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Abstract. With the notable exceptions of two cases — that tensors of order 2, namely, matrices, always have best approximations of
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1. Introduction. A real-valued tensor of order k can be represented by a k-way array

T = [τi1,...,ik ] ∈ RI1×I2×...×Ik

with elements τi1,...,ik accessed via k indices. A tensor of the form

u(1)⊗. . .⊗u(k) :=
[
u
(1)
i1
· u(2)i2 . . . · u(k)ik

]
, (1.1)

where elements are the products of entries from vectors u(j) ∈ RIj , j = 1, . . . , k, is said to be of rank one.
These vectors are referred to as components of the rank-1 tensor [25]. By a tensor decomposition we refer to
the rewriting of the given tensor T as the sum of some rank-1 tensors. There are different desirable structures
in the decomposition. The most general expression is the Tucker decomposition [9, 10, 20, 47]

T =
∑

j1,j2,...,jk

gj1,j2,...,jku
(1)
j1
⊗. . .⊗u(k)

jk
(1.2)

which includes the CANDECOMP/PARAFAC (CP) decomposition [3, 16]

T =
∑
j

u
(1)
j ⊗. . .⊗u

(k)
j (1.3)

as the “diagonal" case. This paper concerns only the CP decomposition, also known as the canonical decom-
position [3], parallel factor [16], or canonical polyadic decomposition [20, 41]. See also [13, 23].

Tensor decompositions have important applications in a wide range of disciplines wherever multi-array
data analysis is imperative. This subject, including the determination of minimum number of terms in the
summation, referred to as the tensor rank, has been a major ongoing research topic with numerous partial
results available in the literature. So that we may stay focused on our main point, we only mention without
elaborating details the point of view that decomposing a tensor amounts to finding real-valued solutions for a
high-degree polynomial system of equations. The latter is a challenging research subject in the field of the so
called real algebraic geometry [1, 2, 40].

∗School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, P. R. C., 116024. (lizzy@mail.dlut.edu.cn)
†Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205. (chu@math.ncsu.edu) This research was

supported in part by the National Science Foundation under grant DMS-1014666.
‡School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, P. R. C., 116024. (yubo@dlut.edu.cn)

1



An alternative approach in place of a complete decomposition is the low rank approximation. The basic
notion consists of two parts. First, the number of terms in the summation is to be fixed a priori, whose choice is
a difficult problem in itself [6, 27, 30] and affects the quality of approximation. Second, the difference between
the given T and the summation is to be minimized in the sense of Frobenius norm. In contrast to the algebraic
problem of finding an exact decomposition which is NP -hard [17, 19], the analytic problem of finding an
approximation seems more computationally feasible. Nonetheless, it must be pointed out that, except for the
case of order-2 tensors which are simply matrices or the case of rank-1 approximation for general tensors, the
best low rank approximation for high-order tensors may not exist at all [11, 27, 29, 31, 42, 43]. An example of
such a failure for rank-2 approximation to an order-k tensor, k > 2, is given in Section 2.2.

The purpose of this paper is to consider the low rank CP approximation under an extra requirement of
orthogonality whose specific meaning will be explained later. The significant of this added condition is that the
best orthogonal low rank tensor approximation always exists [5, 29]. On the other hand, there are applications
which naturally impose orthogonality. The prerequisite of zero-mean signals being uncorrelated, for example,
is essential in signal processing applications. For multi-dimensional data, orthogonal CP tensor decomposition
finds applications in polarization sensitive array analysis, multiple access wireless communication systems,
blind signal separation and identification, and variants of a few other independent component analysis methods.
References associated with these applications can be found in [41, 49], which we shall not repeat here.

For matrices, the best low rank approximation under the Frobenius norm is given by the truncated singular
value decomposition (TSVD). This is essentially the Eckart-Young theorem [14]. There are highly effective
numerical algorithms for computing the TSVD of a matrix [14]. In this case, the orthogonality is an inherent
property of the decomposition. For general tensors, initial efforts have been on generalizing the notion of
matrix SVD to higher-dimensional data. Far from being complete, we mention [5, 9, 24, 31, 32, 36, 49] as a
few references of interest in this direction. Some of these discussions also include accompanying computational
schemes. See, for example, [5, 21, 32, 33]. We think the article [26] probably settles the issue that a full tensor
SVD might be too much to expect for in general and, hence, a low rank approximation should be the alternative.

The“workhorse" algorithm for computing a low rank CP decomposition has been the alternating least
squares (ALS) algorithm [6, 27, 46]. Even so, only its local convergence has been established to this date [48].
The special case of the best rank-1 approximation for tensors has been receiving extensive attention in the
literature [4, 10, 11, 24, 44, 53], but only recently we prove for the first time that the iterates generated by the
ALS method for the rank-1 approximation converge globally for almost all tensors [51]. Global convergence
for general low rank approximation is still elusive.

Our main contribution in this paper is that, after proposing a modification of the conventional ALS method
via the polar decomposition (PD) to address the orthogonality while maintaining a monotone ascending prop-
erty, we further justify the working of our modification by a proof of global convergence. The notion of the
PD is not new [5, 37], but the idea of its application to orthogonal tensor decomposition proves quite effective.
The convergence analysis should be new in the field. For clarity, we summarize the chain of our arguments as
follows, which will be established step by step in the subsequent discussion.

1. The iterates produced by the algorithm should maintain orthogonality.
2. The sequence has cluster points since it is bounded.
3. The sequence of increments tends to zero.
4. Cluster points are geometrically isolated for generic tensors.
5. Together, items 3 and 4 imply that there is a unique limit point of the iteration per starting point.

This paper is organized accordingly. We begin in Section 2 with some preliminary facts including the
notions of adjoint and orthogonality for tensors. In Section 3, the first order optimality condition of approxi-
mation subject to orthogonality is converted into a variant of the ALS method which can also be regarded as a
high-order power method. The notable addition in the algorithm is the mechanism via the polar decomposition
to address the needed orthogonality. The resulting objective values are showed to enjoy an ascending property
in Section 4 and hence converge. To prove the convergence of the iterates generated by the modified orthogonal
ALS method requires additional mathematical insights which are presented in Section 5. In particular, we need
to argue that the stationary points are isolated, which may be considered as a bonus result.
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2. Preliminaries. This section introduces the notation system used in this paper and the basic concepts
of adjoint and orthogonality. Expert readers may skip reading through these elementary properties and go to
Section 3 directly.

2.1. Adjoint operator. The so called contraction product [7] or n-mode product [27] plays a fundamental
role in tensor manipulation. For our applications, however, we are in constant need of multiple-level n-mode
products. It is more convenient to introduce a special product which follows naturally from an operator point
of view and brings forth the useful notion of adjoint.

An order-k tensor T ∈ RI1×...×Ik may be thought of as a linear operator mapping/contracting order-(k−1)
tensors to vectors. Because the tensor T has k “facets", it should be specified that with respect to which facet
of the tensor T that the dimension contraction is taking place. For this matter, suppose ` is fixed, then we can
identify T as the operator T ≡ T` with

T` : RI1×...×Î`×...×Ik → RI` , (2.1)

where Î` means that quantities associated with this particular index are taken out from the remaining list, and
define its action at any S ∈ RI1×...×Î`×...×Ik by the operation

T`(S) := T~` S =

 〈τ:,1,:, S〉...
〈τ:,I`,:, S〉

 ∈ RI` . (2.2)

In (2.2), the colon(:) denotes any wild indices in the tensor T , so τ:,ν`,: represents the ν`-th “slice" of the
tensor T in the `-th direction which is an order-(k − 1) tensor. Also, 〈·, ·〉 denotes the Frobenius inner product
generalized to multi-dimensional arrays.

Taking an order-3 tensor acting on matrices as an illustration. Let {EJ}, where J is a double index, denote
the standard basis EJ = [eJst] ∈ Rm×n with

eJst =

{
1, if J = (s, t),
0, otherwise,

and likewise {ei} the standard basis of Rp. Suppose that the action of T at a basis matrix EJ ∈ Rm×n is
expressed in terms of basis {ei} as

T (EJ) =
∑
i

τi,Jei

with τi,J ∈ R. Then for any X = [xij ] ∈ Rm×n the linear map entails the relationship

T (X) = T

(∑
J

xJEJ

)
=
∑
J

xJ

(∑
i

τi,Jei

)
=
∑
i

(∑
J

τi,JxJ

)
ei. (2.3)

By visualizing the order-3 tensor T a p × 1 block matrix of which each block is an m × n matrices, the
relationship (2.3) is a 2-dimensional contraction ~1 defined by

T (X) ≡


τ1,:

τ2,:

...
τp,:


︸ ︷︷ ︸

T

~1X := [〈τi,:, X〉] ∈ Rp.
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It follows naturally that the adjoint operator T ∗ : Rp → Rm×n should be defined as

T ∗(v) :=
∑
i

viτi,: (2.4)

which satisfies the required property that

〈T (X),v〉 = 〈X,T ∗(v)〉 (2.5)

for every X ∈ Rm×n and v ∈ Rp.
Generalizing the spirit of (2.5) whereas the notion of “transpose" is embedded in the tensor product ~`,

the following result can easily be proved by rearranging terms in the summation via the associative law.
LEMMA 2.1. For any ` = 1, . . . , k, let h(`) ∈ RI` be an arbitrary vector. Then it is true that〈

T,u(1)⊗. . .⊗h(`)⊗. . .⊗u(k)
〉
=
〈
T~`

(
u(1)⊗. . .⊗û(`)⊗. . .⊗u(k)

)
,h(`)

〉
. (2.6)

Because (2.6) holds for any index `, we have the reciprocating relationship〈
T~i

(
u(1)⊗. . .⊗û(i)⊗. . .⊗u(k)

)
,u(i)

〉
=
〈
T~j

(
u(1)⊗. . .⊗û(j)⊗. . .⊗u(k)

)
,u(j)

〉
. (2.7)

for any two distinct indices i and j. Both identities (2.6) and (2.7) will be useful in the subsequent discussion.

2.2. Rank-2 approximation, nonexistence, and orthogonality. The problem of finding a best rank-
2 approximation to a given order-k tensor T ∈ RI1×...×Ik is to determine unit vectors u

(`)
1 ,u

(`)
2 ∈ RI` ,

` = 1, . . . k, and scalars λ1, λ2 ∈ R such that the function

f
(
u
(1)
1 , . . . ,u

(k)
1 ,u

(1)
2 , . . . ,u

(k)
2 ;λ1, λ2

)
:=

∥∥∥∥∥∥∥T − λ1 u(1)
1 ⊗. . .⊗u

(k)
1︸ ︷︷ ︸

H1

−λ2 u(1)
2 ⊗. . .⊗u

(k)
2︸ ︷︷ ︸

H2

∥∥∥∥∥∥∥
2

F

(2.8)

is minimized. Note that all vectors are normalize to unit length. This seemingly straightforward least squares
problem is far more complicated as can be seen from the following example [11].

Given linearly independent unit vectors a(j),b(j) ∈ RIj , j = 1, . . . , k, consider the tensor

X := b(1) ⊗ a(2) ⊗ . . .⊗ a(k) + a(1) ⊗ b(2) ⊗ . . .⊗ a(k) + . . .+ a(1) ⊗ a(2) ⊗ . . .⊗ b(k)

which is of rank k. For γ ∈ R, define

Y (γ) := γ

(
a(1) +

b(1)

γ

)
⊗
(
a(2) +

b(2)

γ

)
⊗ . . .⊗

(
a(k) +

b(k)

γ

)
− γa(1) ⊗ a(2) ⊗ . . .⊗ a(k)

which is of rank 2. Then it is easy to see that Y (γ)→ X as γ →∞, showing that the best rank-2 approximation
to X does not exist. What has happened is that if we rewrite the difference ‖X − Y (γ)‖2F in the form of (2.8)
by enforcing unit base tensors H1 and H2, then the two corresponding scalars λ1 and λ2 are necessarily going
to infinity in opposite sign [11, Proposition 4.8]. This phenomenon is referred to as “degeneracy" in [29]. Such
an occurrence results in longitudinal cancelation and ultimate convergence to X . In this case, the two unit base
tensors H1 and H2 eventually become identical.

One possible remedy to avoid such a coalescing phenomenon is to impose the condition that the base
tensors H1 and H2 remain orthogonal to each other. The reason is that orthogonality will imply boundedness
of λ1 and λ2, as we shall explain in Section 3.1. Such a requirement of orthogonality is more in line with, but
not exactly the same as, the best rank-2 approximation to a matrix. In the TSVD of a given matrix, the rank-1
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base matrices are necessarily orthogonal to each other because the corresponding singular vectors are mutually
orthogonal. For rank-1 tensors, however, note that the inner product can be written as

〈H1, H2〉 =
k∏
`=1

〈
u
(`)
1 ,u

(`)
2

〉
.

So rank-1 base tensors H1 and H2 are mutually orthogonal if and only if at least one pair of its components(
u
(`)
1 ,u

(`)
2

)
are orthogonal. The implication that only one pair of orthogonality among components of rank-1

matrices is needed is very different from, and more relaxed than, the pairwise orthogonality happening in the
singular value decomposition (SVD) for matrices.

This notion of H1 being orthogonal to H2 corresponds to the so called orthogonal rank approximation
which is the most general case among three definitions of orthogonality for two rank-1 tensors characterized
in [25, Section 3.1]. The more restricted case of the so called complete orthogonality requires pairwise or-
thogonality of all components of rank-1 matrices, of which an example is the SVD, and is not within our
consideration. It was suggested in [25, Section 4] that the completely orthogonal decomposition might be eas-
ier to manipulate than the orthogonal decomposition. This paper concerns the orthogonal rank approximation
only. For the completely orthogonal decomposition, we do suggest [53, Section 3] for a theoretical discussion,
and [5] and [33] for some numerical algorithms. A general treatment of the various aspects of orthogonality
and associated problems can be found in [25]. See also Section 6 in this paper for a brief discussion on matrices
and other references for works generalizing the Eckart-Young theorem to tensors.

3. Orthogonal low rank approximation. Generalizing (2.8), we are interested in the orthogonal rank-R
CP approximation to T by minimizing the objective function

f
(
u
(1)
1 , . . . ,u

(k)
1 , . . . ,u

(1)
R , . . . ,u

(k)
R ;λ1, . . . , λR

)
:=

∥∥∥∥∥∥∥T −
R∑
r=1

λr u
(1)
r ⊗. . .⊗u(k)

r︸ ︷︷ ︸
Hr

∥∥∥∥∥∥∥
2

F

, (3.1)

subject to the mutual orthonormality condition that

〈Hi, Hj〉 =
k∏
`=1

〈
u
(`)
i ,u

(`)
j

〉
= δij , for all 1 ≤ i, j ≤ R. (3.2)

Obviously, (3.2) constitutes a far more complicate set of constraints among the components of the rank-1
base tensors. We shall further refine the constraints (3.2) by imposing two additional conditions, which will
be assumed henceforth in this paper. First, all components u

(`)
r , ` = 1, . . . , k, are of unit length, which

automatically implies that the base tensors Hr, r = 1, . . . , R, are of unit length, but not the converse. Second,
there exists an integer s, 1 ≤ s ≤ k, such the columns of the factor matrix

A(s) :=
[
u
(s)
1 ,u

(s)
2 , . . . ,u

(s)
R

]
∈ RIs×R (3.3)

are mutually orthonormal, which is sufficient for the orthogonality specified by (3.2) but significantly limits the
overall structure. The condition (3.2) under the special case of (3.3), is referred to as the semi-orthogonality 1

[41]. To fix the idea in the following discussion, we may rearrange the indices if necessary and assume without
loss of generality that the semi-orthogonality happens at A(k), that is, 〈u(k)

i ,u
(k)
j 〉 = δij for 1 ≤ i, j ≤ R.

We stress that this work concerns the semi-orthogonality of one factor matrix A(k) only. The question of more
than one semi-orthogonal factor matrix, except for the case of complete orthogonality [5], remains open. (See
Section 5.4 for a brief discussion.)

1We think that this term is a somewhat misnamed connotation since now semi-orthogonality implies orthogonality.
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In order to minimize (3.1) subject to the semi-orthogonality condition, two numerical approaches have
been proposed in a recent paper [41]. These are techniques exploiting the simultaneous matrix diagonalization
(SD-CPO) and the ALS applied to the combined mode matrices (ALS-CPO), respectively. The former can be
interpreted as a simultaneous Takagi factorization and requires the calculation of a specific orthogonal matrix
F . The latter maintains orthogonality by computing the SVD of a certain flattened matrix representation of the
tensor, though the combined mode matrices can cleverly be made implicit. Results from extensive numerical
experiments are reported, but no proof of convergence is ever given. This lack of proof is unfortunately falling
in the same vein as other ALS variants toward which it was exclaimed in [6] that “Their [the ALS algorithms]
extensive use is thus unexplainable.”

In contrast, we apply our modified ALS method to the given tensor as it is without combining modes;
we ensure the orthogonality with the much easier and straightforward polar decomposition circumventing the
sophisticated procedures described in [41]; and, more importantly, we prove global convergence which should
have addressed some critical questions raised in [25]. The tactics developed in the subsequent discussion might
be useful for tackling more general problems.

3.1. Generalized Rayleigh quotient. One immediate consequence of orthogonality is that, for each fixed
set of mutual orthogonal unit tensors Hr, r = 1, . . . , R, the optimal scalars in (3.1) are necessarily given by

λr = λr

(
u(1)
r , . . . ,u(k)

r

)
=
〈
T,u(1)

r ⊗. . .⊗u(k)
r

〉
, r = 1, . . . , R. (3.4)

It effectively implies that |λr| ≤ ‖T‖F , making a drastic difference from that without the orthogonality.
As the base tensors are mutually orthonormal, the expression for λi in (3.4) can also be interpreted as the

Fourier coefficient of, or the length of the projection of the “vector" T onto, the the “unit vector" Hr under the
Frobenius inner product. Thus, the minimization of (3.1) is equivalent to the problem of

max

R∑
r=1

λ2r (3.5)

subject to the same constraints. In the subsequent discussion, the set of variables over which the maximization
is conducted will be limited to the refined constraints mentioned above.

3.2. Optimality condition. The Lagrangian for the optimization problem (3.5) is

L :=

R∑
r=1

λ2r −
k∑
`=1

R∑
r=1

ρ(`)r

(〈
u(`)
r ,u(`)

r

〉
− 1
)
−

∑
1≤s<t≤R

µst

〈
u(k)
s ,u

(k)
t

〉
,

where λr is given by (3.4) and ρ(`)r , µst are Lagrange multipliers which will be identified below. Accordingly,
the first order optimality condition for a stationary point is to satisfy the system of equations defined by [32]

λrT~`
(
u(1)
r ⊗. . .⊗û(`)

r ⊗. . .⊗u(k)
r

)
= ρ(`)r u(`)

r , ` = 1, . . . , k − 1; r = 1, . . . , R, (3.6)

and

λr T~k
(
u(1)
r ⊗. . .⊗u(k−1)

r

)
︸ ︷︷ ︸

v
(k)
r

= ρ(k)r u(k)
r +

∑
r<t

µrt
2

u
(k)
t +

∑
s<r

µsr
2

u(k)
s , r = 1, . . . , R. (3.7)

Taking inner product on each side of (3.6) with respect to u
(`)
r and taking the relationship (3.4) into account,

we see that the Lagrange multipliers ρ(`)r must satisfy the relationships

ρ(`)r = λ2r, ` = 1, . . . , k; r = 1, . . . , R, (3.8)
6



which then reduces the systems (3.6) to

T~`
(
u(1)
r ⊗. . .⊗û(`)

r ⊗. . .⊗u(k)
r

)
= λru

(`)
r , ` = 1, . . . , k − 1; r = 1, . . . , R. (3.9)

Likewise, the relationships 
µrt

2 = λr

〈
v
(k)
r ,u

(k)
t

〉
, if r < t

µsr

2 = λr

〈
v
(k)
r ,u

(k)
s

〉
, if s < r

(3.10)

also hold. So we can rewrite (3.7) as

v(k)
r = λru

(k)
r +

∑
r<t

〈
v(k)
r ,u

(k)
t

〉
u
(k)
t +

∑
s<r

〈
v(k)
r ,u(k)

s

〉
u(k)
s , r = 1, . . . , R. (3.11)

In all, (3.9) and (3.11) together represent a system of R
∑k
`=1 I` nonlinear equations for the unknowns u

(`)
r ,

` = 1, . . . , k, r = 1, . . . , R. A solution to this system gives rise to a stationary point of the problem (3.5).
The system (3.11) represents a Fourier series expansion of v(k)

r with respect to the basis
{
u
(k)
1 , . . . ,u

(k)
R

}
.

Having the linear combination for each v
(k)
r rewritten in the outer product form, we can express the subsystem

(3.11) collectively in the matrix equation2[
v
(k)
1 , . . . ,v

(k)
R

]
︸ ︷︷ ︸

V (k)

=
[
u
(k)
1 , . . . ,u

(k)
R

]
︸ ︷︷ ︸

U(k)

[〈
v
(k)
i ,u

(k)
j

〉]
︸ ︷︷ ︸

P (k)

, (3.12)

where V (k), U (k) ∈ RIk×R and P (k) ∈ RR×R. Note that the scalar λr in (3.11) has gone into the diagonal of
P (k) because the semi-orthogonality at A(k) implies that λr = 〈v(k)

r ,u
(k)
r 〉.

At first glance, the right side of (3.12) denotes only a factorization of V (k). As P (k) is square matrix, we
would think that U (k) might be expressed in terms of V (k). The trouble is that, in order to satisfy (3.11), the
matrix P (k) itself also involves the unknown vectors u(k)

r . Among the various possible factorizations of V (k),
our first demand is that columns of U (k) should be mutually orthonormal. Furthermore, note that the way v

(k)
r

is defined in (3.7) is similar to those u
(`)
r defined in (3.9), except that the former is yet to be orthonormalized.

We thus are motivated that u(k)
r should stay in close proximity to the normalized v

(k)
r for each r = 1, . . . , R.

Judging from these requirements, we propose using the polar decomposition of the column-wise normalized
V (k) as the solution for U (k) because of the following known results [18, Theorem 1.1 and Corollary 2.3].

THEOREM 3.1. Assume Ik ≥ R. Let D = diag
{
‖v(k)

1 ‖2, . . . , ‖v
(k)
R ‖2

}
. Then there exist a matrix

U (k) ∈ RIk×R and a unique symmetric positive semi-definite matrix S(k) ∈ RR×R such that the equation
(3.12) holds for P (k) = S(k)D and U (k)>U (k) = IR. Furthermore,

1. If rank(V (k)) = R, then S(k) is positive definite and U (k) is uniquely determined.
2. U (k) is the nearest orthogonal approximation to the normalized V (k) in the sense that

‖V (k)D−1 − U (k)‖F ≤ ‖V (k)D−1 − Z‖F

for any Z ∈ RIk×R satisfying Z>Z = IR.
The polar decomposition of a given matrix can easily be computed by means of the SVD3. It serves as the

key mechanism in our algorithm to maintain the orthogonality.

2A similar setting with emphasis on symmetry has been considered in [5, Section 5.3] which also leads to the polar decomposition as
we shall describe below. The difference is that the setting in [5] is for complete orthogonality and, hence, symmetry follows. Our work
concerns only semi-orthogonality.

3Actually, the update in the algorithm ALS1-CPO in [41] is computing precisely the PD of A(3)> by means of the SVD, whose
motivation is explained in a different way via [41, Section 4.3].
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3.3. Modified high-order power iteration. A commonly used tactic for solving the nonlinear system
(3.9) and (3.11) is to alternate directions among the variables in a way similar to the classical Gauss-Seidel
method [15, 33]. This is also known as the high-order power method [9, 32, 34]. The added challenge is to
maintain the required semi-orthogonality. We propose to handle this condition through the polar decomposition
and justify its working in Sections 4 and 5. The iterative procedure as is summarized in Algorithm 1.

Some remarks on the notation are due. For clarity, we have included an extra subscript ·[p] to denote
the advance in iteration. So, ·(`)r,[p] indicates that the associated quantity ·(`)r is resulted from the p-th iteration,
though in a real coding such a reference to p is not needed. Note that for each fixed p and `, the calculation of

u
(`)
r,[p+1] for r = 1, . . . , R in the innermost loop can be done in parallel. The sequence

{
λ
(`)
r,[p]

}∞
p=1

will prove

useful for approximating the generalized Rayleigh quotient λr. In particular, we shall use the second property
in Theorem 3.1 to maintain a specific property of monotonicity which will be explained in the next section.

Algorithm 1 modifies the classical alternating least squares algorithm [6, 27, 48] with the regression step
for A(k) replaced by orthogonal regression4. The main contribution of the paper is to prove the global conver-
gence of the iterates

{
u
(`)
r,[p]

}
.

Algorithm 1 (High-order power method for orthogonal low rank decomposition.)

Require: Given u
(`)
r,[0] ∈ RI` , ` = 1, . . . , k, r = 1, . . . , R, and u

(k)
i,[0] ⊥ u

(k)
j,[0] for 1 ≤ i 6= j ≤ R,

for p = 0, 1, · · · , do
for ` = 1, 2, · · · , k − 1, do

for r = 1, 2, · · · , R, do
{This loop can be done in parallel}
u
(`)
r,[p+1] = T~`

(
u
(1)
r,[p+1]⊗. . .⊗u

(`−1)
r,[p+1]⊗û

(`)⊗u(`+1)
r,[p] . . .⊗u(k)

r,[p]

)
λ
(`)
r,[p+1] := ‖u

(`)
r,[p+1]‖2

u
(`)
r,[p+1] :=

u
(`)

r,[p+1]

λ
(`)

r,[p+1]

end for
end for
for r = 1, 2, · · · , R, do

{This loop can be done in parallel}
v
(k)
r,[p+1] = T~k

(
u
(1)
r,[p+1]⊗. . .⊗u

(k−1)
r,[p+1]

)
λ
(k)
r,[p+1] := ‖v

(k)
r,[p+1]‖2

v
(k)
r,[p+1] :=

v
(k)

r,[p+1]

λ
(k)

r,[p+1]

{define columns of V here}

end for
[U,P ] = poldec(V ) {polar decomposition is called here}
for r = 1, 2, · · · , R, do
u
(k)
r,[p+1] := U(:, r)

end for
end for

4All ALS methods are conceptually similar — updating one set of variables a time via least squares while keeping all other variables
fixed. The only difference is at the formulation of the objective functions. See footnote #5 for a few variations. Both approaches are
dealing with the CP formulation, so the ALS-CPO in [41] and our Algorithm 1 are mathematically equivalent. The subtle difference is at
the fact that the innermost loop (for the index r) of Algorithm 1 can be processed in parallel is precisely where the ALS-CPO comes in to
put forth in matrix form.
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4. Convergence of objective values. In the following discussion, all vectors with indices in the form
.
(`)
r,[p] refer to those defined in Algorithm 1. For r = 1, . . . , R, p = 0, 1, . . ., evaluate the generalized Rayleigh

quotient at
(
u
(1)
r,[p], . . . ,u

(k)
r,[p]

)
and denote the scalar by

λr,[p] := λr

(
u
(1)
r,[p], . . . ,u

(k)
r,[p]

)
.

Changing the signs of the starting points if necessary, we may assume that λr,[0] > 0 for all r = 1, . . . , R. The
progressive way of defining the first u(`)

r,[p+1] described in Algorithm 1 ensures an inherent ascending property
on its iterates in the sense that [34, 51]

λr,[p] ≤ λ
(1)
r,[p+1] ≤ λ

(2)
r,[p+1] ≤ . . . ≤ λ

(k−1)
r,[p+1] ≤ λ

(k)
r,[p+1], r = 1, . . . , R. (4.1)

Since u(k)
r,[p+1] is defined differently, we need to argue that the cascade of inequalities in (4.1) continues to hold

if λ(k)r,[p+1] is replaced by λr
(
u
(1)
r,[p+1], . . . ,u

(k)
r,[p+1]

)
. This is one major watershed we have to mark clearly

when the conventional ALS method is modified in order to ensure the semi-orthogonality. For the conventional
ALS where orthogonality is not an issue, see the general discussion in [34, Section 4] and [51].

Recall that the ultimate goal is to maximize
∑R
r=1 λ

2
r subject to the refined semi-orthogonality constraints.

During the intermediate steps of Algorithm 1, we have already generated unit vectors u(`)
r,[p+1], r = 1, . . . , R,

` = 1, . . . , k − 1, and the inequalities (4.1). Consider the linear functional π(k)
r : RIk → R, r = 1, . . . , R,

defined by

π(k)
r

(
y(k)
r

)
:=
〈
T,
(
u
(1)
r,[p+1]⊗. . .⊗u

(k−1)
r,[p+1]

)
⊗y(k)

r

〉
(4.2)

over the unit sphere in RIk . It is readily seen that π(k)
r

(
u
(k)
r,[p]

)
= λ

(k−1)
r,[p+1] ≤ π

(k)
r

(
v
(k)
r,[p+1]

)
= λ

(k)
r,[p+1]

because (the normalized) v(k)
r,[p+1] is the global maximizer for the functional π(k)

r over all unit vectors y(k)
r ∈

RIk and u
(k)
r,[p], r = 1, . . . , R, are some orthonormal vectors obtained from the previous iteration. The concern

is that we need to make a comparison with u
(k)
r,[p+1], r = 1, . . . , R.

In the same way as we have derived (3.11), the optimality condition for maximizing
∑R
r=1

(
π
(k)
r

)2
subject

to the semi-orthogonality condition among y
(k)
1 , . . . ,y

(k)
R can be described in terms of the polar decomposition[

v
(k)
1,[p+1], . . . ,v

(k)
R,[p+1]

]
=
[
u
(k)
1,[p+1], . . . ,u

(k)
R,[p+1]

]
P, (4.3)

with P = [pij ] ∈ RR×R being symmetric and positive semi-definite. The polar decomposition ensures not
only that u(k)

r,[p+1], r = 1, . . . , R, are mutually orthonormal, but also that〈
u
(k)
r,[p+1],v

(k)
r,[p+1]

〉
= prr ≥ 0, r = 1, . . . , R.

It follows that, for each r = 1, . . . , R, the pair of unit vectors u
(k)
r,[p+1] and v

(k)
r,[p+1] maintain an acute an-

gle. Since v
(k)
r,[p+1] points to the steepest ascend direction for π(k)

r , so does u
(k)
r,[p+1] increase the value of the

functional π(k)
r . Collectively, the updated set

{
u
(k)
1,[p+1], . . . ,u

(k)
R,[p+1]

}
is generically the unique set of vectors

representing the minimum change of
{
v
(k)
1,[p+1], . . . ,v

(k)
R,[p+1]

}
while satisfying both the optimality condition
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(4.3) and the orthonormal constraint. Note that the old set
{
u
(k)
1,[p], . . . ,u

(k)
R,[p]

}
satisfies only the condition of

orthogonality. We thus establish the inequalities

R∑
r=1

λ2r,[p] ≤
R∑
r=1

(
λ
(k−1)
r,[p+1]

)2
=

R∑
r=1

(
π(k)
r

(
u
(k)
r,[p]

))2
≤

R∑
r=1

(
π(k)
r

(
u
(k)
r,[p+1]

))2
=

R∑
r=1

λ2r,[p+1]. (4.4)

Different from the conventional ALS without orthogonality, it is worth noting that the last inequality in

λr,[p] ≤ λ
(1)
r,[p+1] ≤ λ

(2)
r,[p+1] ≤ . . . ≤ λ

(k−1)
r,[p+1] ≤ λr,[p+1], r = 1, . . . , R (4.5)

may not hold. However, each sweep in the outer loop for p in Algorithm 1 has the effect of increasing the
objective value of

∑R
r=1 λ

2
r . We have already pointed out that λr ≤ ‖T‖F , due to the orthogonality. The

sequence
{∑R

r=1 λ
2
r,[p]

}
of objective values generated from iterates by Algorithm 1 must converge.

5. Convergence of iterates. The argument in the preceding section shows only the convergence of the
objective values

∑R
r=1 λ

2
r,[p], which is not enough yet to guarantee the convergence of iterates themselves to

a maximizer. More need be done. In fact, the lack of convergence analysis has always been a major issue
in the ALS applications5 [8, 27, 34]. Only recently, under some additional conditions on the Hessian matrix,
was a local convergence analysis of the conventional ALS method for the low-rank approximation finally
accomplished in [48]. Global convergence for general low rank approximation is still elusive. Using algebraic
geometry argument, we have made a small progress recently in proving the global convergence of the ALS
iterates for the rank-1 approximations in [51].

Our work here is different in two aspects. First, we need to address the added orthogonality. Second,
no convergence proof is ever given for orthogonal low-rank approximation, despite the two methods proposed
in [41] for the calculation. Proving the global convergence of the orthogonal tensor iterates generated by
Algorithm 1 will be a new advance in the field, which is the primal contribution of this paper. Our approach
consists of three separate parts which we present below.

5.1. Geometrically isolated stationary points. Algorithm 1 generates a sequence of vectors which we
group as {(

u
(1)
1,[p], . . . ,u

(k)
1,[p]

)
, . . . ,

(
u
(1)
R,[p], . . . ,u

(k)
R,[p]

)}
.

We see from the above discussion that any accumulation point of this sequence necessarily satisfies the system
of nonlinear equations

T~`
(
u
(1)
r ⊗. . .⊗û(`)

r ⊗. . .⊗u(k)
r

)
=
〈
T,u

(1)
r ⊗. . .⊗u(k)

r

〉
u
(`)
r , ` = 1, . . . , k − 1;

T~k
(
u
(1)
r ⊗. . .⊗u(k−1)

r

)
=
∑R
t=1

〈
T,u

(1)
r ⊗. . .⊗u(k−1)

r ⊗u(k)
t

〉
u
(k)
t , r = 1, . . . , R.

(5.1)

We want to argue that generically an accumulation point is geometrically isolated.
To prove that a solution of a nonlinear system is geometrically isolated, it suffices to prove that the corre-

sponding Jacobian of the system is of full rank at such a point [22, Section 2]. This will be a difficult task for a
general nonlinear system, but the theory of algebraic geometry becomes particular useful in our case.

The system (5.1) can be regarded as a square system of polynomials in R
∑k
`=1 I` variables, i.e., entries

of u(`)
r , ` = 1, . . . , k, r = 1, . . . , R. Each equation in the top subsystem of (5.1) has

∏k
`=1 I` many “leading"

5We need to stress that the difficulty mentioned here is attributed to the CP formulation. For other models such as DEDICOM, SCA,
Dynamals, Parafac-2, INDSCAL, and INDORT where the objective functions assume different forms, variants of ALS-type algorithms
have been developed and their dynamics might behave differently. For instance, under some mild assumptions, the infimum of the objective
function might be attainable, which deviates from what we have demonstrated in Section 2.2 and might somewhat facilitate the convergence
analysis. For a general overview on this subject, see [28].
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terms of degree k + 1 with coefficients from entries of T , while each equation in the bottom subsystem has
R
∏k
`=1 I` many leading terms of degree k + 1. Regarding the tensor T as the parameters of the polynomial

system, the follow result is known from the theory of parameter continuation [40, Theorem 7.1.1].
THEOREM 5.1. Let N (T ) denote the number of geometrically isolated solutions to the corresponding

(5.1) over the algebraically closed complex space. Then
1. N (T ) is the same, say N , for almost all T ∈ CI1×...×Ik .
2. For all T ∈ CI1×...×Ik , N (T ) ≤ N .
3. The subset of CI1×...×Ik where N (T ) = N is a Zariski open set, that is, the exceptional subset of

tensors T ∈ CI1×...×Ik where N (T ) < N is an affine algebraic set6 contained within an algebraic
set of codimension one.

We are interested only in real-valued tensors. Since Rn is Zariski dense in Cn, the above statements hold
for almost all T ∈ RI1×...×Ik , except that the number of real-valued isolated solutions varies as a function of
T and is no longer a constant. The latter is an interesting topic in the active and ongoing research area called
real algebraic geometry. For our application, we only need the fact of isolation.

COROLLARY 5.2. For almost all tensors T ∈ RI1×I2×...×Ik , the accumulation points of any sequence
generated by Algorithm 1 are necessarily isolated. That is, around any accumulate point there is a neighbor-
hood such that the sequence of iterates from Algorithm 1 has no other accumulate point.

We will also make use of the following lemma from real analysis [51, Lemma 3.5].
LEMMA 5.3. Let {an} be a bounded sequence of real numbers with the property that the difference

an+1−an converges to zero as n goes to infinity. If the accumulation points for the sequence are isolated, then
the sequence {an} converges to a unique accumulate point.

5.2. Diminishing increments. An array of critical questions concerning the convergence of the conven-
tional ALS method applied to tensors has been raised and partially answered in the interesting paper [34,
Section 4.3], one of which is that the magnitude of the change∥∥∥∥∥

R∑
r=1

λr,[p]u
(1)
r,[p]⊗. . .⊗u

(k)
r,[p] −

R∑
r=1

λr,[p+1]u
(1)
r,[p+1]⊗. . .⊗u

(k)
r,[p+1]

∥∥∥∥∥→ 0 (5.2)

as p goes to infinity. We must point out that such a result was proved for the conventional ALS method only
[34, Section 4.3.2]. Our orthogonal ALS scheme is somewhat different. We must reconsider the situation with
further details.

Define the individual increments among factors by

δu
(`)
r,[p] := u

(`)
r,[p+1] − u

(`)
r,[p], ` = 1, . . . , k; r = 1, . . . , R. (5.3)

The identities 〈
u
(`)
r,[p+1], δu

(`)
r,[p]

〉
= 1−

〈
u
(`)
r,[p+1],u

(`)
r,[p]

〉
=

1

2

∥∥∥δu(`)
r,[p]

∥∥∥2 (5.4)

hold for all ` = 1, . . . , k and r = 1, . . . , R. Denoting λ(0)r,[p+1] := λr,[p], we observe that

λ
(`)
r,[p+1] =

〈
T,u

(1)
r,[p+1]⊗. . .⊗u

(`−1)
r,[p+1]⊗

(
u
(`)
r,[p] + δu

(`)
r,[p]

)
⊗u(`+1)

r,[p] ⊗. . .⊗u
(k)
r,[p]

〉
= λ

(`−1)
r,[p+1] +

〈
δu

(`)
r,[p], T~` u

(1)
r,[p+1]⊗. . .⊗u

(`−1)
r,[p+1]⊗û

(`)⊗u(`+1)
r,[p] . . .⊗u(k)

r,[p]︸ ︷︷ ︸
λ
(`)

r,[p+1]
u

(`)

r,[p+1]

〉

= λ
(`−1)
r,[p+1] +

λ
(`)
r,[p+1]

2

∥∥∥δu(`)
r,[p]

∥∥∥2 , ` = 1, . . . , k − 1; r = 1, . . . , R. (5.5)

6A subset of affine n-spaceAn over an algebraically closed field k is called an affine algebraic set if it can be written as the zero locus
of a set of polynomials. By the Hilbert basis theorem, this set of polynomials can be assumed to be finite. The Zariski topology onAn is
simply a topology where the closed sets are precisely the algebraic sets inAn.
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By the monotone convergence established in Section 4, we conclude that the sequence
{
δu

(`)
r,[p]

}
for each

` = 1, . . . , k − 1 and r = 1, . . . , R converges to zero as p goes to infinity.
It must be pointed out that the identity (5.5) does not work for the case ` = k. Thus far, nothing is known

yet for the sequence
{
δu

(k)
r,[p]

}
because u

(k)
r,[p] is generated via the additional step of the polar decomposition,

which make it more complicated to estimate δu(k)
r,[p] directly. Nonetheless, we have enough information to show

that δu(k)
r,[p] also converges to zero by the argument in the following section.

5.3. Global convergence. The following theorem completes the last stage of convergence analysis we
have been aiming for.

THEOREM 5.4. For almost all tensors T ∈ RI1×I2×...×Ik , , the sequences
{
u
(`)
r,[p]

}
generated by the

orthogonal ALS methods converges for each ` = 1, . . . , k and r = 1, . . . , R.
Proof. Consider first the case when ` = 1, . . . , k − 1 and r = 1, . . . , R. Starting with any initial values

u
(`)
r,[0], it is clear that all iterates

{
u
(`)
r,[p]

}
are bounded. So accumulation points exist. By definition, any accu-

mulation point necessarily satisfies the system of nonlinear equations (5.1) whose solutions are geometrically
isolated. We have already argued in Section 5.2 that

{
δu

(`)
r,[p]

}
converges to zero as p goes to infinity. It follows

that the sequence
{
u
(`)
r,[p]

}
must converge to a single accumulation point because, by Lemma 5.3, each of its

components converges. In this way, we establish the global convergence for every element in the subgroup{(
u
(1)
1,[p], . . . ,u

(k−1)
1,[p]

)
, . . . ,

(
u
(1)
R,[p], . . . ,u

(k−1)
R,[p]

)}
. (5.6)

We now argue for the case ` = k. By continuity and the definition of v(k)
r,[p], the convergence of every

element in (5.6) implies the global convergence of the sequences
{
v
(k)
r,[p]

}
. Under the generic assumption,

the polar decomposition of
[
v
(k)
1,[p+1], . . . ,v

(k)
R,[p+1]

]
is unique. The convergence of

{
u
(k)
r,[p]

}
, r = 1, . . . , R

therefore also follows. The global convergence of the orthogonal ALS method for generic tensors is now
complete.

We conclude this section with the following remark. Although we have just established the fact that
the orthogonal ALS method converges globally, such a global convergence should not be confused with the
possibility that the iterates may converge to a local minimizer of the objective function f defined in (2.8). A
limit point obtained by the ALS method depends on the starting point and is not guaranteed to be the best rank-
R approximation to T [44]. Questions such as the number of achievable minimizers and starting strategies to
achieve these points should be an interesting research topic by themselves.

5.4. Generalization. It is natural to ask the question of generalizing the notion of semi-orthogonality to
more than one factor matrix. We have mentioned that the semi-orthogonality of one orthogonal factor matrix is
already enough for maintaining the orthogonal condition (3.2). The more restricted constraint by adding extra
semi-orthogonal factor matrix might be for other purposes. See, for example, the next section for the SVD.

Consider the scenario where we require that 〈u(s)
i ,u

(s)
j 〉 = δij for 1 ≤ i, j ≤ R and s = k − 1, k. In this

case, it should not be difficult to modify the Lagrangian and re-derive the optimality condition as we have done
in Section 3.2. In particular, it might be possible to modify Algorithm 1 by first applying a polar decomposition
to the normalized vector of

v
(k−1)
r,[p+1] = T~k−1

(
u
(1)
r,[p+1]⊗. . .⊗u

(k−2)
r,[p+1]⊗û

(k−1)⊗u(k)
r,[p]

)
to obtain u

(k−1)
r,[p+1] followed by a second polar decomposition applied to the normalized vector of

v
(k)
r,[p+1] = T~k

(
u
(1)
r,[p+1]⊗. . .⊗u

(k−1)
r,[p+1]

)
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to obtain u
(k)
r,[p+1]. We conjecture that the global convergence still holds. However, the technique employed

in the preceding section might not be immediately generalizable because we need to prove the convergence of
both sequences

{
v
(k−1)
r,[p]

}
and

{
v
(k)
r,[p]

}
simultaneously. More study is needed.

6. An example by matrices. It should be of interest to compare how the ALS algorithm performs for the
case when T is a matrix with or without orthogonality. The fundamental problem is to find the best rank-R
approximation

min

∥∥∥∥∥T −
R∑
r=1

λru
(1)
r ⊗u(2)

r

∥∥∥∥∥ , (6.1)

subject to the constraint that variables u
(1)
r and u

(2)
r , r = 1, . . . , R, are of unit length7. We already know

from the Eckart-Young theorem that the TSVD of T is a stationary point and is the absolute best rank-R
approximation and that the complete orthogonality is an inherent property. In our present setting, we require
that only the matrix

[
u
(2)
1 , . . . ,u

(2)
R

]
has orthogonal columns.

Suppose that we proceed to update the first components of the rank-1 matrices via

u
(1)
r,[p+1] =

1

λ
(1)
r,[p+1]

Tu
(2)
r,[p], r = 1, . . . , R, (6.2)

followed by the intermediate vectors

v
(2)
r,[p+1] = T>u

(1)
r,[p+1], r = 1, . . . R. (6.3)

There are three possible alternatives to proceed from this point on.
1. Had we simply regarded u

(2)
r,[p+1] = v

(2)
r,[p+1] and repeated steps (6.2) and (6.3) recursively without

orthogonalization, then this process would have been equivalent to the simultaneous subspace iter-
ation of the power method applied to the matrices TT> and T>T on the 2-dimensional subspaces
span

{
u
(1)
1,[0], . . . ,u

(1)
R,[0]

}
and span

{
u
(2)
1,[0], . . . ,u

(2)
R,[0]

}
, respectively. The subspaces eventually would

have coalesced into the dominant singular vectors of T and that is not what we prefer to see.
2. In Algorithm 1, we calculate the polar decomposition and define the second components of rank-1

matrices via [
v
(2)
1,[p+1], . . . ,v

(2)
R,[p+1]

]
=
[
u
(2)
1,[p+1], . . . ,u

(2)
R,[p+1]

]
P, (6.4)

which orthogonalizes the basis vectors
{
v
(2)
1,[p+1], . . . ,v

(2)
R,[p+1]

}
and, hence, prevents them from coa-

lescence. Even so, note that our orthogonal ALS method differs from the SVD in that it takes no action
to orthogonalize the vectors

{
u
(1)
1,[p+1], . . . ,u

(1)
R,[p+1]

}
. At the end, Algorithm 1 does not guarantee

that these
{
u
(1)
r,[p+1]

}
are mutually orthogonal in general. So the limit point is a local minimizer of

(6.1), but is not necessarily the SVD.
3. If we regard that (6.2) only generates v(1)

r,[p+1] and apply the polar decomposition to obtain u
(1)
r,[p+1] be-

fore proceeding to (6.3), then we generate iterates of mutually orthonormal columns u(1)
1,[p], . . . ,u

(1)
R,[p]

and u
(2)
1,[p], . . . ,u

(2)
R,[p]. This echoes the generalization raised in Section 5.4. The limit of the sequence

7A subtle difference between the Kronecker product and the more general tensor product should be clarified. The former emphasizes
a specific matrix structure while the latter emphasizes a collection of mixed product (See (1.1)). In particular, the tensor product u⊗v of
two column vectors should be identified as the vectorized 2-dimensional array vu>. Throughout this note, we use ⊗ to denote the tensor
product (1.1). Therefore, we interpret T~1 v = Tv.

13



∑R
r=1 λr,[p]u

(1)
r,[p]u

(2)
r,[p]

>
is an orthogonal low rank approximation to T , but we see from numerical

experiments that it hardly converges to the TSVD of T . The problem of low rank approximation
generally has multiple local solutions.

The feasible set of only the second components being mutually orthogonal is larger than the set of com-
plete orthogonality of all components. The more restricted optimization problem generally should give rise to
an inferior objective value. That is not the case of low-rank approximation to matrices — the more demanding
constraints, i.e., the complete orthogonality, produces the SVD of T which turns out to be the absolute opti-
mal solution. To put it differently, this absolute optimal approximation automatically entails the completely
orthogonal decomposition. This remarkable result cannot be easily generalized to high-order tensors.

In fact, for high-order tensors, a completely orthogonal decomposition does not always exist. The complete
orthogonalization and the absolute optimal approximation do not necessarily correlate to each other as the SVD
for matrices does. We mention in passing that considerable endeavors have been devoted to generalizing Eckart-
Young theorem to tensors [5, 9, 12, 21, 24, 25, 26, 31, 32, 33] with a variety of applications [35, 36, 38, 39, 45,
50, 52] and the research is still ongoing.

7. Conclusion. A higher-order tensor does not necessarily have an optimal low rank approximation. By
imposing a minimum requirement of mutual orthogonality among just one component of the rank-1 base ten-
sors, the situation is changed to an optimization over a compact set and guarantees the existence of the best
orthogonal low rank approximation.

In this paper, we propose a modified alternating least squares algorithm to compute an orthogonal rank-
R approximation. Two contributions are new in this work. First, we bring forth the idea of using the polar
decomposition to ensure the orthogonality condition while performing the high-order power method. Second,
we prove that the orthogonal ALS method converges globally for almost all general tensors.
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