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Introduction

• Data mining is about extracting interesting information from raw data.

• What constitutes “information”?

� Patterns of appearance.

� Association rules between sets of items.

� Clustering of the data points.

� Concepts or categories.

� Principal components or factors.

� . . .

• What should be counted as “interesting”?

� Confidence and support.

� Information content.

� Unexpectedness.

� Actionability — The ability to suggest concrete and profitable decision-making.

� . . .

• For different information retrievals, different techniques should be used.

� Factors — Rank reduction or lower dimension approximation.

� Clusters — Centroids or k-means.

� . . .
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From Complexity to Simplicity

• Data analysis:

� An indispensable task in almost every discipline of science.

� Search for relationships between a set of externally caused and internal variables.

� Especially important in this era of information and digital technologies when massive amounts of data are generated at almost all levels of
applications.

• Data observed from complex phenomena:

� Often represent the integrated result of several interrelated variables acting together.

� These variables sometimes are less precisely defined.

• What to distinguish which variable is related to which and how the variables are related.
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Two Classical Approaches

• Factor analysis:

� A class of procedures that can help identify and test what constructs, or factors, might be used to explain the interrelationships among the
variables.

� Each construct itself is a complex image, idea, or theory formed from a number of simpler elements.

• Cluster analysis:

� A procedure used to organize information about cases so that relatively homogenous groups, or clusters, can be formed.

� Group members should be highly internally homogenous (members are “similar” to one another in their characteristics) and highly
externally heterogenous (members are not “like” members of other clusters).

� Need a measurement of similarity or dissimilarity.

� Need a decision on how many clusters to keep.

• Either analysis is meant to bring forth the effect of reducing the size of the data table.
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Basic Model

• Making observation, data gathering and processing:

� Assume � entities and n variable.

� Record raw scores that entity j received from all variables.

� Normalize raw scores to have mean 0 and standard deviation 1 (standardized score).

� Let Y = [yij] ∈ R
n×� denote the matrix of observed data.

� yij = standard score of entity j on variable i.

• Correlation matrix of all n variables:

R :=
1

�
Y Y T . (1)
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Linear Relationship (Only an Assumption)

• Assume that yij is a linearly weighted score of entity j on several factors.

Y = AF. (2)

• A = [aik] ∈ R
n×m is the factor loading matrix.

� aik = the loading of variable i on factor k, or the influence of factor k on variable i.

• F = [fkj] ∈ R
m×�is the factor scoring matrix.

� fkj = the score of factor k on entity j, or the response of entity j to factor k.

⎡
⎢⎢⎢⎢⎢⎣

y1j
...

. . . . . . yij . . . . . .
...

ynj

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣ ai1 . . . aik . . . aim

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
influence of factors

⎡
⎢⎢⎢⎢⎢⎣

f1j
...

. . . . . . fkj . . . . . .
...

fmj

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

response to factors
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Example 1: What Factors Affect Students’ Academic Performance?

• Y represents the transcripts of � college students (the entities) at the end of freshman year. Each column denote one student’s grades on n fixed
subjects (the variables), e.g., Calculus, English, Chemistry, and so on.

• A college freshman’s academic performance depends on a number of factors including, for instance, family social status, finance, high school GPA,
cultural background, and so on.

• Upon entering the college, each student could be asked to fill out a questionnaire inquiring these factors of his/her background. In turn, individual
responses to those factors are translated into scores and placed in the corresponding column of the scoring matrix F .

• What is not clear to the educators/administrators is how to choose the factors to compose the questionnaire or how each of the chosen factors
would be weighted (the loadings) to reflect the effect on each particular subject.

• In practice, we usually do not have a priori knowledge about the number and character of underlying factors in A. Sometimes we do not even
know the factor scores in F .

• Only the data matrix Y is observable.

• Explaining the complex phenomena observed in Y with the help of a minimal number of factors extracted from the data matrix is the primary
and most important goal of factor analysis.
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Factor Analysis and Matrix Decomposition

• Two additional assumptions:

� All sets of factors being considered are uncorrelated with each other.

� Similar to Y , the scores in F for each factor are normalized.

1

�
FF T = Im. (3)

• The correlation matrix R can be expressed directly in terms of the loading matrix A, i.e.,

R = AAT . (4)

� Factor extraction now becomes a problem of decomposing the correlation matrix R into the product AAT .

� Would like to use as few factors as possible.
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Interpretation of the Loading Matrix A

• ai∗ = how the data variable i is weighted across/influenced by the list of current factors.

� ‖ai∗‖2
2 = the communality of variable i.

� If ‖ai∗‖2 is small, variable i is of little consequence to the current factors.

• a∗k = correlations of the data variables with that particular kth factor.

� ‖a∗k‖ = the significance of factor k.

� Variables with high factor loadings are more “like” the factor in some sense.

� Variables with zero or near-zero loadings are treated as being unlike the factor.

⎡
⎢⎢⎢⎢⎢⎣

y1j
...

yi1 . . . . . . yij . . . . . . yi�
...

ynj

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

a1k
...

ai1 . . . aik . . . aim
...

ank

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
factors

⎡
⎢⎢⎢⎢⎢⎣

f1j
...

fk1 . . . . . . fkj . . . . . . fk�
...

fmj

⎤
⎥⎥⎥⎥⎥⎦
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Tasks to Do in Factor Analysis

• Want to rewrite the loadings of variables over some newly selected factors.

� Fewer factors.

� Manifest more clearly the correlation between variables and factors.

• Represent the loading of each variable (each row of A) as a single point in the factor space R
m.

� What does it mean if these points cluster around a certain direction?

� How to find the clustering direction?
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What Is Going On?

• Suppose the newly selected factors are expressed in terms of columns of the orthogonal matrix

V := [v1, . . . ,vm] ∈ R
m×m. (5)

� Determine some appropriate new basis for V .

� The rewriting of factor loadings with respect to V is mathematically equivalent to a change of basis, i.e., A is now written as B := AV .

� Because Y = AF = (AV )(V T F ) = BG,

� B = AV denotes new factor loadings.

� G = V T F denotes new factor scores.

� The correlation matrix R = AAT = BBT ∈ R
n×n is independent of factors selected.

� Would like that the significance of factors concentrates on “fewer” columns of B.

� Lower rank approximation of A.

• In the process of defining new factors it is often desirable to retrieve information . . .

� Directly from the correlation matrix R rather than from any particular loading matrix A, if A is not readily available; or

� Approximate A, if A is too large or too expensive.
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Example 2: Latent Semantic Indexing

• Indexing matrix H = [hik] ∈ R
n×m:

� Each document is represented by one row in H.

� hik = the weight of one particular term k in document i.

� Each term could be just one single word or a string of phrases.

� The weight hik could simply be the number of occurrence of term k in document i.

� More elaborate weighting schemes are available and yield better performance.

hik = tikgkni,

� Each row should be normalized to unit length.

terms
↓

documents →

⎡
⎢⎢⎢⎢⎢⎣

h1k
...

hi1 . . . hik . . . him
...

hnk

⎤
⎥⎥⎥⎥⎥⎦
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Search Similarities

• Queries qj = [q1j, . . . , qmj]
T ∈ R

m:

� qkj = the weight of term k in the query j.

• Would like to find documents relevant to given queries.

� To measure how the query qj matches the documents,

� Calculate the dots product
sj = Hqj. (6)

� Rank the relevance of documents to qj according to the scores in sj.



15

Comparison of LSI with Linear Model

• Analogies:

indexing matrix H ←→ loading matrix A

document i ←→ variable i

term k ←→ factor k

weight hik ←→ loading of factor k on variable i

one query qj ←→ one column in scoring matrix F

weights qkj ←→ scores of entity j on factor k

scores in sj ←→ scores in j column of data matrix Y

• Differences:

� In LSI, terms/factors are predetermined.

� How are the terms/factors predetermined?

� What is the notion of “orthogonal words”?

� What is the notion of “term/factor reduction”?

� LSI is not trying to compute factors based on the scores in sj, j = 1, . . . , �.

� Though, this information may be used as a learning process for selecting terms/factors.

� LSI emphasizes effective vector-matrix multiplication (6).

� Want to represent the indexing matrix and the queries in a more compact form so as to facilitate the computation of the scores.
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Example 3: Applications of Cluster Analysis

• Split a shuffled deck of cards into two parts (k = 2).

• Classify living organisms into groups based on the shared possession of characteristics (taxonomy and dendrogram).

• AMS 1991 Mathematics Subject Classification

• Switch manufacturing in the telecommunication industry.

� A cabinet consists of m slots.

� Each slot may be filled with a selection from r types of boards.

� History of past n customer orders have been recorded into a matrix A ∈ R
n×m.

� Would like to preassemble q semi-finished cabinet models.

� Determine the model configurations and the corresponding customer-to-model assignment of semi-finished cabinets based on A so as to
minimize the total number of insertions required to manufacture the entire order.
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Example 4: Receptor Model

• An observational technique within the air pollution research community.

• Make use of the ambient data and source profile data to apportion sources or source categories.

• Fundamental principle:

� Mass conservation can be assumed.

� Mass balance analysis can identify and apportion sources of airborne particulate matter in the atmosphere.
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Ideas

• Obtain a large number of chemical constituents such as elemental concentrations in a number of samples.

• Mass balance equation describes the relationships between p sources which contribute m chemical species to n samples.

yij =

p∑
k=1

aikfkj, (7)

� yij = the elemental concentration of the ith chemical measured in the jth sample.

� aik = the gravimetric concentration of the ith chemical in the kth source.

� fkj = the airborne mass concentration that the kth source has contributed to the jth sample.

• Application:

� Typically, only values of yij are observable.

� Neither the sources are known nor the compositions of the local particulate emissions are measured.

� A critical question is to estimate the number p, the compositions aik, and the contributions fkj of the sources.

• The source compositions aik and the source contributions fkj must all be nonnegative. The identification and apportionment, therefore, becomes
a nonnegative matrix factorization problem of Y .
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Comparison of Cluster Analysis with Factor Analysis

• Consider a document-term matrix A ∈ R
n×m with n documents and m terms.

• Analogies:

(variable i) ←→ document i/case i

(factor k) ←→ term k/characteristic k

(row hi∗) ←→ samples of document/case i by terms/characteristics

(column h∗k) ←→ samples of term/characteristic k by document/cases

(These samples are not centered nor normalized.)

• Differences:

� Factor analysis seeks to uncover the underlying structure of the set of factors/terms/characteristic.

� Which original factors are highly correlated to the principal component factors?

� Seek to reproduce the intercorrelation among the factors.

� Reduce columns/terms/characteristics.

� Generally known as the R-mode factor analysis or simply factor analysis.

� Cluster analysis seeks to uncover the underlying structure of the set of variables/documents/cases.

� Seek the intercorrelation among the variables.

� Reduce rows/documents/cases.

� Cluster analysis is also known as the Q-mode factor analysis or the inverse factor analysis.

• Same factor retrieval techniques can be applied to the transpose of the data table to retrieve clusters.
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Centroid Method

• Temporarily assuming that a loading matrix A1 ∈ R
n×m is given.

� Coordinate axes in R
m represent a set of m abstractly defined factors.

� Define a new coordinate system representing the centroid factors.

� Loadings with respect to the centroid factors can be calculated without the knowledge of A1 or even the centroid factors. No need to know
A1 a priori.

• Denote each row of A1 as a point in the factor space R
m.

� The arithmetic mean of these points, the centroid, is used to indicate a collective trend of the variables.

� Generally variables that tend to vary together form clusters.

� Truly uncorrelated variables form no clusters at all.

� If all variables depend on the same factor, then a single cluster should be formed.

� Do not know a priori how many clusters are to be expected.
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Compute the Centroid

• The centroid of these n variables:

c1 :=
AT

1 1n

n
=

[∑n
i=1 ai1

n
, . . . ,

∑n
i=1 aim

n

]T

. (8)

� First centroid factor:

v1 :=
c1

‖c1‖ . (9)

� New loadings of variables with respect to v1:

b1 = A1v1 = A1
AT

1 1n

‖AT
1 1n‖ =

R11n√
1T

nR11n

. (10)

� Loading vector b1 is extracted directly from R1. No reference to A1 or v1 is needed.

• Remove the influence v1 from the the loading matrix:

� Orthogonally reduced loading matrix:
A2 := A1 − A1v1v

T
1 . (11)

� A2 inherits most of the loading information of the original A1 except for the loadings along the direction v1.
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Update the Loading Matrix

• The product moment of A2 can be computed via

R2 = A2A
T
2 =

(
A1 − A1v1v

T
1

) (
AT

1 − v1v
T
1 AT

1

)
= A1A

T
1 − A1v1v

T
1 AT

1

= R1 − R11n1
T
nR1

1T
nR11n

,

� No explicit reference to A2 is needed.

� R2 is exactly one rank less than R1 (Wedderburn formula).

• Repeat the procedure to extract the next centroid factor for A2, to introduce the next reduced loading matrix, and so on.

� No! It cannot be done.

� The procedure cannot be repeated because AT
2 1n = 0m.

� The centroid of A2 is residing squarely at the origin of R
m. No factor is retrieved.

� Really bad?
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Modified Centroid Factor

• Heuristic reasons for modification:

� Signs of loadings indicates positive or negative linear correlation between the variable and the factor v1. Either sign is fine.

� Asymmetrically distributed points in R
m identifies the centroid factor more easily.

� ‖c1‖ measures the eccentricity of the system of variables with respect to the origin.

� The farther c1 is away from the origin, the more variables are qualitatively scattered in a general area surrounding c1.

� The larger ‖c1‖ is, the better an essential factor v1 represents.

• Replacing one particular variable by its negative does not cause trouble in the identification of an essential factor.

� Would change the sign of certain rows, if that helps to bring out the eccentricity.

• Observe the relationship:
1T

nR1n = ‖AT
1 1n‖2 = n2‖c1‖2. (12)

� The problem is now changed to solving the integer programming problem

max
|z|=1

zT R1z, (13)

� |z| = 1 means components of the column vector z are either 1 or −1.

� There are only 2n many sign vectors for a fixed n.
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Ready to Go!

• Modified centroid and factor:

c1 :=
AT

1 z1

n
, (14)

v1 :=
AT

1 z1

‖AT
1 z1‖ , (15)

� z1 is the optimizer of (13).

• Centroid value of A1:

µ1 :=
1

n
max
|z|=1

zT R1z. (16)

• Updating information:

� New loading: b1 = A1v1 and can be computed by

b1 = A1v1 =
R1z1√
zT

1 R1z1

. (17)

� New product moment R2:

R2 = R1 − R1z1z
T
1 R1

zT
1 R1z1

. (18)

� Repeat the procedure.
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Centroid Decomposition

• Each application of this centroid factor retrieval reduces the rank of the loading matrix by one.

� The procedure therefore has to come to a stop in finitely many steps.

� With the recurrence
Ai = Ai−1 − Ai−1vi−1v

T
i−1, i = 2, . . . , γ, (19)

we may write
A = A1 = bγv

T
γ + . . . + b1v

T
1 , (20)

� vi = the modified centroid factor of Ai.

� γ = rank of A1.

� bi = Aivi.

� This is called a centroid decomposition of A.

� Closely related to the singular value decomposition (SVD).

• The modified centroid vectors (and factors) are mutually orthogonal, even though they are not explicitly calculated.

cT
1 c2 =

1

n2

(
zT

1 A1

) (
AT

2 z2

)
=

1

n2

(
zT

1 A1

) [
AT

1

(
z2 − zT

1 R1z2

zT
1 R1z1

z1

)]
= 0.

• When ‖bi‖ is small, the factor vi is less significant.

� Less significant factors can be discarded.

� Closely related to the truncated SVD (TSVD).
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Topology of n-dimensional Hypercubes

• To perform the centroid decomposition, a sequence of integer programming problems must be solved.

� The feasible set consists of 2n sign vectors.

� An exhaustive search would be expensive.

• Representing hypercubes:

� Identifying −1 as 0 and keeping 1 as 1, a unique binary tag can be assigned to each sign vector.

� Each binary tag translated into a unique integer between 0 and 2n − 1 provides a natural ordering of the sign vectors.

� Each sign vector as one node connected only to those sign vectors whose binary tags differ from its own by exactly one bit (Hamming metric
1).

� The set of 2n sign vectors can be identified as an n-dimensional hypercube.
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0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Figure 1: Topology of a 4-dimensional hypercube

• Each n-dimensional hypercube consists of two (n − 1)-dimensional sub-hypercubes.

� One sub-hypercube is simply a bit reversal of the other.

� The objective values zT Rz therefore always appear in pairs.
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Integer Programming on Hypercubes

• Write R = [rij] = P + diag(diag(R)).

� zT Rz = zT Pz +
∑n

i=1 rii.

� Suffice to maximize
f(z) := zT Pz

with |z| = 1.

• Classical centroid method:

� Given any sign vector z(0) and machine zero threshold ε.

� Define w(0) := Pz(0).

� Repeat the following steps for i = 0, 1, . . .:

1. If sgn(w
(i)
k ) = sgn(z

(i)
k ) for all k = 1, . . . , n, then stop; otherwise, choose k so that |w(i)

k | > ε and is the largest among all |w(i)
j |’s where

sgn(w
(i)
j ) �= sgn(z

(i)
j ).

2. Define z(i+1) by simply changing the sign of z
(i)
k .

3. Define w(i+1) := w(i) + 2sgn(z
(i+1)
k )P (:, k).
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• Main ideas:

� At each given node on the hypercube, check through its neighboring nodes and move to the node with highest bit.

� At most one bit is changed in each cycle.
z(i+1) := z(i) − 2sgn(z

(i)
k )ek

� The sequence {f(z(i))} generated by the centroid method from any starting value z(0) is finite and increasing.

f(z(i+1)) =
(
z(i) − 2sgn(z

(i)
k )ek

)T

P
(
z(i) − 2sgn(z

(i)
k )ek

)
= f(z(i)) − 4sgn(z

(i)
k )(eT

k Pz(i))

= f(z(i)) − 4sgn(z
(i)
k )w

(i)
k .

� The centroid method is a steepest ascent method along the nodes of the hypercube.

• Cost:

� It takes at most n iterations to locate a maximum.

� Tje expected number of iterations required for convergence is n/2.
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Statistical Meaning of TSVD

• Let X ∈ R
n denote a random column vector.

� C := E [(X − E [X ])(X − E [X ])T ] ∈ R
n×n is defined as the covariance matrix of X .

� In practice, often only random samples are available. A data matrix X = [xij] ∈ Rn×m is collected where each column represents one sample
of X .

� Sample mean and sample covariance matrix approximate the true mean and the true covariance matrix of the random variable X , if m is
large enough.

• Assume that C has a spectral decomposition

cov(X ) =
n∑

j=1

λjuju
T
j .

� u1, . . . ,up are deterministic and form an orthonormal basis for Rn.

� The random column vector X can be expressed as

X =
n∑

j=1

(uT
j X )uj.

� Each coefficient αj := X Tuj itself is a random variable.

• Properties of α:

E [α] = UTE [X ],

cov(α) = diag{λ1, . . . , λn}.
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Meaning of Truncation

• Since uj, j = 1, . . . n, are deterministic, stochastic properties of X are caused only by the stochastic properties of coefficients αj, j = 1, . . . , n.

� The randomness of X is due to the randomness of α.

� Variance measures the unpredictability of a random variable.

� Random variables αj, j = 1, . . . , n, are mutually stochastically independent.

• The larger the eigenvalue λj is, the larger the variance of αj is and, hence, the more randomness it contributes.

� Those coefficients with larger variances and the corresponding directions are the more important components in representing the stochastic
nature of X .

� Rank the importance of corresponding eigenvectors uj as essential components for the variable X according to the magnitude of λj.

� If truncation is necessary, those eigenvectors corresponding to smaller variances should be thrown away first.
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Lower Dimensional Minimum-Variance Approximation

• Given a random vector X ∈ R
n with mean zero, let its covariance matrix be spectrally decomposed as

cov(X ) =
n∑

j=1

λjuju
T
j .

Then among all unbiased variables restricted to any r-dimensional subspaces in Rn, the random variable

X̂ :=
r∑

j=1

(uT
j X )uj (21)

is the best linear minimum-variance estimate of X in the sense that E [‖X − X̂‖2] is minimized.
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Truncation in Sample Space

• The distribution of a random variable is often simulated by a collection of � random samples.

� Samples are recorded in a n × � matrix X.

� Each column of X represents one random sample of the underlying random (column vector) variable X ∈ R
n.

� When � is large enough, many of the stochastic properties of X can be recouped from X.

• How to retrieve a sample data matrix from X to represent the minimum-variance approximation X̂ of X ?

� Sample covariance:

R =
XXT

�
.

� Spectral decomposition of sample variance:

R =
n∑

i=1

µiuiu
T
i . (22)

� Best low dimensional minimum-variance estimate X̂ to X :

X̂ :=
r∑

j=1

uj(u
T
j X). (23)
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TSVD

• The low dimension estimate X̂ to the (continuous) random variable X is ntranslated into a low rank approximation X̂ to the (discrete) random
sample matrix X.

• The singular value decomposition of X:

X = UΣV T =
n∑

i=1

σiuiv
T
i (24)

� Share the same eigenvectors of R as its left singular vectors, i.e., U = [u1, . . . ,un].

� Singular values σi =
√

�µi are ranked in the same ordering as eigenvalues µi, i = 1, . . . n.

� The notion of the truncated singular value decomposition of X is simply the partial sum
∑r

i=1 σiuiv
T
i .

• The TSVD of a give data matrix X representing random samples of an unknown random variable X has a statistical meaning.

� The truncated rank-r SVD represents random samples of the best minimum-variance linear estimate X̂ to X among all possible r-dimensional
subspaces.
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Centroid Decomposition versus SVD

• Observe that that

λ1(R1) = (u1(R1))
T R1u1(R1) = max

‖u‖=1
uT R1u = max

‖u‖=1
‖AT

1 u‖2

≥ µ1 =
1

n
zT

1 R1z1 =
1

n
max
|z|=1

zT R1z =
1

n
max
|z|=1

‖AT
1 z‖2, (25)

where z1 is the sign vector defining the first modified centroid.

� The sign vector z1 and the centroid value µ1 is mimicking the left singular vector u1 and the square of the singular value λ1 of A1, respectively.

� Geometric meaning of the variational formulation.

1

1

T

C

E

u 1
1

z
A u

Az
T

1

1A
T

Figure 2: Comparison of geometric meanings of z1 and u1(R1) when n = 2.
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Centroid Decomposition Singular value Decomposition

µ1 = 1
n

max|z|=1 zT R1z λ1 = max‖x‖=1 xT R1x
(centroid value) (eigenvalue)

z1 = arg max|z|=1 zT R1z u1 = arg max‖x‖=1 xT R1x
(sign vector for modified centroid) (left singular vector)

easy to obtain z1 in O(n) steps not easy to obtain u1 via iterations
(tranverse hypercube) (nonlinear iteration)

v1 =
AT

1 z1√
nµ1

v̂1 =
AT

1 u1√
λ1

(centroid factor ) (right singular vector)

γ1 = ‖A1v1‖ σ1 =
√

λ1 = ‖A1v̂1‖
(significance) (largest singular value)

b1 = A1v1 σ1u1 = A1v̂1

(loading vector) (internal relation)

A1 =
∑

biv
T
i A1 =

∑
σiuiv̂

T
i

(centroid decomposition) (singular value decomposition)

R =
∑

bib
T
i =

∑
γ2

i
bi

‖bi‖

(
bi

‖bi‖

)T

R =
∑

λiuiu
T
i =

∑
σ2

i uiu
T
i

(factor decomposition) (spectral decomposition)

R2 = R1 − R1z1zT
1 R1

zT
1 R1z1

= R1 − γ2
1

b1
‖b1‖

(
b1

‖b1‖

)T

R2 = R1 − R1u1uT
1 R1

uT
1 R1u1

= R1 − λ1u1u
T
1

(rank reduction) (rank reduction)

Table 1: Comparison of centroid decomposition and singular value decomposition.
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Figure 3: Comparison of centroid values and singular values for correlation matrix of n = 200.
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Figure 4: Degree of Alignment between zi and ui.
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Conclusion

• We try to clarify the notions of objectives in data mining.

• We compare similarities and differences between factor analysis and cluster analysis.

• The centroid method is cast as an O(n)-step optimization problem on a hypercube.

• Centroid decomposition is a cheaper simulator of the SVD.

• We offer the insight explaining why, how, and when a low rank approximation makes sensible approximation to the original matrix.

• We show empirically that the centroid decomposition provides a measurement of second order statistical information of the original data.

• The information of significance of a loading vector provides a decision-making on when principal factors have been found.


