}
$$

- Parameter dynamics:

$$
\begin{aligned}
\frac{d g_{1}(t)}{d t} & :=g_{1}(t) k_{1}(X(t)) \\
g_{1}(0) & :=I
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{d g_{2}(t)}{d t} & :=k_{2}(X(t)) g_{2}(t) \\
g_{2}(0) & :=I .
\end{aligned}
$$

$\diamond k_{1}(X)+k_{2}(X)=X$.

Similarity Property

$$
X(t)=g_{1}(t)^{-1} X_{0} g_{1}(t)=g_{2}(t) X_{0} g_{2}(t)^{-1}
$$

- Define $Z(t)=g_{1}(t) X(t) g_{1}(t)^{-1}$.
- Check

$$
\begin{aligned}
\frac{d Z}{d t}= & \frac{d g_{1}}{d t} X g_{1}^{-1}+g_{1} \frac{d X}{d t} g_{1}^{-1}+g_{1} X \frac{d g_{1}^{-1}}{d t} \\
= & \left(g_{1} k_{1}(X)\right) X g_{1}^{-1} \\
& +g_{1}\left(X k_{1}(X)-k_{1}(X) X\right) g_{1}^{-1} \\
& +g_{1} X\left(-k_{1}(X) g_{1}^{-1}\right) \\
= & 0 .
\end{aligned}
$$

- Thus $Z(t)=Z(0)=X(0)=X_{0}$.

Decomposition Property

$$
\exp \left(t X_{0}\right)=g_{1}(t) g_{2}(t)
$$

- Trivially $\exp \left(X_{0} t\right)$ satisfies the IVP

$$
\frac{d Y}{d t}=X_{0} Y, Y(0)=I
$$

- Define $Z(t)=g_{1}(t) g_{2}(t)$.
- Then $Z(0)=I$ and

$$
\begin{aligned}
\frac{d Z}{d t} & =\frac{d g_{1}}{d t} g_{2}+g_{1} \frac{d g_{2}}{d t} \\
& =\left(g_{1} k_{1}(X)\right) g_{2}+g_{1}\left(k_{2}(X) g_{2}\right) \\
& =g_{1} X g_{2} \\
& =X_{0} Z \text { (by Similarity Property). }
\end{aligned}
$$

- By the uniqueness theorem in the theory of ordinary differential equations, $Z(t)=\exp \left(X_{0} t\right)$.

Reversal Property

$$
\exp (t X(t))=g_{2}(t) g_{1}(t)
$$

- By Decomposition Property,

$$
\begin{aligned}
g_{2}(t) g_{1}(t) & =g_{1}(t)^{-1} \exp \left(X_{0} t\right) g_{1}(t) \\
& =\exp \left(g_{1}(t)^{-1} X_{0} g_{1}(t) t\right) \\
& =\exp (X(t) t)
\end{aligned}
$$

Abstraction

- $Q R$-type Decomposition:
\diamond Lie algebra decomposition of $g l(n) \Longleftrightarrow$ Lie group decomposition of $G l(n)$ in the neighborhood of I.
\diamond Arbitrary subspace decomposition $g l(n) \Longleftrightarrow$ Factorization of a one-parameter semigroup in the neighborhood of I as the product of two nonsingular matrices, i.e.,

$$
\exp \left(X_{0} t\right)=g_{1}(t) g_{2}(t)
$$

\diamond The product $g_{1}(t) g_{2}(t)$ will be called the abstract $g_{1} g_{2}$ decomposition of $\exp \left(X_{0} t\right)$.

- $Q R$-type Algorithm:
\diamond By setting $t=1$, we have

$$
\begin{aligned}
\exp (X(0)) & =g_{1}(1) g_{2}(1) \\
\exp (X(1)) & =g_{2}(1) g_{1}(1) .
\end{aligned}
$$

\diamond The dynamical system for $X(t)$ is autonomous \Longrightarrow The above phenomenon will occur at every feasible integer time.
\diamond Corresponding to the abstract $g_{1} g_{2}$ decomposition, the above iterative process for all feasible integers will be called the abstract $g_{1} g_{2}$ algorithm.

Matrix Groups

- A subset of nonsingular matrices (over any field) which are closed under matrix multiplication and inversion is called a matrix group.
\diamond Matrix groups are central in many parts of mathematics and applications.
- A smooth manifold which is also a group where the multiplication and the inversion are smooth maps is called a Lie group.
\diamond The most remarkable feature of a Lie group is that the structure is the same in the neighborhood of each of its elements.
- (Howe'83) Every (non-discrete) matrix group is in fact a Lie group.
\diamond Algebra and geometry are intertwined in the study of matrix groups.
- Lots of realization processes used in numerical linear algebra are the results of group actions.

Group	Subgroup	Notation	Characteristics
General linear		$\mathcal{G l}(n)$	$\left\{A \in \mathbb{R}^{n \times n} \mid \operatorname{det}(A) \neq 0\right\}$
	Special linear	$\mathcal{S l}(n)$	$\{A \in \mathcal{G l}(n) \mid \operatorname{det}(A)=1\}$
Upper triangular		$\mathcal{U}(n)$	$\{A \in \mathcal{G} l(n) \mid A$ is upper triangular $\}$
	Unipotent	$\mathcal{U n i p}(n)$	$\left\{A \in \mathcal{U}(n) \mid a_{i i}=1\right.$ for all $\left.i\right\}$
Orthogonal		$\mathcal{O}(n)$	$\left\{Q \in \mathcal{G l}(n) \mid Q^{\top} Q=I\right\}$
Generalized orthogonal		$\mathcal{O}_{S}(n)$	$\left\{Q \in \mathcal{G l}(n) \mid Q^{\top} S Q=S\right\} ; \quad S$ is a fixed matrix
	Symplectic	$\mathcal{S} p(2 n)$	$\mathcal{O}_{J}(2 n) ; \quad J:=\left[\begin{array}{rr}0 & I \\ -I & 0\end{array}\right]$
	Lorentz	\mathcal{L} or (n, k)	$\mathcal{O}_{L}(n+k) ; \quad L:=\operatorname{diag}\{\underbrace{1, \ldots, 1}_{n}, \underbrace{-1, \ldots-1}_{k}\}$
Affine		$\mathcal{A} f f(n)$	$\left\{\left.\left[\begin{array}{cc}A & \mathbf{t} \\ 0 & 1\end{array}\right] \right\rvert\, A \in \mathcal{G} l(n), \mathbf{t} \in \mathbb{R}^{n}\right\}$
	Translation	\mathcal{T} rans (n)	$\left\{\left.\left[\begin{array}{ll}I & \mathbf{t} \\ 0 & 1\end{array}\right] \right\rvert\, \mathbf{t} \in \mathbb{R}^{n}\right\}$
	Isometry	$\mathcal{I s o m}(n)$	$\left\{\left.\left[\begin{array}{ll}Q & \mathbf{t} \\ \mathbf{0} & 1\end{array}\right] \right\rvert\, Q \in \mathcal{O}(n), \mathbf{t} \in \mathbb{R}^{n}\right\}$
Center of G		$Z(G)$	$\{z \in G \mid z g=g z$, for every $g \in G\}, \quad G$ is a given group
Product of G_{1} and G_{2}		$G_{1} \times G_{2}$	$\left\{\left(g_{1}, g_{2}\right) \mid g_{1} \in G_{1}, g_{2} \in G_{2}\right\} ; \quad\left(g_{1}, g_{2}\right) *\left(h_{1}, h_{2}\right):=\left(g_{1} h_{1}, g_{2} h_{2}\right) ; \quad G_{1}$ and G_{2} are given groups
Quotient		G / N	$\{N g \mid g \in G\} ; \quad N$ is a fixed normal subgroup of G
	Hessenberg	$\mathcal{H e s s}(n)$	\mathcal{U} nip $(n) / \mathcal{Z}_{n}$

Group Actions

- A function $\mu: G \times \mathbb{V} \longrightarrow \mathbb{V}$ is said to be a group action of G on a set \mathbb{V} if and only if
$\diamond \mu(g h, \mathbf{x})=\mu(g, \mu(h, \mathbf{x}))$ for all $g, h \in G$ and $\mathbf{x} \in \mathbb{V}$.
$\diamond \mu(e, \mathbf{x})=\mathbf{x}$, if e is the identity element in G.
- Given $\mathbf{x} \in \mathbb{V}$, two important notions associated with a group action μ :
\diamond The stabilizer of \mathbf{x} is

$$
\operatorname{Stab}_{G}(\mathbf{x}):=\{g \in G \mid \mu(g, \mathbf{x})=\mathbf{x}\}
$$

\diamond The orbit of \mathbf{x} is

$$
\operatorname{Orb}_{G}(\mathbf{x}):=\{\mu(g, \mathbf{x}) \mid g \in G\}
$$

Set \mathbb{V}	Group G	Action $\mu(g, A)$	Application
$\mathbb{R}^{n \times n}$	Any subgroup	$g^{-1} A g$	conjugation
$\mathbb{R}^{n \times n}$	$\mathcal{O}(n)$	$g^{\top} A g$	orthogonal similarity
$\underbrace{\mathbb{R}^{n \times n} \times \ldots \times \mathbb{R}^{n \times n}}$	Any subgroup	$\left(g^{-1} A_{1} g, \ldots, g^{-1} A_{k} g\right)$	simultaneous reduction
$\mathbb{S}(n) \times \mathbb{S}_{P D}(n)$	Any subgroup	$\left(g^{\top} A g, g^{\top} B g\right)$	symm. positive definite pencil reduction
$\mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n}$	$\mathcal{O}(n) \times \mathcal{O}(n)$	$\left(g_{1}^{\top} A g_{2}, g_{1}^{\top} B g_{2}\right)$	$Q Z$ decomposition
$\mathbb{R}^{m \times n}$	$\mathcal{O}(m) \times \mathcal{O}(n)$	$g_{1}^{\top} A g_{2}$	singular value decomp.
$\mathbb{R}^{m \times n} \times \mathbb{R}^{p \times n}$	$\mathcal{O}(m) \times \mathcal{O}(p) \times \mathcal{G} l(n)$	$\left(g_{1}^{\top} A g_{3}, g_{2}^{\top} B g_{3}\right)$	generalized singular value decomp.

Some Exotic Group Actions (yet to be studied!)

- In numerical analysis, it is customary to use actions of the orthogonal group to perform the change of coordinates for the sake of cost efficiency and numerical stability.
\diamond What could be said if actions of the isometry group are used?
\triangleright Being isometric, stability is guaranteed.
\triangleright The inverse of an isometry matrix is easy.

$$
\left[\begin{array}{cc}
Q & \mathbf{t} \\
0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
Q^{\top} & -Q^{\top} \mathbf{t} \\
0 & 1
\end{array}\right] .
$$

\triangleright The isometry group is larger than the orthogonal group.

- What could be said if actions of the orthogonal group plus shift are used?

$$
\mu((Q, s), A):=Q^{\top} A Q+s I, \quad Q \in \mathcal{O}(n), s \in \mathbb{R}_{+}
$$

- What could be said if action of the orthogonal group with scaling are used?

$$
\mu((Q, s), A):=s Q^{\top} A Q, \quad Q \in \mathcal{O}(n), s \in \mathbb{R}_{\times}
$$

or

$$
\mu((Q, \mathbf{s}, \mathbf{t}), A):=\operatorname{diag}\{\mathbf{s}\} Q^{\top} A Q \operatorname{diag}\{\mathbf{t}\}, \quad Q \in \mathcal{O}, \mathbf{s}, \mathbf{t} \in \mathbb{R}_{\times}^{n} .
$$

Tangent Space and Project Gradient

- Given a group G and its action μ on a set \mathbb{V}, the associated orbit $\operatorname{Orb}_{G}(\mathbf{x})$ characterizes the rule by which \mathbf{x} is to be changed in \mathbb{V}.
\diamond Depending on the group G, an orbit is often too "wild" to be readily traced for finding the "simplest form" of \mathbf{x}.
\diamond Depending on the applications, a path/bridge/highway/differential equation needs to be built on the orbit to connect \mathbf{x} to its simplest form.
- A differential equation on the orbit $\operatorname{Orb}_{G}(\mathrm{x})$ is equivalent to a differential equation on the group G.
\diamond Lax dynamics on $X(t)$.
\diamond Parameter dynamics on $g_{1}(t)$ or $g_{2}(t)$.
- To stay in either the orbit or the group, the vector field of the dynamical system must be distributed in the tangent space of the corresponding manifold.
- Most of the tangent spaces for the matrix groups can be calculated explicitly.
- If some kind of objective function has been used to control the connecting bridge, its gradient should be projected to the tangent space.

Tangent Space in General

- Given a matrix group $G \leq \mathcal{G} l(n)$, the tangent space to G at $A \in G$ can be defined as

$$
\mathcal{T}_{A} G:=\left\{\gamma^{\prime}(0) \mid \gamma \text { is a differentiable curve in } G \text { with } \gamma(0)=A\right\} .
$$

- The tangent space $\mathfrak{g}=\mathcal{T}_{I} G$ at the identity I is critical.
$\diamond g$ is a Lie subalgebra in $\mathbb{R}^{n \times n}$, i.e.,

$$
\text { If } \alpha^{\prime}(0), \beta^{\prime}(0) \in \mathfrak{g} \text {, then }\left[\alpha^{\prime}(0), \beta^{\prime}(0)\right] \in \mathfrak{g}
$$

\diamond The tangent space of a matrix group has the same structure everywhere, i.e.,

$$
\mathcal{T}_{A} G=A \mathrm{~g} .
$$

$\diamond \mathcal{I}_{I} G$ can be characterized as the logarithm of G, i.e.,

$$
\mathfrak{g}=\left\{M \in \mathbb{R}^{n \times n} \mid \exp (t M) \in G, \text { for all } t \in \mathbb{R}\right\} .
$$

Group G	Algebra \mathfrak{g}	Characteristics
$\mathcal{G l}(n)$	$g l(n)$	$\mathbb{R}^{n \times n}$
$\mathcal{S l}(n)$	$\operatorname{sl}(n)$	$\{M \in g l(n) \mid \operatorname{trace}(M)=0\}$
$\mathcal{A} f f(n)$	$a f f(n)$	$\left\{\left.\left[\begin{array}{cc}M & \mathbf{t} \\ 0 & 0\end{array}\right] \right\rvert\, M \in g l(n), \mathbf{t} \in \mathbb{R}^{n}\right\}$
$\mathcal{O}(n)$	$o(n)$	$\{K \in g l(n) \mid \mathrm{K}$ is skew-symmetric $\}$
$\mathcal{I} \operatorname{som}(n)$	$\operatorname{isom}(n)$	$\left\{\left.\left[\begin{array}{cc}K & \mathbf{t} \\ 0 & 0\end{array}\right] \right\rvert\, K \in o(n), \mathbf{t} \in \mathbb{R}^{n}\right\}$
$G_{1} \times G_{2}$	$\mathcal{T}_{\left(e_{1}, e_{2}\right)} G_{1} \times G_{2}$	g.

An Illustration of Projection

- The tangent space of $\mathcal{O}(n)$ at any orthogonal matrix Q is

$$
\mathcal{T}_{Q} \mathcal{O}(n)=Q \mathbb{K}(n)
$$

where

$$
\mathbb{K}(n)=\{\text { All skew-symmetric matrices }\} .
$$

- The normal space of $\mathcal{O}(n)$ at any orthogonal matrix Q is

$$
\mathcal{N}_{Q} \mathcal{O}(n)=Q \mathbb{S}(n)
$$

- The space $\mathbb{R}^{n \times n}$ is split as

$$
\mathbb{R}^{n \times n}=Q \mathbb{S}(n) \oplus Q \mathbb{K}(n) .
$$

- A unique orthogonal splitting of $X \in \mathbb{R}^{n \times n}$:

$$
X=Q\left(Q^{T} X\right)=Q\left\{\frac{1}{2}\left(Q^{T} X-X^{T} Q\right)\right\}+Q\left\{\frac{1}{2}\left(Q^{T} X+X^{T} Q\right)\right\}
$$

- The projection of X onto the tangent space $\mathcal{T}_{Q} \mathcal{O}(n)$ is given by

$$
\operatorname{Proj}_{\mathcal{T}_{Q} \mathcal{O}(n)} X=Q\left\{\frac{1}{2}\left(Q^{T} X-X^{T} Q\right)\right\}
$$

Canoncial Forms

- A canonical form refers to a "specific structure" by which a certain conclusion can be drawn or a certain goal can be achieved.
- The superlative adjective "simplest" is a relative term which should be interpreted broadly.
\diamond A matrix with a specified pattern of zeros, such as a diagonal, tridiagonal, or triangular matrix.
\diamond A matrix with a specified construct, such Toeplitz, Hamiltonian, stochastic, or other linear varieties.
\diamond A matrix with a specified algebraic constraint, such as low rank or nonnegativity.

Canonical form	Also know as	Action
Bidiagonal J	Quasi-Jordan Decomp., $A \in \mathbb{R}^{n \times n}$	$\begin{gathered} P^{-1} A P=J, \\ P \in \mathcal{G l}(n) \end{gathered}$
Diagonal Σ	Sing. Value Decomp., $A \in \mathbb{R}^{m \times n}$	$\begin{gathered} U^{\top} A V=\Sigma, \\ (U, V) \in \mathcal{O}(m) \times \mathcal{O}(n) \end{gathered}$
Diagonal pair (Σ_{1}, Σ_{2})	Gen. Sing. Value Decomp., $(A, B) \in \mathbb{R}^{m \times n} \times \mathbb{R}^{p \times n}$	$\begin{gathered} \left(U^{\top} A X, V^{\top} B X\right)=\left(\Sigma_{1}, \Sigma_{2}\right), \\ (U, V, X) \in \mathcal{O}(m) \times \mathcal{O}(p) \times \mathcal{G} l(n) \end{gathered}$
Upper quasi-triangular H	Real Schur Decomp., $A \in \mathbb{R}^{n \times n}$	$\begin{gathered} Q^{\top} A Q=H, \\ Q \in \mathcal{O}(n) \end{gathered}$
Upper quasi-triangular H Upper triangular U	Gen. Real Schur Decomp., $A, B \in \mathbf{R}^{n \times n}$	$\begin{gathered} \left(Q^{\top} A Z, Q^{\top} B Z\right)=(H, U), \\ Q, Z \in \mathcal{O}(n) \end{gathered}$
Symmetric Toeplitz T	Toeplitz Inv. Eigenv. Prob., $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \mathbb{R}$ is given	$\begin{gathered} Q^{\top} \operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} Q=T, \\ Q \in \mathcal{O}(n) \end{gathered}$
Nonnegative $N \geq 0$	Nonneg. inv. Eigenv. Prob., $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \mathbb{C}$ is given	$\begin{gathered} P^{-1} \operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} P=N, \\ P \in \mathcal{G l}(n) \end{gathered}$
Linear variety X with fixed entries at fixed locations	Matrix Completion Prob., $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \mathbb{C}$ is given $X_{i_{\nu}, j_{\nu}}=a_{\nu}, \nu=1, \ldots, \ell$	$\begin{gathered} P^{-1}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} P=X, \\ P \in \mathcal{G l}(n) \end{gathered}$
Nonlinear variety with fixed singular values and eigenvalues	Test Matrix Construction, $\Lambda=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ and $\Sigma=\operatorname{diag}\left\{\sigma_{1}, \ldots \sigma_{n}\right\}$ are given	$\begin{gathered} P^{-1} \Lambda P=U^{\top} \Sigma V \\ P \in \mathcal{G l}(n), \quad U, V \in \mathcal{O}(n) \end{gathered}$
Maximal fidelity	Structured Low Rank Approx. $A \in \mathbb{R}^{m \times n}$	$\begin{aligned} & \left(\operatorname{diag}\left(U S S^{\top} U^{\top}\right)\right)^{-1 / 2} U S V^{\top}, \\ & (U, S, V) \in \mathcal{O}(m) \times \mathbb{R}_{\times}^{k} \times \mathcal{O}(n) \end{aligned}$

Objective Functions

- The orbit of a selected group action only defines the rule by which a transformation is to take place.
- Properly formulated objective functions helps to control the construction of a bridge between the current point and the desired canonical form on a given orbit.
\diamond The bridge often assumes the form of a differential equation on the manifold.
\diamond The vector field of the differential equation must distributed over the tangent space of the manifold.
\diamond Corresponding to each differential equation on the orbit of a group action is a differential equation on the group, and vice versa.
- How to choose appropriate objective functions?

Some Flows on $\operatorname{Orb}_{\mathcal{O}(n)}(X)$ under Conjugation

- Toda lattice arises from a special mass-spring system (Symes'82, Deift el al'83),

$$
\begin{aligned}
\frac{d X}{d t} & =\left[X, \Pi_{0}(X)\right], \quad \Pi_{0}(X)=X^{-}-X^{-\top} \\
X(0) & =\text { tridiagonal and symmetric. }
\end{aligned}
$$

\diamond No specific objective function is used.
\triangleright Physics law governs the definition of the vector field.
\diamond Generalization to general matrices is totally by brutal force and blindness (and by the then young and desperate researchers) (Chu'84, Watkins'84).

$$
\frac{d X}{d t}=\left[X, \Pi_{0}(G(X))\right], \quad G(z) \text { is analytic over spectrum of } X(0)
$$

\triangleright But nicely explains the pseudo-convergence and convergence behavior of the classical QR algorithm for general and normal matrices, respectively.
\triangleright Sorting of eigenvalues at the limit point is observed, but not quite clearly understood.

- Double bracket flow (Brockett'88),

$$
\frac{d X}{d t}=[X,[X, N]], \quad N=\text { fixed and symmetric. }
$$

\diamond This is the projected gradient flow of the objective function

$$
\begin{aligned}
\text { Minimize } F(Q) & :=\frac{1}{2}\left\|Q^{T} \Lambda Q-N\right\|^{2} \\
\text { Subject to } Q^{T} Q & =I
\end{aligned}
$$

\triangleright Sorting is necessary in the first order optimality condition (Wielandt\&Hoffman'53).

- Take a special $N=\operatorname{diag}\{n, n-1, \ldots, 2,1\}$,
$\diamond X$ is tridiagonal and symmetric \Longrightarrow Double bracket flow \equiv Toda lattice (Bloch'90).
\triangleright Bingo! The classical Toda lattice does have an objective function in mind.
$\diamond X$ is a general symmetric matrix \Longrightarrow Double bracket $=\mathrm{A}$ specially scaled Toda lattice.
- Scaled Toda lattice (Chu'95),

$$
\frac{d X}{d t}=[X, K \circ X], \quad K=\text { fixed and skew-symmetric. }
$$

\diamond Flexible in componentwise scaling.
\diamond Enjoy very general convergence behavior.
\diamond But still no explicit objective function in sight.

Some Flows on $\operatorname{Orb}_{\mathcal{O}(m) \times \mathcal{O}(n)}(X)$ under Equivalence

- Any flow on the orbit $\operatorname{Orb}_{\mathcal{O}(m) \times \mathcal{O}(n)}(X)$ under equivalence must be of the form

$$
\frac{d X}{d t}=X(t) h(t)-k(t) X(t), \quad h(t) \in \mathbb{K}(n), \quad k(t) \in \mathbb{K}(m)
$$

- QZ flow (Chu'86),

$$
\begin{aligned}
& \frac{d X_{1}}{d t}=X_{1} \Pi_{0}\left(X_{2}^{-1} X_{1}\right)-\Pi_{0}\left(X_{1} X_{2}^{-1}\right) X_{1} \\
& \frac{d X_{2}}{d t}=X_{2} \Pi_{0}\left(X_{2}^{-1} X_{1}\right)-\Pi_{0}\left(X_{1} X_{2}^{-1}\right) X_{2}
\end{aligned}
$$

- $S V D$ flow (Chu'86),

$$
\begin{aligned}
\frac{d Y}{d t} & =Y \Pi_{0}\left(Y(t)^{\top} Y(t)\right)-\Pi_{0}\left(Y(t) Y(t)^{\top}\right) Y \\
Y(0) & =\text { bidiagonal. }
\end{aligned}
$$

\diamond The "objective" in the design of this flow was to maintain the bidiagonal structure of $Y(t)$ for all t.
\diamond The flow gives rise to the Toda flows for $Y^{\top} Y$ and $Y Y^{\top}$.

Projected Gradient Flows

- Given
\diamond A continuous matrix group $G \subset \mathcal{G l}(n)$.
$\diamond \mathrm{A}$ fixed $X \in \mathbb{V}$ where $\mathbb{V} \subset \mathbb{R}^{n \times n}$ be a subset of matrices.
\diamond A differentiable map $f: \mathbb{V} \longrightarrow \mathbb{R}^{n \times n}$ with a certain "inherent" properties, e.g., symmetry, isospectrum, low rank, or other algebraic constraints.
\diamond A group action $\mu: G \times \mathbb{V} \longrightarrow \mathbb{V}$.
\diamond A projection map P from $\mathbb{R}^{n \times n}$ onto a singleton, a linear subspace, or an affine subspace $\mathbb{P} \subset \mathbb{R}^{n \times n}$ where matrices in \mathbb{R} carry a certain desired structure, e.g., the canonical form.
- Consider the functional $F: G \longrightarrow \mathbb{R}$

$$
F(g):=\frac{1}{2}\|f(\mu(g, X))-P(\mu(g, X))\|_{F}^{2}
$$

\diamond Want to minimize F over G.

- Flow approach:
\diamond Compute $\nabla F(g)$.
\diamond Project $\nabla F(g)$ onto $\mathcal{T}_{g} G$.
\diamond Follow the projected gradient until convergence.

Some Old Examples

- Brockett's double bracket flow (Brockett'88).
- Least squares approximation with spectral constraints (Chu\&Driessel'90).

$$
\frac{d X}{d t}=[X,[X, P(X)]] .
$$

- Simultaneous reduction problem (Chu'91),

$$
\begin{aligned}
\frac{d X_{i}}{d t} & =\left[X_{i}, \sum_{j=1}^{p} \frac{\left[X_{j}, P_{j}^{T}\left(X_{j}\right)\right]-\left[X_{j}, P_{j}^{T}\left(X_{j}\right)\right]^{T}}{2}\right] \\
X_{i}(0) & =A_{i}
\end{aligned}
$$

- Nearest normal matrix problem (Chu'91),

$$
\begin{aligned}
\frac{d W}{d t} & =\left[W, \frac{1}{2}\left\{\left[W, \operatorname{diag}\left(W^{*}\right)\right]-\left[W, \operatorname{diag}\left(W^{*}\right)\right]^{*}\right\}\right] \\
W(0) & =A
\end{aligned}
$$

- Matrix with prescribed diagonal entries and spectrum (Schur-Horn Theorem) (Chu'95),

$$
\dot{X}=[X,[\operatorname{diag}(X)-\operatorname{diag}(a), X]]
$$

- Inverse generalized eigenvalue problem for symmetric-definite pencil (Chu\&Guo'98).

$$
\begin{aligned}
\dot{X} & =-\left((X W)^{T}+X W\right) \\
\dot{Y} & =-\left((Y W)^{T}+Y W\right) \\
W & :=X\left(X-P_{1}(X)\right)+Y\left(Y-P_{2}(Y)\right)
\end{aligned}
$$

- Various structured inverse eigenvalue problems (Chu\&Golub’02).
- Remember the list of applications that Nicoletta gave on Monday!!!???

New Thoughts

- The idea of group actions, least squares, and the corresponding gradient flows can be generalized to other structures such as
\diamond Stiefel manifold $\mathcal{O}(p, q):=\left\{Q \in \mathbb{R}^{p \times q} \mid Q^{T} Q=I_{q}\right\}$.
\diamond The manifold of oblique matrices $\mathcal{O B}(n):=\left\{Q \in \mathbb{R}^{n \times n} \mid \operatorname{diag}\left(Q^{\top} Q\right)=I_{n}\right\}$.
\diamond Cone of nonnegative matrices.
\diamond Semigroups.
\diamond Low rank approximation.
- Using the product topology to describe separate groups and actions might broaden the applications.
- Any advantages of using the isometry group over the orthogonal group?

Stochastic Inverse Eigenvalue Problem

- Construct a stochastic matrix with prescribed spectrum
\diamond A hard problem (Karpelevic'51, Minc'88).

Figure 1: Θ_{4} by the Karpelevič theorem.
\diamond Would be done if the nonnegative inverse eigenvalue problem is solved - a long standing open question.

- Least squares formulation:

$$
\begin{array}{cl}
\text { Minimize } & F(g, R):=\frac{1}{2}\left\|g J g^{-1}-R \circ R\right\|^{2} \\
\text { Subject to } & g \in G l(n), R \in g l(n) .
\end{array}
$$

$\diamond J=$ Real matrix carrying spectral information.
$\diamond \circ=$ Hadamard product.

- Steepest descent flow:

$$
\begin{aligned}
\frac{d g}{d t} & =\left[\left(g J g^{-1}\right)^{T}, \alpha(g, R)\right] g^{-T} \\
\frac{d R}{d t} & =2 \alpha(g, R) \circ R
\end{aligned}
$$

$\diamond \alpha(g, R):=g J g^{-1}-R \circ R$.

- ASVD flow for g (Bunse-Gerstner et al'91, Wright'92):

$$
\begin{aligned}
g(t) & =X(t) S(t) Y(t)^{T} \\
\dot{g} & =\dot{X} S Y^{T}+X \dot{S} Y^{T}+X S \dot{Y}^{T} \\
X^{T} \dot{g} Y & =\underbrace{X^{T} \dot{X}}_{Z} S+\dot{S}+S \underbrace{\dot{Y}^{T} Y}_{W}
\end{aligned}
$$

Define $Q:=X^{T} \dot{g} Y$. Then

$$
\begin{aligned}
\frac{d S}{d t} & =\operatorname{diag}(Q) \\
\frac{d X}{d t} & =X Z \\
\frac{d Y}{d t} & =Y W
\end{aligned}
$$

$\diamond Z, W$ are skew-symmetric matrices obtainable from Q and S.

Nonnegative Matrix Factorization

- For various applications, given a nonnegative matrix $A \in \mathbb{R}^{m \times n}$, want to

$$
\min _{0 \leq V \in \mathbb{R}^{m \times k}, 0 \leq H \in \mathbb{R}^{k \times n}} \frac{1}{2}\|A-V H\|_{F}^{2}
$$

\diamond Relatively new techniques for dimension reduction applications.
\triangleright Image processing - no negative pixel values.
\triangleright Data mining - no negative frequencies.
\diamond No firm theoretical foundation available yet (Tropp'03).

- Relatively easy by flow approach!

$$
\min _{E \in \mathbb{R}^{m \times k}, F \in \mathbb{R}^{k \times n}} \frac{1}{2}\|A-(E \circ E)(F \circ F)\|_{F}^{2}
$$

- Gradient flow:

$$
\begin{aligned}
\frac{d V}{d t} & \left.=V \circ(A-V H) H^{\top}\right) \\
\frac{d H}{d t} & =H \circ\left(V^{\top}(A-V H)\right)
\end{aligned}
$$

\diamond Once any entry of either V or H hits 0 , it stays zero. This is a natural barrier!
\diamond The first order optimality condition is clear.

Image Articulation Library

- Assume images are composite objects in many articulations and poses.
- Factorization would enable the identification and classification of intrinsic "parts" that make up the object being imaged by multiple observations.
- Each column \mathbf{a}_{j} of a nonnegative matrix A now represents m pixel values of one image.
- The columns \mathbf{v}_{k} of V are k basis elements in \mathbb{R}^{m}.
- The columns of H, belonging to \mathbb{R}^{k}, can be thought of as coefficient sequences representing the n images in the basis elements.

$A \in \mathbb{R}^{19200 \times 10}$ Representing 10 Gray-scale 120×160 Irises

Basis Irises with $k=2$

(Wrong?) Basis Irises with $k=4$

Conclusion

- Many operations used to transform matrices can be considered as matrix group actions.
- The view unifies different transformations under the same framework of tracing orbits associated with corresponding group actions.
\diamond More sophisticated actions can be composed that might offer the design of new numerical algorithms.
\diamond As a special case of Lie groups, (tangent space) structure of a matrix group is the same at every of its element. Computation is easy and cheap.
- It is yet to be determined how a dynamical system should be defined over a group so as to locate the simplest form.
\diamond The notion of "simplicity" varies according to the applications.
\diamond Various objective functions should be used to control the dynamical systems.
\diamond Usually offers a global method for solving the underlying problem.
- Continuous realization methods often enable to tackle existence problems that are seemingly impossible to be solved by conventional discrete methods.
- Group actions together with properly formulated objective functions can offer a channel to tackle various classical or new and challenging problems.
- Some basic ideas and examples have been outlined in this talk.
\diamond More sophisticated actions can be composed that might offer the design of new numerical algorithms.
\diamond The list of application continues to grow.
- New computational techniques for structured dynamical systems on matrix group will further extend and benefit the scope of this interesting topic.
\diamond Need ODE techniques specially tailored for gradient flows.
\diamond Need ODE techniques suitable for very large-scale dynamical systems.
\diamond Help! Help! Help!

