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ISOSPECTRAL FLOWS AND ABSTRACT MATRIX FACTORIZATIONS*

MOODY T. CHU? AND LARRY K. NORRIS?

Abstract. A general framework for constructing isospectral flows in the space gl(n) of n by n matrices
is proposed. Depending upon how gl(n) is split, this framework gives rise to different types of abstract
matrix factorizations. When sampled at integer times, these flows naturally define special iterative processes,
and each flow is associated with the sequence generated by the corresponding abstract factorization. The
proposed theory unifies as special cases the well-known matrix decomposition techniques used in numerical
linear algebra and is likely to offer a broader approach to the general matrix factorization problem.
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1. Introduction. Let Gl(n)= G1 (n, K) denote the Lie group of all n by n nonsin-
gular matrices over the field K. K may be either the real or complex numbers. The
tangent space to the n2-dimensional manifold G1 (n) at the identity is the Lie algebra
gl (n) of all n by n matrices. Given a matrix Xo gl (n), we are interested in studying
the dynamical behavior of curves on the surface (Xo) in gl (n) defined by

(1.1) (Xo) := {g-Xoglg G1 (n)}.

Let g(t) be a one-parameter family of matrices in G1 (n) with g(0)= L Then

(1.2) X(t) := g-i( t)Xog(t)

defines a differentiable one-parameter family of matrices, with X(O)=Xo, on the
surface (Xo). The derivative dX(t)/dt can be expressed as

(1.3)
dX( t)

[X( t), k(t)],
dt

where the n by n matrices k(t) are defined by

(1.4) k(t):=g-l(t)
dg(t)

and the bilinear operator [.,. is the Lie bracket defined by

(1.5) [A,B]:=AB-BA.

Therefore, the initial value problem (IVP)

(1.6)
dX( t)

[X( t), k( t)], X(0) Xodt

with k(t) a continuous one-parameter family of matrices in gl (n) characterizes a
differentiable curve on /(Xo). We note that the above argument can be reversed. That
is, given an arbitrary one-parameter family of matrices k(t) in gl (n), then the solution
of (1.6) will be of the form (1.2) for some differentiable g(t) satisfying

(1.7)
dg( t)

g( t)k( t), g(O) I.
dt
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Solutions of IVPs (1.6) with different choices of k(t) are closely related to many
important numerical techniques used in linear algebra. Some recent results and further
references can be found in the review papers by Chu [2] and Watkins 12]. For example,
one of the most efficient ways of solving the linear algebraic eigenvalue problem

(1.8) Ax Ax

uses the so-called QR algorithm [5], [9]. Suppose Ao A 6 gl (n, R). The unshifted QR
algorithm generates a sequence of orthogonally similar matrices {Ak} from the scheme

(1.9) Ak QkRk, Ak+l RkQk, k O, 1,"

where each Qk represents an orthogonal matrix and Rk an upper triangular matrix.
Consider the homogeneous quadratic differential system

(1.10)
dX(t)

IX(t), Ho(X(t))]
dt

where IIo(X):=(X-)-(X-) r and X- is the strictly lower triangular part of X. This
system, known as the Toda lattice, is a special case of (1.3) with k( t) := IIo(X( t)), a
special one-parameter family of skew-symmetric matrices. Recently it has been found
1 ], [4], [8], 10], 13] that the Toda flow, when sampled at integer times, gives exactly

the same sequence as does the QR algorithm applied to the matrix Ao=exp (X(0)).
The convergence of the QR algorithm, therefore, can be understood from ordinary
differential equations theory 1], [4].

In this paper we want to continue the study of the relationship between the
solutions of the ODEs (1.3) for general k(t) and the corresponding matrix factoriz-
ations. We think that the isospectral flow phenomenon could be better understood by
using differential geometry and Lie group concepts and that a unified theory of the
various matrix factorization techniques could be established which, in turn, might shed
light on the design of new algorithms. We are especially interested in characterizing
the matrices k(t) so that the resulting solution X(t) of (1.3) would have nice and
useful asymptotic behavior. This paper contains some of the results we have found in
these aspects.

The paper is organized as follows. We begin in the next section with some
preliminary results. These results are easy to prove but serve as the foundation for
various approaches to the isospectral flow problems. In 3 we demonstrate how the
proposed abstract framework can be practically applied to unify three well-known
matrix factorization techniques used in numerical linear algebra. Motivated by the
success in interpreting old results, we continue to discuss other types of matrix
factorizations in 4. Some of the suggested factorizations are new, and we believe that
there are many more that deserved to be explored.

2. General framework. Let -1 and -2 be two subspaces of gl (n) such that each
element in gl (n) can be represented uniquely as the sum of elements from -1 and -2.
Note that the decomposition gl (n)= -1 + if2 is not assumed to be a direct sum. Let

and 52 be the natural projection mappings from gl (n) into the subspaces -1 and
-2, respectively. Given an arbitrary polynomial p(x), consider the IVP:

(2.1) dX(t)-[X(t), (p(X(t)))], X(0) Xo.dt

Since IX(t), p(X(t))]=O, the solution of (2.1) also satisfies the IVP

(2.2) dX(t)-[z(p(X(t))),X(t)], X(0) Xo.dt



1385ISOSPECTRAL FLOWS/ABSTRACT MATRIX FACTORIZATIONS

Let gl(t) and g2(t) be solutions of the implicitly defined IVPs

(2.3)
dg(t)
dt

gl(t)l(p(X(t))), gl(o) I,

(2.4) dg2(t)_ 2(p(X(t)))g.(t), g2(0) I.
dt

Then gl(t) and g2(t) are defined and necessarily nonsingular for all for which X(t)
exists. Furthermore, it is easy to see the following theorem.

THEOREM 2.1. Suppose X( t) solves the IVP (2.1). Then

(2.5) X(t) gl( t)-IXog( t) g2( t)Xog2( t) -1.

Regardless of how the Lie algebra gl (n) is split, we claim the following theorem.
THEOREM 2.2. Let X(t), g(t) and g2(t) be solutions of the IVPs (2.1), (2.3),

and (2.4), respectively, on the interval [0, T], T> 0. Then

(2.6) exp (p(Xo)" t) gl(t)g2(t).

Proof It is trivial that exp (p(Xo)" t) satisfies the IVP

dY(t)
-p(Xo)Y(t), Y(0) I.

dt

Let Z(t):= g(t)gz(t). Then Z(0) 1. Also

dZ(t)
(dgl(t)/dt)g2(t) + gl(t)(dg2(t)/dt)

dt

gl( t)l(p(X(t)))g2(t) + gl( t)2(p(X(t)))g2(t)

gl( t)p(X(t))g2(t)

=p(Xo)Z(t) (by (2.5)).

By the uniqueness theorem for initial value problems, it follows that Z(t)=
exp (p(Xo) t). [3

THEOREM 2.3. Let X(t), g(t), and gz(t) be solutions of the IVPs (2.1), (2.3),
and (2.4), respectively, on the interval [0, T], T> 0. Then

(2.7) exp (p(X(t)) t) g(t)g,(t).

Proof By (2.6), we have

gz(t)g(t) g(t)- exp (p(Xo) t)g,(t)

exp (gl(t)-Ip(Xo)g(t)" t)

exp (p(X(t)). t) (by (2.5)). [3

Remark 2.1. If we set 1, then Theorems 2.2 and 2.3 imply that

(2.8a) exp (p(X(0)))= g(1)g2(1)

and

(2.8b) exp (p(X(1)))= g(1)g(1).

Since the differential system (2.1) is autonomous, we know that the phenomenon (2.8)
will occur at every feasible integer time. In accordance with conventional numerical
linear algebra, the iterative process (2.8) for all integers will be called the abstract
ggz-algorithm.
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Remark 2.2. It is understood in Lie theory [3], [7], [11] that corresponding to a
Lie algebra decomposition of gl (n), there is a Lie group decomposition of G1 (n) in a
neighborhood of I. What we have shown above is a generalization of this concept,
that is, the two subspaces 3-1 and 3-. are not necessarily Lie subalgebras. However,
every matrix (i.e., the matrix exp (p(Xo) t)) in a neighborhood of I can still be written
as the product of two elements (i.e., gl(t) and g2(t)) of G1 (n). The locality of this
neighborhood depends upon the maximal interval of existence for the problem (2.1).
The right-hand side of (2.6) will be called the abstract glgE-decomposition of the matrix
exp (p(Xo)" t), where gl(t) and gE(t) are solutions of the associated IVPs (2.3) and
(2.4), respectively. In the next section we will show how the QR, LU and other classical
matrix factorizations are special cases of this abstract glgE-decomposition.

Remark 2.3. If f is any analytic function defined on a domain containing the
spectrum of Xo, then [f(X(t)), X(t)]-0 (see [6]). Thus the above theorems remain
true if p(x) is replaced by f(x).

3. Applications. We now interpret the above abstract results in the terminology
of standard numerical linear algebra. The following three examples are extracted from
the review article by Watkins 12]. Our point here is to demonstrate how the arguments
given in the previous section unify various methods for constructing iterative processes
based on matrix factorizations.

For simplicity we will consider only the case K E and p(x)=x, and we adopt
the following notation:

o(n) := The set of all skew-symmetric matrices in gl (n);
O(n) := The set of all orthogonal matrices in G1 (n);
r(n) := The set of all strictly upper triangular matrices in gl (n);
R(n) := The set of all upper triangular matrices in G1 (n);
l(n) := The set of all strictly lower triangular matrices in gl (n);
L(n) := The set of all lower triangular matrices in G1 (n);
d(n) := The set of all diagonal matrices in G1 (n);
X/ := The strictly upper triangular part of the matrix X;
X := The diagonal part of the matrix X;
X- := The strictly lower triangular part of the matrix X.

The three cases considered in [12] and their relationships to our notions mentioned
in the previous section are summarized in Table 1. For example, if we choose to
decompose the space gl (n, ) as the direct sum ofthe subspace 3-1 of all skew-symmetric
matrices and the subspace 3-2 of all upper triangular matrices, then the corresponding
projections I(X) and 2(X) are necessarily of the form I(X)=X--(X-)T and
2(X)=X++X+(X-), respectively. In this case the solutions gl(t) and g2(t) of
(2.3) and (2.4) are necessarily orthogonal and upper triangular, respectively. According
to Remark 2.1, we understand that with Ao =exp (Xo), the QR algorithm produces a
sequence of isospectral matrices {Ak} which is exactly the sequence {exp (X(k))}.

Observe that the decomposition gl (n) 3-1+ 3-2 in Cases 1 and 2 of Table 1 are
direct sum decompositions, whereas the decomposition in Case 3 is not a direct sum.

Even though the motivation for splitting gl (n) in the specific ways shown above
may not be that straightforward, in each of the above cases both g and g2 manifest
fairly obvious structure. That is, the products glg2 for the first two cases are understood
by numerical analysts to be the QR decomposition and the LU decomposition of a matrix,
respectively, whereas the product gg2 for the third case is precisely the Cholesky
decomposition of a symmetric matrix if the initial value Xo is symmetric to begin with.



ISOSPECTRAL FLOWS/ABSTRACT MATRIX FACTORIZATIONS 1387

TABLE

k(t)=(X(t))

(x(t))

gl(t)

g2(t)

Numerical Algorithm

Case

r(n)+d(n)

x-_(x-)-

X++X+(X-)r

Q(t)O(n)

R(t)R(n)

QR Algorithm

Case 2

l(n)

r(n)+d(n)

X-

X + X

L(t)L(n)

Case 3

l(n)+d(n)/2

r(n)+d(n)/2

X- +X/2

X +X/2

G(t)L(n)

U(t)R(n)

LU Algorithm

H(t)R(n)

Cholesky Algorithm

The theory concerning the asymptotic behavior of either the dynamical flow or the
discrete iteration for any of the above three cases has been well developed [1], [4],
[8], [10], [12]. It is natural to ask whether other kinds of splittings of gl (n) would
induce (or relate to) other kinds of useful dynamical systems or iterative schemes for
solving the eigenvalue problem. In the next section we will demonstrate some of the
interesting results we have found.

4. More examples. For illustration purposes, we will assume K R and p(x)= x.
Example 1. Suppose Xo is symmetric. We want to choose -1 to be a proper

subspace of o(n), and then let -2 be a complement of -1 in gl (n). In doing so, by
(2.3), g(t) must be orthogonal and, by Theorem 2.1, X(t) remains symmetric and
IIX(t)IIF IIXoIIF where I1" IIF is the Frobenius matrix norm. It follows that X(t) is
defined for all R.

Evidently there are many ways to choose - and its counterpart if2. The first
case presented in 3 amounts to the extreme case that -1 is precisely the
(n(n-1)/2)-dimensional subspace o(n) and that -2 is the (n(n+ 1)/2)-dimensional
subspace of all upper triangular matrices in gl (n). We note that corresponding to
the same - o(n), we could choose -2 to be the subspace s(n):= The set of all
symmetric matrices in gl (n). But then the vector field of (2.1) would be identically
zero and this kind of splitting of gl (n) leads to a trivial case.

It is more convenient to work with the projection than the subspace -1. Given
Xo, let the index subset Ac {(i,j)[l<=j<i<=n} represent the portion of the lower
triangular part of Xo which we want to zero out by orthogonal similarity transformations.
For each X(t), let X(t) be the strictly lower triangular matrix that is made up of the
portion of X(t) corresponding to A. We claim the following theorem.

THEOREM 4.1. Suppose the projection maps /1 :gl (n)-) o(n) and 2:gl (n)-) gl (n)
are defined by

(4.1) (X(t)) := ’(t) )(t)) T

and

(4.2) 2(X(t)) := X(t)--,(X(t)),

respectively. Then, for all i, j) A, xij (t) -> 0 as --> 0o.
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Proof Due to the symmetry of X(t) and the fact that J’(t) is strictly lower
triangular, it is easy to check that for each 1,. ., n,

dxii(t)
Xik( t)(;ki( t) ik( t))

dt
(4.3)

=2 Xai(t);i(t)--2 , Xit(t);i(t).
i<a i>]

Note that ij(t)=O unless (i,j) A. Note also that if ij(t)O, then ij(t)=xij(t). So
both terms on the right-hand side of (4.3) are sums of perfect squares and involve
only indices in A.

Let J denote the smallest column number in A. Then for all < J, dxii (t)/dl 0
and

(4.4)
dxJIj’( l) 2

dt

Since Xj, jl(t is monotone and is bounded for all t, both limits of Xj1j(I aS t- and- exist. From (4.4),

x,l(r)-xjl,(-T)=2 2 Xjl(t)J,(t) dt

is bounded as T. It follows that for all (a,J)6, x,(t)(-, ). On the
other hand, it is clear that for all xj, (t){ M for some constant M.
We claim that

2(4.5) lim xj,(t) 0 for each (a, J) 6 A.
t-->

2Indeed, otherwise there would exist a sequence ofnumbers { tlc } such that xj, (tk) > 6 > 0
for some 6 and such that tk+-- tk >= 6/M. Then it would follow that xZj,(t) >-- 3/2
whenever It--tkl<--6/2M and that Xs,(tk) would not be 2-integrable. This is a
contradiction. So (4.5) is proved.

Now let I denote the largest row number in A. Then for all > I, dxii(t)/dt 0 and

(4.6) dxu(t___): -2 Xlo(t)io(t) <- O.
dt fl<I

Again we see that xn(t) is monotone and bounded for all t. By an argument similar
to the above, we conclude that

(4.7) lim Xlo(t)=O foreach (/,/3)A.

We now consider the case when Jl< < L Let J2 be the next smallest column
number in A. Then

(4.8) x==(
dt
=2 xj(t);j(t)-2xjj,(t)j,(t).

If (J2, J1) is not in A, then xj2j2(t) is monotone and bounded for all t. For the case
where (J2, J)6 A, we consider yj2j2(t) defined by

yj:j2(t) xs:j: + 2 f s s ds.
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Then yj2J2(t) is bounded for all since xj2,(s) 2(-c, m). Also, y22(t) is monotone
since dy2j2(t)/dt 2< x2(t)(t) >- O. So, regardless of whether (J2, J1) e A, we
may now apply the same argument as above to conclude that

(4.9) limx,j(t)=O foreach (a, J2)A.
t-

By induction, we continue the above process from the leftmost column to the
rightmost column involved in A. Every term involved in the second summation of (4.3)
has been proved previously to be 2-integrable and converge to zero. So

i< Xi(t):,i(t) ->0 as t-0 for every (a,/)cA. The assertion is proved.
Remark 4.1. Theorem 4.1 suggests a constructive way to knock out any off-

diagonal portion of Xo by orthogonal similarity transformations. This can be interpreted
as a generalization of the well-known Schur theorem (which guarantees the knock-out
of the strictly lower triangular part only). There are many interesting applications of
this theorem. For example, if we choose A {(i,j) 1 __<j < i- 1 _--< n- 1}, then the corre-
sponding dynamical system (2.1) represents a continuous tridiagonalization process on
the symmetric matrix Xo.

Remark 4.2. The corresponding iterative scheme of Theorem 4.1, as is suggested
by Remark 2.1, can now be understood only in the abstract sense because there is no
plain way to describe the structure of g2(t) in general. This is in contrast to all of the
examples in 2 where g2(t) is always upper triangular. Nevertheless, we do know here
that g(t) is always orthogonal.

Example 2. The proof of Theorem 4.1 depends essentially upon the symmetry of
X(t). Given a general Xo gl (n), however, Theorem 2.2 always relates gl(t) and g2(t)
to powers of the matrix exp (Xo). We now demonstrate how this property can be
applied to study the asymptotic behavior for some nonsymmetric cases.

For simplicity in the discussion we will assume Xo has n distinct eigenvalues. For
general cases without this assumption, the following arguments can be modified easily.
Let A := {(i, j) ll --<_j --< k 1, k =< =< n} be a rectangular index set for some fixed 2 <= k <= n.
For each X(t), let (t) be the strictly lower triangular matrix which is made of the
portion of X(t) corresponding to A. We are again interested in orthogonal similarity
transformations, so we define I(X(T)) and 2(X(t)) as in (4.1) and (4.2), respectively.
Then the corresponding solution X(t) of (2.1) exists for all R. We claim the following
theorem.

THEOREM 4.2. For all (i, j) A, xij(t) -> 0 as -.
Proof (The idea in the following proof is similar to that in 12].) It is clear that

the matrix 2(X(t)) is of upper triangular 2 by 2 block form with the (2,1)-block
identically zero. Since g2(0)= I, it is easy to argue by induction that g2(t) must also
be of the same form. In particular, the (2,1)-block of g(t) is constantly zero for all t.

Therefore, by Theorem 2.2, the ith columns of exp (Xo" t) for 1_-<i_-< k is a linear
combination of the first k columns of g(t). On the other hand, by the theory of the
simultaneous iteration method [5], [9], the subspace spanned by the first k columns
of exp (Xo" t) converges as t-* o to the invariant subspace spanned by the first k
eigenvectors (corresponding to the first k eigenvalues arranged in the descending order)
of X0. Together with the fact Xogl gX(t) (Theorem 2.1), it follows that the (2,1)-block
of X(t) must converge to zero as t- c.

The idea in the above proof can easily be extended to include the following general
case which is the continuous realization of the so-called treppeniteration [5].

COROLLARY 4.1. SO long as A is an index subset of {(i,j)ll_<- i<-_j<-n} such that
its complement represents a block upper triangular matrix, if we define l(X(t)) and
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2(X(t)) according to (4.1) and (4.2), respectively, then for all (i,j)A, xi(t)->O as

Example 3. For 0< k < n, let A be an index subset of {(i,j)] 1 -< =<j -< k} such that
its complement represents a k by k block upper triangular matrix. Let Xll(t) denote
the k by k leading principal submatrix of the n by n matrix X(t), and let ^, 1, and
2 be defined in the same way as in Example 1. Then

l(X(t))=[ ’(Xl(t))’O 00]"
It follows that for each (i,j)A, xi(t) of X(t) converges to zero as t-c since, by
Corollary 4.1, each element of X11 (t) - 0.

Remark 4.3. It is easy to see that all of the above results remain true if the
underlying index subset A is such that it can be rearranged by permutations to be any
one of the forms we have mentioned. Thus, we have considerable flexibility in choosing
A to knock out portions of Xo.

Example 4. We now consider the Hamiltonian eigenvalue problem. A matrix
X gl (2n, [) is called Hamiltonian if and only if it is of the form

(4.10) x=[A,K, -AT

where K, N gl (n, ) are symmetric. Suppose we define

(4.11) ,(X)
K,

Then it is easy to see that IX, (X)] is also Hamiltonian. With this in mind, given a
Hamiltonian matrix Xo, we may define the dynamical system (2.1) with given by
(4.11). Then, the corresponding solution g(t) of (2.3) is both orthogonal and symplectic,
and X(t) g(t)-Xogl(t) remains Hamiltonian for all t. Furthermore, from Theorem
4.2, it follows that K (t) - 0 as 0o. Practically speaking, we then only need to consider
the eigenvalues of lim,_ A(t).

Remark 4.4. Thus far, we have considered only the case where (X(t)) isrequired
to be skew-symmetric. We could have chosen, for example, (X(t))=X(t) and
2(X(t)) X(t) X(t) in Example 2. Then the resulting dynamics would be analogous
to that of the LU algorithm.

Remark 4.5. In our numerical experimentation with Example 2, we have never
failed in zeroing out any prescribed index subset A. We conjecture that Theorem 4.1
will remain true even for nonsymmetric cases. Based on the center manifold theory, a
proof similar to that developed in [1] can be established for the local convergence;
however, we have not yet been able to provide a proof of the global convergence.
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