Wedderburn Decomposition and Its Applications to Matrix Factorizations

Moody T. Chu
Department of Mathematics
North Carolina State University Raleigh, North Carolina 27695-8205

Joint work with R. E. Funderlic

Outline

- Rank Reduction Formula
- Wedderburn Process
- Inverse Wedderburn Process
- Applications

Rank Reduction Formula

- An obvious result: (Wedderburn '34)

$$
\begin{gathered}
A \in R^{m \times n}, x \in R^{n}, y \in R^{m}, y^{T} A x \neq 0 \\
+ \\
B:=A-\frac{A x y^{T} A}{y^{T} A x} \\
\Downarrow \\
\operatorname{rank}(B)=\operatorname{rank}(A)-1
\end{gathered}
$$

- The converse is true! (Egerváry, '60; Householder '75)

$$
\begin{gathered}
u \in R^{m}, v \in R^{n} \\
+ \\
B:=A-\sigma^{-1} u v^{T} \\
+ \\
\frac{\operatorname{rank}(B)=\operatorname{rank}(A)-1}{\mathbb{~}} \\
\exists x \in R^{n}, y \in R^{m} \ni u=A x, v=A^{T} y, \sigma=y^{T} A x
\end{gathered}
$$

- Block form: (Cline \& Funderlic, '79)

Repeated Application

- $A_{k} \neq 0 \Longrightarrow \exists x_{k} \in R^{n}, y_{k} \in R^{m} \ni \omega_{k}:=y_{k}^{T} A_{k} x_{k} \neq 0$.
- A sequence of matrices with decreasing ranks:

$$
A_{k+1}:=A_{k}-\omega_{k}^{-1} A_{k} x_{k} y_{k}^{T} A_{k}
$$

- $\operatorname{rank}(A)=\gamma \Longrightarrow A_{\gamma+1}=0$.
- Wedderburn decomposition:

$$
\begin{aligned}
A & =\sum_{k=1}^{\gamma} \omega_{k}^{-1} A_{k} x_{k} y_{k}^{T} A_{k} \\
& :=\Phi \Omega^{-1} \Psi^{T}
\end{aligned}
$$

$\diamond \Omega:=\operatorname{diag}\left\{\omega_{1}, \ldots, \omega_{\gamma}\right\}$.
$\diamond \Phi:=\left[\phi_{1}, \ldots, \phi_{\gamma}\right], \Psi:=\left[\psi_{1}, \ldots, \psi_{\gamma}\right]$

$$
\begin{aligned}
\phi_{k} & :=A_{k} x_{k} \in R^{m} \\
\psi_{k} & :=A_{k}^{T} y_{k} \in R^{n} .
\end{aligned}
$$

- Different $\left\{x_{1}, \ldots, x_{\gamma}\right\}$ and $\left\{y_{1}, \ldots, y_{\gamma}\right\} \Longrightarrow$ Different decomposition.

An Oblique Projection

- A bilinear form on $R^{n} \times R^{m}$:

$$
<x, y>:=y^{T} A x
$$

\diamond This is NOT an inner product.

- Rewrite the Wedderburn formula:

$$
\begin{aligned}
B z & =A\left(z-\frac{<z, y>}{<x, y>} x\right) \\
w^{T} B & =\left(w^{T}-\frac{<x, w>}{<x, y>} y^{T}\right) A .
\end{aligned}
$$

- Two projectors:

$$
\begin{aligned}
\mathcal{P}_{A, x, y} & :=I-\frac{x y^{T} A}{y^{T} A x} \\
\mathcal{P}^{\prime}{ }_{A, x, y} & :=I-\frac{A x y^{T}}{y^{T} A x} .
\end{aligned}
$$

- Action of B in terms of A :

$$
B=A \mathcal{P}_{A, x, y}=\mathcal{P}_{A, x, y}^{\prime} A
$$

First Step in Wedderburn Process

- Define:
\diamond

$$
\begin{aligned}
u_{1} & :=x_{1} \\
v_{1} & :=y_{1}
\end{aligned}
$$

\diamond

$$
\begin{aligned}
u_{2} & :=\mathcal{P} x_{2}=x_{2}-\frac{<x_{2}, v_{1}>}{<u_{1}, v_{1}>} u_{1} \\
v_{2} & :=\left(y_{2}^{T} \mathcal{P}^{\prime}\right)^{T}=y_{2}-\frac{<u_{1}, y_{2}>}{<u_{1}, v_{1}>} v_{1}
\end{aligned}
$$

- Results:

$$
\begin{aligned}
A u_{2} & =A_{2} x_{2} \in \mathcal{R}\left(A_{2}\right) \\
v_{2}^{T} A & =y_{2}^{T} A_{2} \in \mathcal{R}\left(A_{2}^{T}\right) \\
<u_{2}, v_{1}> & =<u_{1}, v_{2}>=0 \\
\omega_{2} & =y_{2}^{T} A_{2} x_{2}=<u_{2}, v_{2}>
\end{aligned}
$$

Wedderburn Process

- The process is well defined.
- Bypassing the intermediate A_{k} :

$$
\begin{aligned}
A u_{k} & =A_{k} x_{k} \\
v_{k}^{T} A & =y_{k}^{T} A_{k} \\
\omega_{k} & =y_{k}^{T} A_{k} x_{k}=<u_{k}, v_{k}>
\end{aligned}
$$

- Biconjugacy:

$$
<u_{k}, v_{j}>=<u_{j}, v_{k}>=0
$$

Remarks

- Wedderburn process \longleftrightarrow Gram-Schmidt process: $x_{i} \in R^{n}, y_{j} \in R^{m} \longleftrightarrow$ Vectors in a single space.
Bilinear form $y^{T} A x \longleftrightarrow$ Standard inner product. u_{i}, v_{j} biconjugacy \longleftrightarrow Orthogonality.
- Wedderburn decomposition:

$$
\begin{aligned}
V_{k}^{T} A U_{k} & =\Omega_{k} \\
A & =A U_{\gamma} \Omega_{\gamma}^{-1} V_{\gamma}^{T} A
\end{aligned}
$$

$\diamond \Omega_{k}:=\operatorname{diag}\left\{\omega_{1}, \ldots, \omega_{k}\right\}$.

- The (1,2)-inverse A^{I} :

$$
A^{I}=U_{\gamma} \Omega_{\gamma}^{-1} V_{\gamma}^{T}
$$

$\diamond A$ nonsingular $\Longrightarrow A^{-1}=U_{n} \Omega_{n}^{-1} V_{n}^{T}$.
\diamond An SVD analogue, but U_{n} and V_{n} not necessarily orthogonal.

Matrix From of Wedderburn Process

- Rewrite

$$
\begin{aligned}
X_{k} & =U_{k} R_{k}^{(x)} \\
Y_{k} & =V_{k} R_{k}^{(y)}
\end{aligned}
$$

\diamond

$$
R_{k}^{(x)}=\left[\begin{array}{ccccccc}
1 & \frac{\left\langle x_{1}, v_{1}\right\rangle}{\left\langle u_{1}, v_{1}\right\rangle} & \cdots & & \frac{\left\langle x_{j}, v_{1}\right\rangle}{\left\langle u_{1}, v_{1}\right\rangle} & & \\
0 & 1 & \cdots & & & \\
& \ddots & \ddots & \vdots & \vdots & & \\
& & & 1 & \frac{\left\langle x_{j}, v_{j-1}\right\rangle}{\left\langle u_{j-1}, v_{j-1}\right\rangle} & & \\
& & & 0 & 1 & & \\
& & & & \ddots & \ddots & \vdots \\
0 & & & & & & 1 \\
0 & & & & & & 0
\end{array}\right]
$$

- Note that $R_{k}^{(x)}$ depends implicitly on V_{k}.

Inverse Wedderburn Process

- Think of the Wedderburn process as a function acting on $R^{n \times k} \times R^{m \times k}$ by

$$
f(X, Y):=(U, V) .
$$

\diamond What is $f^{-1}(U, V)$?

Recover the QR Decomposition

- Suppose $A=Q R$.
- Identify $Q^{T} A R^{-1}=I \Longrightarrow U=R^{-1}, V=Q$.
- Define

$$
\begin{aligned}
X & :=R^{-1} R_{x} \\
Y & :=Q R_{y} .
\end{aligned}
$$

$\diamond R_{x}, R_{y}$ arbitrary upper triangular with unit diagonal entries.

- Explicit dependence on Q and R (NOT good!)
- Define

$$
\begin{aligned}
X & :=I \\
Y & :=A .
\end{aligned}
$$

\diamond The Wedderburn process produces a matrix U which is upper triangular and a matrix V whose columns are mutually orthogonal. In fact, $V^{T} V=\Omega$. Furthermore, $A U=V$.

Recover the LR Decomposition

- Suppose $A=L R$.
- Identify $L^{-1} A R^{-1}=I \Longrightarrow U=R^{-1}, V=L^{-T}$.
- The choice

$$
\begin{aligned}
X & :=R^{-1} R_{x} \\
Y & :=L^{-T} R_{y}
\end{aligned}
$$

for the Wedderburn process will produce the (implicit) $L R$ decomposition of A.

- Define

$$
\begin{aligned}
X & :=I \\
Y & :=I .
\end{aligned}
$$

\diamond The Wedderburn process produces $A=V_{n}^{-T} \Omega U_{n}^{-1}$ which is the unique $\mathrm{LDM}^{\mathrm{T}}$ decomposition of A.

Relation to SVD

- Freedom in selecting the vectors x_{i} and y_{j}.
- Division by $\omega_{k}=y_{k}^{T} A x_{k} \stackrel{?}{\Longrightarrow}$ Instability.
- Desirable at each stage to choose x_{k} and y_{k} so as to

Maximize $\quad \omega_{k}=y_{k}^{T} A_{k} x_{k}=<u_{k}, v_{k}>$
Subject to $\quad x_{k}^{T} x_{k}=1, y_{k}^{T} y_{k}=1$.

- The Wedderburn process by meeting this requirement is precisely the SVD of A.
- Lagrange multipliers \Longrightarrow
\diamond Necessary condition:

$$
\begin{aligned}
A_{k}^{T} \tilde{y}_{k} & =\tilde{\sigma}_{k} \tilde{x}_{k} \\
A_{k} \tilde{x}_{k} & =\tilde{\sigma}_{k} \tilde{y}_{k} .
\end{aligned}
$$

\diamond Maximal value $=\tilde{\sigma}_{k}=\left\|A_{k}\right\|_{2}=$ Largest singular value of $A_{k}=$ The k th singular value σ_{k} of A.
$\diamond \tilde{y}_{k}, \tilde{x}_{k}=$ the k th left and right singular vectors.

- The Wedderburn process leaves the singular vectors invariant.
- Can X and Y be chosen before the $S V D$ is known? (N0?!)

Other Applications

- Suppose A is symmetric and take $X=Y$. Then $U=V$. The Wedderburn process gives the canonical form of A with respect to congruence.
- With specially selected of X and Y, the Wedderburn process includes the Lanczos algorithm as a special case.
\diamond We can explicitly describe X and Y. (Funderlic, November 9, 1993.)
\diamond Wedderburn $(34) \Longrightarrow$ Lanczos $(50) \Longrightarrow$ Hestenes and Stiefel (52).
\diamond Welcome to the Lanczos Conference (December 12-17, 1993).

Occurrence in BFGS (and DFP)

- Minimize $f: R^{n} \longrightarrow R$. \diamond Solve $g(x):=\nabla f(x)=0$.
- Jacobian $G(x)$ of $g(x)$ (Hessian of $f(x)$) is often unavailable or very expensive to compute.
\diamond Develop cheap and reasonable approximations to either $G(x)$ or its inverse.
\diamond Prefer to preserve symmetry and positive definiteness.
- BFGS - One successful Hessian update:

$$
H_{+}:=H_{c}+\frac{y_{c} y_{c}^{T}}{y_{c}^{T} s_{c}}-\frac{H_{c} s_{c} s_{c}^{T} H_{c}}{s_{c}^{T} H_{c} s_{c}}
$$

\diamond Secant equation:

$$
\begin{aligned}
H_{+} s_{c} & =y_{c} \\
s_{c} & :=x_{+}-x_{c} \\
y_{c} & :=g\left(x_{+}\right)-g\left(x_{c}\right)
\end{aligned}
$$

\diamond Wedderburn's foumula shows up:

$$
H_{+}-\frac{H_{+} s_{c} s_{c}^{T} H_{+}}{s_{c}^{T} H_{+} s_{c}}=H_{c}-\frac{H_{c} s_{c} s_{c}^{T} H_{c}}{s_{c}^{T} H_{c} s_{c}}
$$

- What is BFGS doing?
\diamond A necessary condition:

$$
H_{+} \mathcal{P}_{H_{+}}=H_{c} \mathcal{P}_{H_{c}} .
$$

\diamond Tear and rebuild:

$$
H_{+}=H_{c} \underbrace{-\frac{H_{c} s_{c} s_{c}^{T} H_{c}}{s_{c}^{T} H_{c} s_{c}}}_{\text {pruning }} \underbrace{\frac{H_{+} s_{c} s_{c}^{T} H_{+}}{s_{c}^{T} H_{+} s_{c}}}_{\text {grafting }} .
$$

