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Abstract The interaction of multiple parts with each other within a system ac-
cording to certain intrinsic rules is a crucial natural phenomenon. The notion
of entanglement and its decomposition of high-dimensional arrays is particularly
intriguing since it opens a new way of thinking in data processing and commu-
nication, of which the applications will be broad and significant. Depending on
how the internal parts engage with each other, there are different types of en-
tanglements with distinct characteristics. This paper concerns the approximation
over a multipartite system whose subsystems consist of symmetric rank-1 matrices
that are entangled via the Kronecker tensor product. Such a structure resembles
that arising in quantum mechanics where a mixed state is to be approximated by
its nearest separable state, except that the discussion in this paper is limited to
real-valued matrices. Unlike the conventional low-rank tensor approximations, the
added twist due to the involvement of the Kronecker product destroys the multi-
linearity, which makes the problem harder. As a first step, this paper explores
the rank-1 multipartite approximation only. Reformulated as a nonlinear eigen-
value problem and a nonlinear singular value problem, respectively, the problem
can be tackled numerically by power-like iterative methods and SVD-like iterative
methods. The iteration in both classes of methods can be implemented cyclically
or acyclically. Motivations, schemes, and convergence theory are discussed in this
paper. Preliminary numerical experiments suggest these methods are effective and
efficient when compared with some general-purpose optimization packages.
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1 Introduction

The problem of matrix approximation via Kronecker product, that is, given a
matrix T ∈ Rm1m2×n1n2 , find B ∈ Rm1×n1 and C ∈ Rm2×n2 so that

‖T −B ⊗ C‖F (1)

is minimized, was probably first discussed by Van Loan and Pitsianis in 1992 at a
NATO ASI conference [40]. This problem can be solved effectively by computing
the largest singular value and the associated singular vector of a properly per-
muted version of T , referred to as the R-folding of T or the realignment of T [5].
In [39], Van Loan suggested that the operation by the Kronecker product would
have an increasingly greater role to play in the future and demonstrated under
the same framework a collection of matrix nearness problems arising from matrix
equations, multidimensional quadrature rules, fast transforms, least squares, and
semi-definite programming. In the following years, applications to stochastic au-
tomata networks [29], micro-array analysis [18,22], image restoration [32,35,45],
and computational physics [16] are just another short list added to the Kronecker
product approximation.

Given a positive integer k, denote the set JkK := {1, 2, . . . , k}. The problem (1)
can be generalized to the problem of finding Br ∈ Rm1×n1 , Cr ∈ Rm2×n2 , r ∈ JRK,
such that

‖T −
R∑

r=1

Br ⊗Cr‖F (2)

is minimized, where R is a fixed positive integer no greater than min{m1n1,m2n2}.
The same singular value decomposition (SVD) technique can be applied and the
global minimum is always guaranteed.

The so-called Kronecker SVD technique proposed in [39,40] cannot be applied
when the factors Bk and Ck in (2) are required to be structured. Of particular
interest is the structure of the form





Br = xrx
⊤
r , xr ∈ Rm,

Cr = yry
⊤
r , yr ∈ Rn,

r ∈ JRK, (3)

that is, the factors are all rank-1 symmetric matrices. Upon normalizing the vectors
xr and yr, the problem

min
λr∈R+;xr∈Sm−1;yr∈Sn−1

r∈JRK

‖T −
R∑

r=1

λr(xrx
⊤
r )⊗ (yry

⊤
r )‖2F , (4)

where Sm−1 denotes the unit sphere in Rm, is referred to as a rank-R entangled
bipartite approximation to T .

It might be worth mentioning why the structure (3) and the problem (4) are of
interest. The motivation can be traced back to the theory of quantum mechanics
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whose scope, however, is so broad that it is not possible, nor proper, to provide a
general overview in a single discourse. We shall briefly sketch only some elementary
ideas here, relating the basic notion of quantum entanglement to the linear algebra
setting used in this paper [7]. For readers interested in more formal, in-depth and
mathematically oriented discussions, we suggest [1,23,33] and the classic book [34].
A quantum mechanical system is generally cast as a complex Hilbert space [1]. Any
unit vector in the space is referred to as a pure state which typically is denoted
by the Dirac’s ket notation |w〉. For practical reasons, it is more convenient to
represent a pure state |w〉 in the projector form |w〉 〈w|, referred to as a density
matrix. With respect to a specified basis, a finitely dimensional quantum system
can be identified as Cm, where we can write the state |w〉 as a unit vector w ∈ Cm,
and the corresponding density matrix as the rank-1 matrix ww∗ with ∗ standing
for the conjugate transpose. A mixed state, typically denoted by ρ in the literature,
is a probabilistic ensemble of density matrices of pure states in that system, which
therefore is a positive semi-definite matrix with unit trace.

A k-partite quantum system consists of k interacting quantum subsystems.
With respect to properly specified bases among the subsystems, the intersection
can be described mathematically via the Kronecker product. We say that a mixed
state ρ in the k-partite system is separable if ρ can be expressed as a finite sum in
the form

ρ =
R∑

r=1

µr(|w(r)
1 〉 〈w(r)

1 |)⊗ . . .⊗ (|w(r)
k

〉 〈w(r)
k

|), (5)

where |w(r)
j 〉, r ∈ JRK, are pure states in the j-th subsystems, j ∈ JkK, and

µr ≥ 0,
R∑

r=1

µr = 1. (6)

There is no restriction on the value of R. When ρ is not separable, we say that
it is entangled. Quantum entanglement plays an increasingly more important role
in modern quantum technologies. Quantum informatics and quantum communi-
cation, for example, exploit the entanglement for faster and more secure delivery
of information than classical algorithms.

Determining whether a given mixed state in a k-partite system is entangled
or not is NP hard [15,21]. On the other hand, note that separable states form a
convex compact subset in the ambient space. Approximating a given mixed state ρ
with the nearest separable state is a problem of interest in its own right. Depending
on what statistical properties are to be quantified, the nearness can be measured
under different metrics [6].

The above notion can be expressed in terms of the classical linear algebra
notations. Observe that the tensor product of complex vectors

(u+ ıv)⊗ (p+ ıq) = (u⊗ p− v ⊗ q) + ı(v⊗ p+ u⊗ q),

involves a nontrivial intertwinement between the real and the imaginary parts of
the variables. Suppose that, as a first step, we limit ourselves to the real values.
Then the structure of the rank-R k-partite problem

min
λr∈R+,x

(r)
i ∈SIi−1,

i∈JkK, r∈JRK

‖T −
R∑

r=1

λr(x
(r)
1 x

(r)
1

⊤
)⊗ · · · ⊗ (x(r)

k
x
(r)
k

⊤
)‖2F (7)



4 Matthew M. Lin, Moody T. Chu

for a given matrix T resembles the fabric (5) underlying the quantum entangle-
ment, where the Frobenius norm is used.

In an earlier paper [7], we have already studied thoroughly the rank-1 approx-
imation of an entangled bipartite system. In particular, by casting the approxima-
tion as a nonlinear eigenvalue problem and a nonlinear singular value problem, we
have developed numerical algorithms and accomplished the convergence analysis.
The goal of this paper is to take into account another aspect of complexity when
more than two interacting subsystems are involved. That is, we shall consider the
rank-1 approximation of a k-partite system

min
λ∈R+,xi∈SIi−1, i∈JkK

‖T − λ(x1x
⊤
1 )⊗ · · · ⊗ (xkx

⊤
k )‖2F , (8)

where k ≥ 2, the dimensions Ii, i ∈ JkK, are preselected, and T ∈ R∏k
i=1 Ii×

∏k
i=1 Ii is

a given symmetric and positive definite (SPD) matrix. A generalization of both the
numerical methods and the convergence analysis from the rank-1 approximation
of a bipartite system to the rank-1 approximation of a k-partite problem (4) is not
trivial because of the many more factors involved in the tensor product. Our main
contribution in this paper is to fill that gap.

To demonstrate the difficulty of this generalization, observe that with a proper
folding of T into an order-4 tensor T [39,40], the bipartite problem can be treated
as a specially structured rank-1 tensor approximation, known as the canonical
polyadic decomposition with symmetry:

min
λ∈R+,x∈Rm,y∈Rn

‖x‖=1,‖y‖=1

‖T − λx ◦ x ◦ y ◦ y‖2F , (9)

where ◦ denotes the outer product. Many techniques, e.g., those in the Tensorlab
toolbox [41], are readily available to handle (9), albeit some disadvantages of such
a formulation when compared with our methods [7]. The sticking point when
generalizing this idea to the case k > 2 is that, to our knowledge, there is no
explicit strategy for folding the given T into an order-2k tensor. This difficulty is
in line with the fact that thus far the Kronecker SVD technique for (2) has not
been successfully generalized when the summation involves terms with more than
two factors in the tensor product.

We must stress also that the optimization problem (8) should not be confused
with the general low-rank tensor approximation that had been discussed exten-
sively in recent years [3,8,10,24,26–28,38,43,44]. The latter involves tensor prod-
ucts of vectors and is multilinear in its factors, but our problem involves Kronecker
products of rank-1 matrices and is not multilinear at all. Existing techniques for
conventional tensor decomposition are inadequate to handle this structured prob-
lem. We thus propose in this paper two new methods for this rank-1 multipartite
approximation (8). Our main focus is on addressing the multi-indices effectively,
proposing the numerical algorithms and proving the global convergence.

Finally, to prepare our presentation, we point out that the minimization of
(8) is equivalent to the maximization of the orthogonal component of T in the
direction of the unit ”vector” (x1x

⊤
1 )⊗(x2x

⊤
2 )⊗· · ·⊗(xkx

⊤
k ), i.e., we may consider

the problem
max

xi∈SIi−1

i∈JkK

λ(x1, . . . ,xk), (10)
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where
λ = λ(x1, . . . ,xk) := 〈T, (x1x

⊤
1 )⊗ (x2x

⊤
2 )⊗ · · · ⊗ (xkx

⊤
k )〉 (11)

and 〈·, ·〉 stands for the Frobenius inner product of real matrices.
This paper is organized as follows. We begin in Section 2 by introducing a con-

venient notation system which will help circumvent the otherwise tedious multi-
indexed descriptions. In Section 3, we reformulate the problem (10) as a nonlinear
eigenvalue problem and propose a power-like iterative scheme. Despite the simplic-
ity in its appearance, the iteration is inherently nonlinear. Our first contribution in
this regard is the convergence analysis. The implication of multi-indices also allows
us to formulate the problem as a nonlinear singular value problem in Section 4.
The proposed SVD-like iterative scheme updates two vectors at a time. Our sec-
ond contribution is the proof that, regardless of the order of updating, convergence
can be achieved. A comparison of our two methods with some existing routines in
Matlab Optimization Toolbox is given in Section 5.

2 Basic notation

To enumerate the data in a multi-array consistently, we adopt the practice of
counting the multi-indexed entry τi1,...,ik of an order-k tensor T ∈ RJ1×J2×...×Jk

as the I-the entry in the corresponding linear array, where

I := (ik − 1)Jk−1Jk−2 . . . J1 + (ik−1 − 1)Jk−2 . . . J1 + ...+ (i2 − 1)J1 + i1. (12)

In this way, we say that the tensor T is vectorized by the operation vec. Therefore,
the classical Kronecker product ⊗ of column vectors, resulting in a long vector, is
related to the tensor product ◦ which produces multi-indexed tensor in a reversed
order, i.e.,

x1 ⊗ x2 ⊗ . . .⊗ xk = vec(xk ◦ . . . ◦ x2 ◦ x1).

So as to discuss our algorithms for the k-partite system in a more concise way,
we adopt the following notations. First, we introduce the abbreviations





⊗k
i=1 xi := x1 ⊗ x2 ⊗ · · · ⊗ xk,

©1
i=kxi := xk ◦ . . . ◦ x1,

and define the order-k tensor

D(x1, . . . ,xk) := reshape(T
k⊗

i=1

xi, [Ik, . . . , I1]) ∈ RIk×...×I1 , (13)

where the operation reshape imitates the same command in Matlab that folds data
into a multi-dimensional array according to the enumeration rule (12). Second,
given a fixed partition JkK = α∪β with α := {α1, . . . , αℓ} and β := {β1, . . . , βk−ℓ},
let I = (i1, . . . , iℓ) and J = (j1, . . . , jk−ℓ) denote the multi-indices at locations α

and β, respectively.
We shall regard an order-k tensor T = [τs1...sk ] ∈ RJ1×J2×...×Jk as the matrix

representation of the linear operator Tα

Tα : RJβ1
×...×Jβk−ℓ → RJα1×...×Jαℓ (14)
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in the sense that, given any U = [uj1,...,jk−ℓ
] ∈ RJβ1

×Jβ2
×...×Jβk−ℓ , the I-th entry

of its image Tα(U) is given by

(
Tα(U)

)
I = (T⊛α U)I

:=
∑

J
τ
(α,β)

[I|J ]
uJ =

Jβ1∑

j1=1

. . .

Jβk−ℓ∑

jk−ℓ=1

τ
(α,β)

[I|j1...jk−ℓ]
uj1,...,jk−ℓ

∈ RJα1×...×Jαℓ ,

where the symbol τ
(α,β)

[I|J ]
represents the entry τs1...sk of T with sαµ = iµ and

sβν
= jν , µ ∈ JℓK, ν ∈ Jk − ℓK. In this way, the subsets α and β generalize the

notion of rows and columns, respectively.
Using the associative law of multiplication, it can be seen that

〈T,
k

©
i=1

u
(i)〉 = 〈T⊛α (

k−ℓ

©
s=1

u
(βs)),

ℓ

©
t=1

u
(αt)〉 (15)

for any tensors
ℓ

©
t=1

u(αt) ∈ RJα1×...×Jαℓ and
k−ℓ

©
s=1

u(βs) ∈ RJβ1
×Jβ2

×...×Jβk−ℓ . The

relationship (15) can be interpreted as a generalization of the adjoint equation.
Such a notation system offers the convenience that by merely specifying the ele-
ments in α and β, we have a clear indication of which part of the tensor is to be
multiplied with another tensor.

3 Nonlinear eigenvalue formulation

The following first order optimality condition for λ(x1, . . . ,xk) is easy to derive.

Lemma 1 The first order optimality condition for maximizing λ(x1,x2, . . . ,xℓ) sub-

ject to xj ∈ SIj−1, j ∈ JkK, is that

D(x1, . . . ,xk)⊛j

(
1
©

i=k,i6=j

xi

)
= λ(x1,x2, . . . ,xk)xj , j ∈ JkK, (16)

where the multiplication ⊛j is to sum over the location indicators β = JkK\{j}.

The system of equations (16) can be regarded as a nonlinear eigenvalue problem
which thus motivates a power-like iterative scheme:

x
[p+1]
j

:=

D(x[p]
1 , . . . ,x

[p]
k
)⊛j

1
©

i=k,i6=j

x
[p]
i

‖D(x
[p]
1 , . . . ,x

[p]
k
)⊛j

1
©

i=k,i6=j

x
[p]
i ‖2

, j ∈ JkK, p = 0, 1, . . . . (17)

If D(x[p]
1 , . . . ,x

[p]
k
) were invariant in p, the scheme would be a Jacobi version [24]

of the conventional ALS method for rank-1 tensor approximation [3,8,26–28,44]

whose convergence theory is well established [38,43]. In our case, D(x
[p]
1 , . . . ,x

[p]
k
)

does vary in p. Therefore, the analysis of its dynamical behavior will be more
involved.
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3.1 Convergence of λ values

Define a functional G : RI1 × RI1 × · · · × RIk × RIk → R by

G(x1, x̃1; . . . ;xk, x̃k) := 〈T
k⊗

i=1

xi,
k⊗

i=1

x̃i〉. (18)

Since T is a real and symmetric, it is clear that

G(x1, x̃1; . . . ;xk, x̃k) = G(x̃1,x1; . . . ; x̃k,xk). (19)

Note also that

G(x1,x1; . . . ;xk,xk) = λ(x1,x2, . . . ,xk). (20)

We now argue that the sequence {λ(x[p]
1 , . . . ,x

[p]
k
)} generated by the scheme (17)

is monotone.

Theorem 1 Assume that T is SPD. Let {(x[p]
1 , . . . ,x

[p]
k
)} be the sequence generated

by the scheme (17). Then the functional G satisfies the interlacing property:

G(x[p]
1 ,x

[p]
1 ;x[p]

2 ,x
[p]
2 ; . . . ;x[p]

k
,x

[p]
k
) ≤ G(x[p]

1 ,x
[p+1]
1 ;x[p]

2 ,x
[p]
2 ; . . . ;x[p]

k
,x

[p]
k
)

≤ G(x
[p+1]
1 ,x

[p+1]
1 ;x

[p]
2 ,x

[p]
2 ; . . . ;x

[p]
k

,x
[p]
k
) ≤ G(x

[p+1]
1 ,x

[p+1]
1 ;x

[p]
2 ,x

[p+1]
2 ; . . . ;x

[p]
k

,x
[p]
k
)

≤ · · · ≤ G(x
[p+1]
1 ,x

[p+1]
1 ; . . . ;x

[p+1]
k

,x
[p+1]
k

). (21)

Therefore, the sequence {λ(x[p]
1 , . . . ,x

[p]
k
)} converges.

Proof To prove the first inequality, observe that by (20) and the adjoint equation
(15), we can write

G(x[p]
1 ,x

[p]
1 ;x[p]

2 ,x
[p]
2 ; . . . ;x[p]

k
,x

[p]
k
) = 〈D(x[p]

1 , . . . ,x
[p]
k
)⊛1 (

2
©
i=k

x
[p]
i ),x[p]

1 〉.

We can also rewrite

G(x[p]
1 ,x

[p+1]
1 ;x[p]

2 ,x
[p]
2 ; . . . ;x[p]

k
,x

[p]
k
) = 〈D(x[p]

1 , . . . ,x
[p]
k
)⊛1 (

2
©
i=k

x
[p]
i ),x[p+1]

1 〉

= ‖D(x
[p]
1 , . . . ,x

[p]
k
)⊛1 (

2
©
i=k

x
[p]
i )‖2

where the second equality follows from the definition of x[p+1]
1 . Upon comparison,

the first inequality follows from the Cauchy-Schwarz inequality.
To prove the second inequality, define

∆x
[p]
i

:= x
[p+1]
i − x

[p]
i , i ∈ JkK. (22)

Then we can break down the difference as

G(x[p+1]
1 ,x

[p+1]
1 ;x[p]

2 ,x
[p]
2 ; . . . ;x[p]

k
,x

[p]
k
)−G(x[p]

1 ,x
[p+1]
1 ; . . . ;x[p]

k
,x

[p]
k
)

= G(∆x
[p]
1 ,x

[p+1]
1 ;x[p]

2 ,x
[p]
2 ; . . . ;x[p]

k
,x

[p]
k
)

= G(∆x
[p]
1 ,∆x

[p]
1 ;x

[p]
2 ,x

[p]
2 ; . . . ;x

[p]
k

,x
[p]
k
) +G(∆x

[p]
1 ,x

[p]
1 ;x

[p]
2 ,x

[p]
2 ; . . . ;x

[p]
k

,x
[p]
k
).
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The first term on the right side in the last equality is positive because T is SPD.
The second term is nonnegative because of the first inequality and the symmetric
property (19). The other inequalities can be argued in a similar manner. Since

{λ(x[p]
1 , . . . ,x

[p]
k
)} is bounded, the sequence converges. �

Thus far, we update x
[p]
j by sweeping j ∈ JkK in the cyclic order and do not

update D(x[p]
1 , . . . ,x

[p]
k
) until one sweep is over. One possible variant of (17) is

to select an integer j ∈ JkK randomly and update the factor xj according to the
right side of (17), except that only the latest updates of the remaining factors
x1, . . . ,xj−1,xj+1,xk are used on the right side of (17). This amounts to an asyn-
chronous version of the Gauss-Seidel update [36]. A similar approach applied to
the best rank-1 tensor approximation can be found in [20].

More specifically, the scheme (17) for the Gauss-Seidel-type update should be
interpreted as follows: Suppose that an index j has been chosen so that α = {j},
β = JkK\{j}) and that the factor x

[p]
α1

has been updated to x
[p+1]
α1

. We immediately

recognize (x[p+1]
1 , . . . ,x

[p+1]
k

) as an update from (x[p]
1 , . . . ,x

[p]
k
), in which x

[p+1]
βi

=

x
[p]
βi
, i ∈ Jk − 1K and only x

[p+1]
α1

is truly updated. In this way, the variables in the

definition of D(x
[p]
1 , . . . ,x

[p]
k
) are always the most updated ones.

A convergence analysis of this updating scheme in a haphazard order might
seem daunting. However, a close examination of the proof used for Theorem 1
shows that the cyclic order is never required. All we need is a fixed integer j ∈ JkK

for which x
[p]
j is to be updated to x

[p+1]
j while all other variables are assumed

known and stay invariant during the execution of (17). When this is done, the
superscripts for all variables are renamed from [p] to [p+1] and we continue the
process to a new factor with another randomly selected integer. The iteration
exhibits the same interlacing property. The fact that the iteration still maintains
convergence under any order of updating strategy is remarkable. For completion,
we summarize the result below.

Corollary 1 Assume that T is SPD. Let the sequence {x[p]
1 , . . . ,x

[p]
k

} be generated by

(17) in any acyclic order. Then the variational relationship (21) still holds and the

sequence {λ(x[p]
1 , . . . ,x

[p]
k
)} converges.

3.2 Convergence of iterates

In addition to the convergence of the objective values, we now argue that under

some mild conditions the iterates {(x[p]
1 , . . . ,x

[p]
k
)} also converge.

We first mention the following result from real analysis. The proof can be found
in [30, Lemma 4.10]. A refined version is given in [20, Lemma 2.7].

Lemma 2 Let z∗ be an isolated limit point of the sequence {z[p]} ⊂ Rn. Assume that

for every subsequence {z[pj ]} converging to z∗, ‖z[pj+1] − z[pj ]‖2 → 0 as pj → ∞.

Then {z[p]} converges.

We next examine the increment between two consecutive iterates in our algo-
rithm.
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Lemma 3 Suppose that T is SPD and that {x[p]
1 , . . . ,x

[p]
k

} is generated by (17) in

either cyclic or acyclic order. Then, for each i ∈ JkK, the sequence {∆x
[p]
i } defined in

(22) converges to zero.

Proof Without loss of generality, we consider the case when the sequence xi is
updated in a cyclic order. The following two equations are obvious:

G(x
[p]
1 ,x

[p+1]
1 ;x

[p]
2 ,x

[p]
2 ; . . . ;x

[p]
k

,x
[p]
k
)−G(x

[p]
1 ,x

[p]
1 ;x

[p]
2 ,x

[p]
2 ; . . . ;x

[p]
k

,x
[p]
k
)

= 〈T (∆x
[p]
1 ⊗

k⊗

i=2

x
[p]
i ),x

[p]
1 ⊗

k⊗

i=2

x
[p]
i 〉, (23)

G(x[p+1]
1 ,x

[p+1]
1 ;x[p]

2 ,x
[p]
2 ; . . . ;x[p]

k
,x

[p]
k
)−G(x[p]

1 ,x
[p+1]
1 ;x[p]

2 ,x
[p]
2 ; . . . ;x[p]

k
,x

[p]
k
)

= 〈T (∆x
[p]
1 ⊗

k⊗

i=2

x
[p]
i ),x[p+1]

1 ⊗
k⊗

i=2

x
[p]
i 〉. (24)

Taking the difference of (23) and (24) and applying the fact that the sequence

{λ(x[p]
1 , . . . ,x

[p]
k
)} converges, we have

〈T (∆x
[p]
1 ⊗

k⊗

i=2

x
[p]
i ),∆x

[p]
1 ⊗

k⊗

i=2

x
[p]
i 〉 → 0.

Since all x
[p]
i , i ∈ JkK\{1} are of unit length, by the positive definiteness of T ,

it must be that ∆x
[p]
1 → 0. We can carry out a similar argument to show that

∆x
[p]
i → 0 for i ∈ JkK\{1}. �

To make use of Lemma 2 for proving convergence, we need to ensure that any
limit point is isolated. Toward this end, observer that by continuity any accumu-

lation point of the sequence {(x[p]
1 , . . . ,x

[p]
k
)} must satisfy the system of equations

(16) which actually is a polynomial system in the variables x1, · · · , xk with T as
the parameter. An algebraic geometry argument can be used to help complete
the convergence proof. To begin with, it is known that almost all square sys-
tems of polynomial equations over the complex field have finitely many solutions
[14]. More specifically, suppose that F (z;q) is a square polynomial system in the
variables z and the parameters q, then the theory on parameter continuation for
polynomial systems implies that the number of isolated solutions to this polyno-
mial system is finite for almost all parameters q [37, Theorem 7.1.1]. The phrase
”almost all” means that pathological examples (for the parameter T ) can be con-
structed to negate the assertion. However, those values of parameters that fail to
induce finitely many and geometrically isolated solutions form a nowhere dense
and measure zero subset in the ambient space. The term ”non-generic” is often
used to describe collectively this type of special cases. Because of this observation,
we conclude that the following condition for the matrix T may be regarded as
generic.

Condition P: We say that the matrix T satisfies Condition P if the corre-
sponding polynomial system (16) has finitely many and geometrically isolated
real-valued solutions.

Theorem 2 Assume that T is SPD and satisfies Condition P. Then the sequence

{(x[p]
1 , . . . ,x

[p]
k
)} generated by the scheme (17) in any order converges to a single limit

point which satisfies the system (16).
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Proof Under Condition P, we know that the sequence {(x[p]
1 , . . . ,x

[p]
k
)} has only

a finite number of isolated limit points. By Lemma 3, every convergent subse-

quence {(x[pj ]
1 , . . . ,x

[pj ]
k

)} of {(x[p]
1 , . . . ,x

[p]
k
)} will have diminishing increments. By

Lemma 2, we see that the overall converges. �

4 Nonlinear singular value formulation

Thus far, in order to find a solution to the system (16), we have been updating
one vector variable at a time. The scheme (17) resembles the conventional power
method but is nonlinear in its variables. In this section, we describe another itera-
tive scheme with the goal to update two vectors simultaneously. Toward this goal,
we reformulate the approximation problem as a nonlinear singular value decom-
position.

4.1 Simultaneous updates via SVD

The first order optimality condition Lemma 1 can be expressed differently as fol-
lows.

Lemma 4 Let α := {α1, α2} and β := {β1, . . . , βk−2} be an arbitrary partition of

JkK = α ∪ β. Then the necessary condition of a local maximizer for λ(x1, . . . ,xk) is

that 



(D(x1, . . . ,xk)⊛α (
k−2
©
i=1

xβi
))xα2 = λ(x1, . . . ,xk)xα1 ,

(D(x1, . . . ,xk)⊛α (
k−2
©
i=1

xβi
))⊤xα1 = λ(x1, . . . ,xk)xα2 .

(25)

We may interpret (xα1 , λ(x1, . . . ,xk),xα2) as a singular triplet of the matrix

D(x1, . . . ,xk)⊛α (
k−2
©
i=1

xβi
). Since our goal is to maximize the λ(x1, . . . ,xk), we may

as well search for the dominant singular triplet. We thus propose the scheme that,
while varying α = {α1, α2} through JkK to select vectors to be updated, repeat the
fixed-point iteration:

(
sgn

(
x
[p+1]
1

)
x
[p+1]
α1

, λ
[p+1]
α , sgn

(
x
[p+1]
1

)
x
[p+1]
α2

)

= svds(D(x[p]
1 , . . . ,x

[p]
k
)⊛α

(
k−2
©
i=1

x
[p]
βi

)
, 1), (26)

where the sign of the first entry x
[p+1]
1 of the vector x[p+1]

α1
is used to maintain the

continuity and svds denotes any route that computes the first dominant singular

triplet. If x
[p+1]
1 = 0, then we choose the next nonzero entry of x

[p+1]
α1

. Since

D(x
[p]
1 , . . . ,x

[p]
k
) varies in p, this nonlinear singular value decomposition approach

is of theoretical interest in its own right.

There are several variations worth mentioning. Computing D(x[p]
1 , . . . ,x

[p]
k
) and

the multiplication ⊛α involves an extensive amount of floating-point arithmetic
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operations. To save the overhead, we could keep D(x[p]
1 , . . . ,x

[p]
k
) the same through-

out the sweeps of α ⊂ JkK per p. This is in the same spirit of the classical Jacobi
iteration, but is applied to the SVD in our case. It is also feasible to follow the
Gauss-Seidel notion by always using the most updated vectors in the definition
of D . This Gauss-Seidel-type updating scheme is implemented in our numerical
experimentation. In all, we will show that the order by which α = {α1, α2} ⊆ JkK

is selected is immaterial and will not affect the convergence.

4.2 Convergence analysis

So that we can describe the convergence behavior categorically for all possible

strategies of selecting the partition JkK = α ∪ β, we shall let (x[p+1]
1 , . . . ,x

[p+1]
k

)

denote an update from (x
[p]
1 , . . . ,x

[p]
k
) whenever an α is chosen and two vectors x

[p]
α1

and x
[p]
α2

have been updated according to (26). Thus, in the list of (x[p+1]
1 , . . . ,x

[p+1]
k

),

we have exact copies of x
[p+1]
βi

= x
[p]
βi
, i ∈ Jk − 2K and only x

[p+1]
α1

and x
[p+1]
α2

are

newly updated. In this way, the update [p+1] already includes a specific choice of

α. We may thus write λ
[p+1]
α as λ[p+1].

We first observe the converges of the λ values.

Theorem 3 Suppose that T is SPD. If {λ[p]} is the sequence of dominant singular

values generated by (26) with randomly selected α ⊆ JkK, then

λ(x[p]
1 , . . . ,x

[p]
k
) ≤ λ[p+1] ≤ λ(x[p+1]

1 , . . . ,x
[p+1]
k

) ≤ λ[p+2] (27)

and the sequence {λ[p]} converges.

Proof By the definition of λ, we can write

λ(x[p]
1 , . . . ,x

[p]
k
) = 〈D(x[p]

1 , . . . ,x
[p]
k
)⊛α (

k−2
©
i=1

x
[p]
βi
),

2
©
i=1

x
[p]
αi

〉.

Since λ[p+1] is the dominant singular values of the matrix D(x[p]
1 , . . . ,x

[p]
k
) ⊛α

(
k−2
©
i=1

x
[p]
βi
), the first inequality follows. Similarly, the third inequality holds. To

prove the second inequality, define the abbreviation:

a
[p] :=

k⊗

i=1

x
[p]
i . (28)

Then, we find that

λ(x[p+1]
1 , . . . ,x

[p+1]
k

)− λ[p+1]

= 〈Ta[p+1],a[p+1]〉 − 〈Ta[p],a[p+1]〉
= 〈Ta[p+1],a[p+1] − a

[p]〉
= 〈T (a[p+1] − a

[p]), (a[p+1] − a
[p])〉+ 〈Ta[p],a[p+1] − a

[p]〉.

The first term in the last equation is nonnegative because T is SPD. The second
term is nonnegative because of the first inequality. Being a bounded monotone
sequence, {λ[p]} must converge. �
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The same argument for the generic Condition P imposed on the matrix T for
the polynomial system (16) can be applied to the matrix T for the polynomial
system (25) [14,37]. Additionally, it is also known that the symmetric matrices
with multiply eigenvalues form an algebraic variety of codimension two [9] which,
of course, is nowhere dense and of measure zero. This can be translated as that the
dominant singular value being simple is generic. Together, the following condition
for the matrix T is still generic.

Condition S: We say that the matrix T satisfies Condition S if the correspond-
ing polynomial system (25) has finitely many, geometrically isolated, real-valued

solutions and that the associated matrix D(x1, . . . ,xk)⊛α

(
xβk−2

◦. . .◦xβ1

)
has a

simple dominant singular value.
Finally, we prove the convergence of the SVD-type iteration for generic T .

Theorem 4 Assume that T is SPD and satisfies Condition S. Then the sequence

{(x[p]
1 , . . . ,x

[p]
k
)} generated by the scheme (26) with any order α ⊂ JkK converges.

Proof In terms of the abbreviation defined in (28), using the assumption that the
sequence {λ[p]} is increasing and the interlacing property (27), we know that as
p → ∞,

λ[p+1] − λ(x
[p]
1 , . . . ,x

[p]
k
) = 〈a[p+1], Ta[p]〉 − 〈a[p], Ta[p]〉 → 0,

λ(x[p+1]
1 , . . . ,x

[p+1]
k

)− λ[p+1] = 〈a[p+1], Ta[p+1]〉 − 〈a[p+1], Ta[p]〉 → 0.

It follows that as p → ∞,

〈a[p+1] − a
[p], T (a[p+1] − a

[p])〉
= (〈a[p+1], Ta[p+1]〉 − 〈a[p+1], Ta[p]〉)− (〈a[p+1], Ta[p]〉 − 〈a[p], Ta[p]〉) → 0.

Since T is SPD, we see that

lim
p→∞

‖a[p+1] − a
[p]‖2 = 0.

By the fact that

‖a[p+1] − a
[p]‖22 = 2− 2

k∏

i=1

〈x[p]
i ,x

[p+1]
i 〉,

we see that

lim
p→∞

k∏

i=1

〈x[p]
i ,x

[p+1]
i 〉 = 1.

Since |〈x[p]
i ,x

[p+1]
i 〉| ≤ 1, it must be that

lim
p→∞

〈x[p]
i ,x

[p+1]
i 〉 = 1, i ∈ JkK.

That is, the two consecutive vectors x[p]
i and x

[p+1]
i must gradually be aligned. The

rule of sign selection imposed forces them to gradually point to the same direction
as p → ∞. In particular,

∆x
[p]
i

:= x
[p+1]
i − x

[p]
i → 0, i ∈ JkK.

We thus complete the proof by Lemma 2 under Condition S. �
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5 Numerical experiments

In the above, we have proposed a power-like method and an SVD-like method
for tackling the rank-1 k-partite approximation problem. In this section, we carry
out some numerical experiments to illustrate the effectiveness of our algorithms.
In particular, we want to compare whether our simple iterative methods, even
at their rudimentary implementation, are compatible with some existing state-of-
the-art optimization techniques. There are many compatible optimization software
packages. For demonstration purpose, we use Matlab as the computational platform
and limit our comparison to those available in the Matlab Optimization Toolbox.
The following experiments are performed on a MacBook Pro laptop with Quad-
Core Intel Core i5 @ 2.4GHz processor and 16GBRAM by using MATLAB, version
2020b, as the computing platform.

Example 1. The purpose of our first experiment is to test the efficiency and
accuracy of the power-like iteration (17) and the SVD-like iteration (26). To simu-
late the experiment, we choose k = 3 and generate three random vectors yi ∈ R10,
i ∈ J3K, from the identical and independent Gaussian distribution. Define a rank-1
density matrix

T1 := (x1x
⊤
1 )⊗ (x2x

⊤
2 )⊗ (x3x

⊤
3 ) ∈ R1000×1000, (29)

where xi :=
yi

‖yi‖2
∈ S9, i ∈ J3K, as the base matrix which has exact decomposition.

We consider the rank-1 3-partite approximation to this perturbed matrix

Tσ := T1 + σ(B − T1),

where B is a randomly generated but fixed density matrix and σ = 10−p, p =
8, . . . , 12, signifies the magnitude of the noise. Since Tσ is a convex combination of
two density matrices, it remains to be a density matrix. Nonetheless, even with a
small perturbation, the matrix Tσ is generally of full rank.

We compare our algorithms with the conventional Matlab routine fmincon em-
ploying three distinct solvers ”sqp”, ”interior-point”, and ”active-set”, respectively.
Since counting the number of floating-point arithmetic operations is no longer a
reliable means for measuring the computational complexity, we measure the CPU
time as a criterion to evaluate the performance. Because each method has its
own special characteristics, it makes a term-by-term comparison difficult. For a
straightforward comparison, we turn off all other stopping criteria but demand
that all methods must meet the same first-order optimality condition:

∥∥∥∥∥∥

[
D(x1, . . . ,xk)⊛j

k

©
i=1,i6=j

xi − λxj

]

j=1,...,k

∥∥∥∥∥∥
2

< 10−10. (30)

before terminating the iteration. For each σ, we repeat our experiments 50 times
with randomly generated B and, after taking the standard deviations into account,
take the average to represent the general trends. Each time different starting values
are generated, but the same values are used for each method. While we want to
minimize (8) with T = Tσ, we are hoping to recover T1 which is under perturbation.
Thus, we measure the final quality of approximation based on the definition:

Residual := ‖T1 − λ(x̂1, x̂2, x̂3)(x̂1x̂
⊤
1 )⊗ (x̂2x̂

⊤
2 )⊗ (x̂3x̂

⊤
3 )‖F , (31)
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Comparison of Residuals
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(a) Average residuals via 50 random trials

Comparison of STD of Residuals
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(c) Average CPU Time
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(d) STD of elapsed time

Fig. 1: Average residuals, elapsed time, and respective STDs for approximating
perturbed T1.

where the triplet (x̂1, x̂2, x̂3) represents the final result output by each of the
specific algorithms, respectively. Finally, since the gradient information is readily
available, the option of user-provided analytic gradients for both the objective
function and the constraint is turned on for all Matlab routines, which should help
the efficiency and the precision if the Hessian is needed.

Under the above rules of setup, depicted in Figure 1(a) are the averages of
the residuals computed by six distinct methods. These are the power-like itera-
tion (Power) updated according to the Gauss-Seidel and cyclic rules, the SVD-like
iterations with α chosen cyclically (SVD) or randomly (SVDr), the solvers sqp,
interior-point, and active-set, respectively. To make sure that taking the average
makes sense, we record the standard derivations (STD) of the residuals from the
respective means in Figure 1(b). Extremely small variances observed for our meth-
ods as well as the relatively small variance for the interior-point method indicate
that the means do represent the general mode of approximation. Together with
the small residuals observed in Figure 1(a), these empirical data strongly sug-
gest that our techniques, the SVD-like methods in particular, tend to have better
approximations.

One possible explanation for the poor performance by the more sophisticated
solvers sqp and active-set might be that these methods have terminated prema-



Rank-1 Approximation for Entangled Multipartite Real Systems 15

turely under our sole stopping criterion (30). We understand that a robust code
should have multi-layer stopping criteria in place. One way to improve the preci-
sion in the Matlab built-in solvers is to fine-tune the tolerance of other factors such
as the step sizes and constraints. In doing so, however, the required elapsed time
will increase dramatically, which is already slow as we can see under the current
setting.

Depicted in Figure 1(c) are the averages of elapsed time required by each
method to meet the condition (30). We also measure the respective standard devi-
ations of the required elapsed time in Figure 1(d). It manifests that our algorithms
are consistently more time efficient at obtaining solutions with smaller residual val-
ues. The three routines from the Optimization Toolbox have much larger variances
in the needed CPU time, indicating the varying difficulties in achieving (30). Also,
while the power-like method is cheaper per iteration, the overall performance of the
SVD-based methods, regardless whether α is chosen cyclically or acyclically, seems
to consume about the same CPU time while producing slightly smaller residuals.
We stress that the implementation of our methods is not as sophisticated as those
in the Matlab Optimization Toolbox, yet our experiments seem to suggest that the
potential applicability of our power-like or SVD-like methods.

Example 2. The purpose of this experiment is to demonstrate how the numer-
ical calculation helps discover a special property of the so-called a Greenberger-
Horne-Zeilinger state (GHZ gate) [13,19]. Consider the quantum system C2 whose
elements, called qubits, serve as the basic units for quantum information science.
The standard basis vectors e1 and e2 of C2 are often denoted by |0〉 and |1〉, re-
spectively. Correspondingly, the 2-qubit element |0〉 ⊗ |1〉 in the bipartite systemC2 ⊗ C2 is conveniently abbreviated as |01〉 and so on. The GHZ gate

|GHZ〉 := 1√
2
(|0〉⊗k + |1〉⊗k)

is a pure k-qubit state that involves the entanglement of at least three subsystems,
i.e., k ≥ 3. GHZ states are used in several protocols in quantum communication
and cryptography because they exhibit some non-classical properties.

Assume k = 3 in this experiment. Consider the mixture of the GHZ state with
the white noise state ( 1√

2
|0〉+ 1√

2
|1〉)⊗3, i.e., a mixed state in the form

Ωσ := (1− σ) |GHZ〉 〈GHZ|+ σ
1

8
I8, 0 ≤ σ ≤ 1,

The density matrix Ωσ, known as the generalized Werner state, has applications in
the robustness of entanglement [42], NMR quantum computation [4], and purifi-
cation schemes for entangled states [31]. In theory, we know that Ωσ is separable
in the sense of (5) if and only if 4

5 ≤ σ ≤ 1 [2,11], but the tensor rank R needed
for the decomposition can be high.

On the other hand, the matrix representation of Ωσ can be expressed as

Ωσ = (1− σ)




1
2 0 · · · 0 1

2

0 0 · · · 0 0
...
...

...
...
...

0 0 · · · 0 0
1
2 0 · · · 0 1

2



+ σ

1

8




1 0 · · · · · · 0

0 1 0 · · ·
...

... 0
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 1




∈ R8×8.
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Comparison of Residuals
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(a) Average residuals via 50 random trials

Comparison of STD of Residuals

2/3 3/4 4/5 5/6 6/7
10 -16

10 -12

10 -8

10 -4

100

(b) STD of residuals

Fig. 2: Average residuals and respective STDs for approximating the GHZ gate.

Our problem (8) amounts to finding the best symmetric rank-1 approximation of
Ωσ, but this rank-1 matrix must involve the tensor product of three factors. Even
for such a small size problem the specially structured rank-1 approximation is not
obvious.

Using the same stopping criterion (30) and repeating the same experiment
50 times for different values of the probability σ, we obtain the empirical results
shown in Figure 2. On one hand, we still observe from Figure 2(b) the consistency
of our methods in producing the structured rank-1 approximation. On the other
hand, Figure 2(a) may seem rather mundane because, for each prescribed σ, all
methods produce nearly identical residuals. In order to understand why there is
such a coincidence, we take a closer examination. We are surprised to discover
that in fact Ωσ has two best rank-1 separable approximations, i.e., |000〉 〈000| and
|111〉 〈111|, which are independent of σ. Therefore, up to the error induced by the
stopping criterion (30), all methods lead to nearly the same best rank-1 separable
approximation, whereas the corresponding optimal λ defined in (11) is given by
λσ = (4− 3σ)/8.

Example 3. Similar to the GHZ state, we now experiment with another non-
biseparable 3-qubit states, i.e., the so-called W state

|W 〉 = 1√
3
(|100〉+ |010〉+ |001〉). (32)

In application, constructing the GHZ state is easier than the W state, but the W

state is more robustly entangled in the sense that, when a subsystem is traced out,
the remaining states is still entangled [12,17,25].

Analogous to the preceding experiment, consider the perturbed state in the
form:

Wσ := (1− σ) |W 〉 〈W |+ σ
1

8
I8, 0 ≤ σ ≤ 1.

Having experienced the GHZ gate, we speculate and are able to verify analytically
that the density matrix Wσ has three nearest rank-1 separable states. These are
the density matrices |100〉 〈100|, |010〉 〈010| and |001〉 〈001| which, again, are inde-
pendent of σ. Let x̂ := x̂1 ⊗ x̂2 ⊗ x̂3 denote the tensor product of the final output
triplet (x̂1, x̂2, x̂3) by various algorithms for Wσ. We are curious to know whether



Rank-1 Approximation for Entangled Multipartite Real Systems 17

Comparison of Errors
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(a) Average errors via 50 random trials
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Fig. 3: Average errors, elapsed time, and respective STDs for approximating Wσ.

the pure state x̂ approximates any of these 3-qubit entangled states, |100〉, |010〉
or |001〉. Therefore, in this experiment, we take the measurement of

Error := min{‖ |001〉−sgn(x̂2)x̂‖2, ‖ |010〉−sgn(x̂3)x̂‖2, ‖ |100〉−sgn(x̂5)x̂‖2}. (33)

The average of errors measured in terms of (33) and the corresponding STDs
after 50 runs for each prescribed algorithm computed with the same stopping
condition (30) are shown in Figure 3. The small errors in Figure 3(a) confirmed
the working of our power-like and SVD-based methods while, in contrast, the
standard optimization routines, e.g., the sqp, produce an approximationwith much
larger errors. The small STDs in Figure 3(b) also confirm that our methods are
more consistent than the standard optimization routines in producing the best
approximation.

Example 4. The purpose of our last experiment is to assess simultaneously
the accuracy and efficiency of our two methods when applied to 4-partite systems.
We randomly generate an SPD matrix T ∈ R120×120 with unit trace as the target
density matrix and search for unit vectors x1 ∈ R5, x2 ∈ R4, x3 ∈ R3, and x4 ∈ R2

to minimize (8). With the fixed T , we let each algorithm carry out 400 iterations.
We repeat our experiments 50 times, each time with the same random starting
values for all methods. We plot the history of the average behavior in Figure 4 to
compare the residuals and overhead progressively.

In Figure 4(a), we see the trend that the SVD-like iterations can reduce the
residuals more rapidly within a relatively small number of iterations than the
power-like iteration. However, the call of svds per iteration by the SVD-like
schemes requires many iterations within the Lanczos algorithm, whereas the calcu-
lation required by the power-like scheme is straightforward and, thus, requires less
elapsed time. Figure 4(b) indicates that, on average, the SVD-like scheme takes
approximately twice as much time per iteration when comparing to the power-like
method. To see how these two conflicting measurements can be mended, we plot
in Figure 4(c) the history of residuals versus the elapsed time. It is interesting to
find that the improvement of residuals by the SVD-like iteration per unit time
with a random choice of α is almost the same as that of the power-like iteration.
In other words, if speed and precision are both desired, then the power-like scheme
and the acyclic SVD-like scheme might be the methods of choice.
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Fig. 4: Average residuals and elapsed time.

6 Conclusion

Motivated by the structure embedded in quantum entanglement, we consider the
real version approximation to entangled multipartite systems. In contrast to the
conventional tensor approximation that is multilinear in its factors, the entangled
multipartite system involves density matrices of pure states and, hence, is nonlinear
with respect to its factors. Generalizing a previous work on bipartite systems, this
paper studies the basic rank-1 approximation to multipartite systems.

The first order optimality condition is rewritten as a nonlinear eigenvalue prob-
lem and a nonlinear singular value problem. Correspondingly, a power-like iterative
scheme and an SVD-like iterative scheme are proposed as means for numerical cal-
culation. Convergence theory is established. Though the schemes appear simple,
numerical experiments seem to suggest that they are effective and efficient for
tackling the rank-1 multipartite approximation problem. Further work should in-
clude the extension of these schemes to the more general low-rank multipartite
systems and complex systems.
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6. Chen, L., Aulbach, M., Hajdušek, M.: Comparison of different definitions of the geometric
measure of entanglement. Phys. Rev. A 89, 042305 (2014). URL https://doi.org/10.

1103/PhysRevA.89.042305
7. Chu, M.T., Lin, M.M.: Nonlinear power-like and SVD-like iterative schemes with applica-

tions to entangled bipartite rank-1 approximation. SIAM J. Sci. Comput. 43(5), S448–S474
(2021). URL https://doi.org/10.1137/20M1336059

8. Comon, P., Luciani, X., de Almeida, A.L.F.: Tensor decompositions, alternating least
squares and other tales. J. Chemometrics 23, 393–405 (2009). URL https://doi.org/
10.1002/cem.1236

9. Dana, M., Ikramov, K.D.: On the codimension of the variety of symmetric matrices with
multiple eigenvalues. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)
323(Chisl. Metody i Vopr. Organ. Vychisl. 18), 34–46, 224 (2005). URL http://doi.org/

10.1007/s10958-006-0275-7
10. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-

(R1, R2, · · · , RN ) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl.
21(4), 1324–1342 (2000). URL https://doi.org/10.1137/S0895479898346995

11. Dür, W., Cirac, J.I.: Classification of multiqubit mixed states: Separability and distill-
ability properties. Phys. Rev. A 61, 042314 (2000). URL https://doi.org/10.1103/

PhysRevA.61.042314

12. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways.
Phys. Rev. A (3) 62(6), 062314, 12 (2000). URL https://doi.org/10.1103/PhysRevA.

62.062314
13. Eltschka, C., Siewert, J.: Entanglement of three-qubit Greenberger-Horne-Zeilinger-

symmetric states. Phys. Rev. Lett. 108, 020502 (2012). URL https://doi.org/10.1103/

PhysRevLett.108.020502
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