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Abstract

The Euclidean distance matrix for n distinct points in R
r is generically of rank r + 2. It is shown in

this paper via a geometric argument that its nonnegative rank for the case r = 1 is generically n.
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1. Introduction

Any given nonnegative matrix A ∈ R
m×n can be expressed as the product A = UV for some

nonnegative matrices U ∈ R
m×k and V ∈ R

k×n with k ≤ min{m, n}. The smallest k that makes
this factorization possible is called the nonnegative rank of A. For convenience, we denote the
nonnegative rank of A by rank+(A). Trivially the nonnegative rank has bounds such as

rank(A) ≤ rank+(A) ≤ min{m, n}. (1)

Determining the exact nonnegative rank and computing the corresponding factorization, however,
are known to be NP-hard [6, 18]. If the nonnegative matrix A is such that rank+(A) = rank(A),
then we say that A has a nonnegative rank factorization (NRF). Even in this case, there is no known
effective algorithm to compute the NRF.

It is shown recently that, if k < min{m, n}, then the probability that a matrix A with rank+(A) =
k should also have rank(A) = k is one. In other words, matrices which have an NRF are generic. To
put it more plainly, if A = UV where U ∈ R

m×k and V ∈ R
k×n are randomly generated nonnegative

matrices, then with probability one we have rank(A) = k. The converse is nevertheless not true.
Indeed, the question of comoputing the probability for a 4 × 4 nonnegative matrix of rank 3 to
have nonnegative rank 3 is not trivial at all. It is very much analogous to the Sylvester’s four-point
problem which, to this date, does not admit a determinate solution [14, 16]. For this reason, there
has been considerable interest in the literature to identify nonnegative matrices with or without
NRF.
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A necessary and sufficient condition qualifying whether a nonnegative matrix has an NRF can
be found in [17], but that result appears too theoretical for numerical verification. A few sufficient
conditions for constructing nonnegative matrices without NRF have been given in [13, 15]. The
simplest example is the 4 × 4 matrix

C =







1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1







,

with rank(C ) = 3 and rank+(C ) = 4. Other known conditions for the existence of an NRF are for
more restrictive subclasses of matrices such as the so called weakly monotone nonnegative matrices
[12], λ-monotone [11], or matrices with nonnegative 1-inverse [4]. Still, given a nonnegative matrix,
finding its (numerical) rank is computationally possible, but ensuring its nonnegative rank is an
extremely hard task. Thus far, we know very little in the literature about nonnegative matrices
which do not have NRF. This factorization has also be studied in the literature under the notion of
prime matrices [3, 15].

The purpose of this short communication is to add the important class of Euclidean distance
matrices to the list of matrices having no NRF. This note represents perhaps only a modest advance
in the field, but it should be of interest to confirm the precise rank and nonnegative rank of a distance
matrix.

2. Rank condition and standard form

Given n points p1, . . . ,pn in the space R
r, the corresponding Euclidean distance matrix (EDM)

is the n × n symmetric and nonnegative matrix Q(p1, . . . ,pn) = [qij ] whose entry qij is defined by

qij = ‖pi − pj‖
2, i, j = 1, . . . , n, (2)

where ‖ · ‖ denotes the Euclidean norm in R
r. As an exhaustive record of relative spacing between

any two of the n particles in R
m, the distance matrix Q(p1, . . . ,pn) has many important applications

in distance geometry. See, for example, the discussions in [7, 8, 9, 10]. Our attention here is solely
on the rank condition of Q(p1, . . . ,pn).

Theorem 2.1. For any n ≥ r + 2, the rank of Q(p1, . . . ,pn) is no greater than r + 2 and is

generically r + 2.

Proof. (This is a classical and well known fact. There are many elegant ways to verify this
result, but for the sake of comparing the associated factorizations we find the following equality
representation is most constructive and straightforward.) Regarding each pℓ as a column vector and
qij = 〈pi − pj ,pi − pj〉 with 〈·, ·〉 denoting the Euclidean inner product, we can write [1]

Q(p1, . . . ,pn) =











〈p1,p1〉 1 −2p⊤
1

...
...

...
〈pi,pi〉 1 −2p⊤

i

...
...

...
〈pn,pn〉 1 −2p⊤

n











︸ ︷︷ ︸

U





1 . . . 1 . . . 1
〈p1,p1〉 . . . 〈pj ,pj〉 . . . 〈pn,pn〉

p1 pj pn





︸ ︷︷ ︸

V

. (3)

Note that U ∈ R
n×(r+2) and V ∈ R

(r+2)×n. Unless the points p1, . . . ,pn satisfy some specific
algebraic equations, such as ‖pℓ‖ = 1 for all ℓ = 1, . . . n, the matrices U and V are generically of
rank r + 2.
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The fact that the rank of an EDM depends on r, but is independent of the size n, is very interest-
ing. The rank deficiency indicates that many entries in the matrix provide redundant information.
It is curious to know whether rank+(Q(p1, . . . ,pn)) has similar property. Note that the two fac-
tors U and V in (3) cannot be both nonnegative, so the (minimum) nonnegative factorization of
Q(p1, . . . ,pn) is yet to be determined.

In a recent paper [1], it is estimated via an intriguing algebraic argument that for a nonnegative
matrix of rank 3 to have nonnegative rank 10, we would need a matrix of order at least 252. The
discussion in the sequel clearly indicates that the actual order can be much lower.

Suppose that a nonnegative matrix A has two factorizations, A = BC and A = FG. We say
that these two factorizations are equivalent if there exist a permutation matrix P and a diagonal
matrix D with positive diagonal elements such that BDP = F and P⊤D−1C = G [1]. With this
notion in mind, it suffices to consider the nonnegative factorization for an EDM in a special form.

Lemma 2.1. Suppose n ≥ r + 2 ≥ 3. Then any nonnegative factorization of Q(p1, . . . ,pn) is

equivalent to the form

Q(p1, . . . ,pn) =










1 0 ∗ ∗ . . .

∗ 1 0 ∗ . . .

0 ∗ 1 ∗ . . .

∗ ∗ ∗ ∗
...



















0 ∗ + ∗ . . .

+ 0 ∗ ∗
∗ + 0 ∗
∗ ∗ ∗ ∗
...










(4)

where ∗ stands for some undetermined nonnegative numbers and + stands for three undetermined

positive numbers.

Proof. Suppose Q(p1, . . . ,pn) = UV is a nonnegative factorization. Then there must exist an
index 1 ≤ k1 ≤ n such that u1k1

vk13 > 0. Permuting both the first and the k1th columns of U and
the first and the k1th rows of V simultaneously will not affect the product and will place u1k1

at
the (1, 1) position and vk13 at the (1, 3) position. After scaling u1k1

to unit, rename without causing
ambiguity the permuted matrices as U and V , respectively. The corresponding v11 in the new V

must be zero. Consequently, there must exist an index 2 ≤ k2 ≤ n such that u2k2
vk21 > 0. Permuting

the second and the k2th columns of U and the second and the k2th rows of V simultaneously will
not affect the product, will not alter the first column of U or the first row of V , and will place u2k2

at the (2, 2) position and vk21 at the (2, 1) position. Again, after scaling u2k2
to unit and renaming

the permuted matrices as U and V , it must be u31 = v22 = 0. It follows that there exist an index
3 ≤ k3 ≤ n such that u3k3

vk32 > 0. Permuting the third and the k3th columns and rows and scaling
u3k3

to unit will give rise to the structure specified in the lemma.

It is important to note that the procedure described in the above proof cannot be continued to
the fourth or other rows or columns. For this reason, we refer to (4) as the standard nonnegative
factorization of Q(p1, . . . ,pn).

When reference to the points p1, . . . ,pn is not critical, we abbreviate a generic Q(p1, . . . ,pn)
as Qn. The notion of nonnegative rank has an interesting geometric meaning [5] which will be our
main toll for verifying the nonnegative rank of Qn. Let the columns of a general nonnegative matrix
A ∈ R

m×n
+ be denoted by A = [a1, . . . ,an]. Define the scaling factor σ(A) by

σ(A) := diag {‖a1‖1, . . . , ‖an‖1} , (5)

where ‖ · ‖1 stands for the 1-norm in R
m, and the pullback map ϑ(A) by

ϑ(A) := Aσ(A)−1. (6)
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Each column of ϑ(A) can be regarded as a point on the (m− 1)-dimensional probability simplex Dm

defined by

Dm :=

{

x ∈ R
m
+ |xi ≥ 0,

m∑

i=1

xi = 1

}

. (7)

Suppose a given nonnegative matrix A can be factorized as A = UV , where U ∈ R
m×p
+ and V ∈ R

p×n
+ .

Because UV = (UD)(D−1V ) for any invertible nonnegative matrix D ∈ R
p×p, we may assume

without loss of generality that U is already a pullback so that σ(U) = In. We can write

A = ϑ(A)σ(A) = UV = ϑ(U)ϑ(V )σ(V ). (8)

Note that the product ϑ(U)ϑ(V ) itself is on the simplex Dm. It follows that

ϑ(A) = ϑ(U)ϑ(V ), (9)

σ(A) = σ(V ). (10)

In particular, if p = rank+(A), then we see that rank+(ϑ(A)) = p, and vice versa. The expression
(9) means that the columns in the pullback ϑ(A) are convex combinations of columns of ϑ(U). The
integer rank+(A) stands for the minimal number of vertices on Dm so that the resulting convex
polytope encloses all columns of the pullback ϑ(A).

3. Nonnegative rank and factorization for linear EDM

Give a permutation σ of the set {1, 2, . . . , n}, define the permutation matrix Pσ := [δiσ(j)] where
δst denotes the Kronecker delta function. Then it is easy to see that

P⊤

σ Q(p1, . . . ,pn)Pσ = Q(pσ(1), . . .pσ(n)). (11)

In other words, the conjugation of an EDM by any permutation matrix remains to be an EDM. In
the one dimensional case, i.e., r = 1, we may assume without loss of generality that the point are
arranged is ascending order, p1 < . . . < pn. Define si := pi+1 − pi, i = 1, . . . , n − 1. Entries in
the linear EDM has a special ordering pattern that radiates away from the diagonal per column and
row, i.e.

Q(p1, . . . ,pn) =










0 s2
1 (s1 + s2)

2 (s1 + s2 + s3)
2 . . .

s2
1 0 s2

2 (s2 + s3)
2 . . .

(s1 + s2)
2 s2

2 0 s2
3 . . .

(s1 + s2 + s3)
2 (s2 + s3)

2 s2
3 0

...










(12)

We shall exploit this particular ordering to help to obtain some initial insight into the nonnegative
rank of the EDM. Unless mentioned otherwise, the subsequent discussion is for the case r = 1.

It is illuminating to begin the analysis with the case n = 4. For convenience, we adopt the
colon notation as in Matlab to pick out selected rows, columns or elements of vectors. Denote the
columns of Q4 by Q4 = [q1, . . . ,q4]. The probability simplex D4 can easily be visualized via the
unit tetrahedron S3 in the first octant of R

3 if we identify the 4-dimensional vector x by the vector
[x1, x2, x3]

⊤ of its first three entries. In this way, columns of ϑ(Q4) can be interpreted as points
ϑ(q1), ϑ(q2), ϑ(q3), ϑ(q4) depicted in Figure 1. Note that the four points ϑ(q1), ϑ(q2), ϑ(q3), ϑ(q4)
are coplanar because rank(Q4) = 3. The y-intercept of this common plane is s1s2

s1s2−s3(s1+s2+s3)

which is either negative or positive with value greater than 1. In either case, the plane intersects
the tetrahedron as a quadrilateral. The first three points sit on three separate “ridges” of the
quadrilateral and hence cannot be enclosed by any triangle within the quadrilateral except the one
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1

1

1

Unit Tetrahedron

Common Plane

ϑ(q1)

ϑ(q2)

ϑ(q3)

ϑ(q4)

Figure 1: A geometric representation of the matrix ϑ(Q4) when r = 1.

with vertices at these three points. If rank+(Q4) < 4, then ϑ(q4) must be inside this triangle and
hence be a convex combination of ϑ(q1), ϑ(q2), ϑ(q3), which translates to that the vector q4 must be
a nonnegative combination of q1,q2,q3, but this impossible because q44 = 0. Thus rank+(Q4) = 4.

The expression Q4 = UV in the form (4) represents a polynomial system of 22 equations in 23
unknowns whereas one of the nonzero unknowns can be normalized to unit. This nonlinear system is
solvable. Other than the trivial factorization Q4 = I4Q4 where I4 stands for the identity matrix, we
find that there are only three nontrivial nonnegative factorizations which we list in Table 1. While
the first set of factorization in the table is equivalent to Q4I4, it is important to note that the last
two sets of factorizations correspond to the four vertices of the quadrilateral shown in figure 1. This
observation also shows that Q4 is not prime [2, 15].

When n > 4, such a visualization in geometry is not possible, but the idea remains justifiable
via an algebraic argument with which we precede as follows.

Theorem 3.1. Suppose that the linear EDM Qn is of rank 3. Then rank+(Qn) = n.

Proof. Because rank(Qn) = 3, its columns reside on a 3-dimensional subspace of R
n. The pull-

back map ϑ can be considered as the intersection of this subspace and the hyperplane defined by
∑n

i=1 xi = 1. Columns of ϑ(Qn) therefore are “coplanar” whereas by their common plane we refer
to a 2-dimensional affine subspace in R

n. Identifying any n-dimensional vector x ∈ Dn by its first
n−1 entries [x1, . . . , xn−1]

⊤, we thus are able to “see” columns ϑ(q1), . . . , ϑ(qn) as n points residing
within the unit polyhedron Sn−1 in the first orthotant of R

n−1. These points remain to be coplanar.
(Indeed, the 2-dimensional affine subspace can be identified by a fixed point, say, ϑ(q1), and two
coordinate axes, say, v1 := ϑ(q2) − ϑ(q1) and v2 := ϑ(q3) − ϑ(qn), where all points in the 2-
dimensional affine subspace can be represented as ϑ(q1)+α1v1 +α2v2 with scalars α1 and α2. The
drawing in Figure 1, therefore, is still relatively instructive.)

For 1 ≤ i ≤ n − 1, it is clear that ϑ(qi) cannot possibly be a convex combination of any other
ϑ(qj) because of the unique zero at its ith entry. We claim further that ϑ(qn) cannot possibly be
in the convex hull spanned by ϑ(q1), . . . , ϑ(qn−1). Assume otherwise, then we would have

ϑ(qn) =

n−1∑

i=1

ciϑ(qi)
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Table 1: Standard nonnegative factorizations of Q4.

U V












1 0 s1
2

s2

2

(s1 + s2 + s3)
2

s2
2

(s1+s2)2 1 0 (s2 + s3)
2

0 (s1+s2)2

s1
2 1 s3

2

s3
2

(s1+s2)2
(s1+s2+s3)2

s1
2

(s2+s3)2

s2
2 0





















0 0 (s1 + s2)
2 0

s1
2 0 0 0

0 s2
2 0 0

0 0 0 1




















1 0 0 (s1+s2)s2(s1+s2+s3)
s2+s3

0 1 0 s2
2

0 s3(s1+s2)
(s2+s3)s1

1 0

s3(s2+s3)
(s1+s2)s1

0 (s2+s3)(s1+s2+s3)
(s1+s2)s2

0





















0 s1
2 s3s1(s1+s2)

s2+s3

0

s1
2 0 0 s3(s2+s3)s1

s1+s2

(s1+s2)s2(s1+s2+s3)
s2+s3

s2
2 0 0

0 0 1 (s2+s3)(s1+s2+s3)
(s1+s2)s2





















1 0 0 s1
2

s2(s2+s3)
(s1+s2)(s1+s2+s3)

1 0 0

0 s3(s1+s2)
(s2+s3)s1

1 0

0 0 (s2+s3)(s1+s2+s3)
(s1+s2)s2

s3(s2+s3)s1

s1+s2





















0 0 s2(s1+s2)(s1+s2+s3)
s2+s3

(s1 + s2 + s3)
2

s1
2 0 0 s3(s2+s3)s1

s1+s2

s2(s1+s2)(s1+s2+s3)
s2+s3

s2
2 0 0

0 1 s3(s1+s2)
(s2+s3)s1

0










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for some ci ≥ 0 with
∑n−1

i=1 ci = 1. Note that ‖ϑ(qn)‖1 = 1. However, ‖
∑n−1

i=1 ciϑ(qi)‖1 < 1 because
‖ϑ(qi)‖1 < 1 after chopping away the last row of ϑ(Qn). This is a contradiction. The smallest
number of vertices for a convex hull to enclose ϑ(q1), . . . , ϑ(qn), therefore, has to be n, implying
that rank+(Qn) = n.

There is a subtle difference between the standard nonnegative factorization of Q4 and that of
Qn when n ≥ 5. Except for the trivial factorization, both factors U and V in Table 1 for Q4 are of
rank 3. This is not the case in general.

Lemma 3.1. Suppose n ≥ 5 and Qn = UV is a standard nonnegative factorization for the matrix

Qn. Then it cannot be such that both U and V are of rank 3 simultaneously.

Proof. Observe first that for n ≥ 3, assuming the generic condition rank(Qn) = 3, we can partition
Qn as

Qn =







Q3 Q3Φ

Φ⊤Q3 Φ⊤Q3Φ







(13)

where Φ ∈ R
3×(n−3) is uniquely determined. Indeed, if we write Φ = [φ4, . . . φn], then it can be

shown that

φj =











(
Pj−1

ℓ=2
sℓ)(

Pj−1

ℓ=3
sℓ)

s1(s1+s2)

−
(

Pj−1

ℓ=1
sℓ)(

Pj−1

ℓ=3
sℓ)

s1s2

(
Pj−1

ℓ=1
sℓ)(

Pj−1

ℓ=2
sℓ)

s2(s1+s2)











, j = 4, . . . , n. (14)

Note that the second entry in φj is always negative.
Assume by contradiction that both U and V of Qn are of rank 3. As U and V appear in the

standard form (4), their 3 × 3 leading principal submatrices U11 and V11 are nonsingular. Thus
similar to (13), we can partition the nonnegative factors into blocks

Qn =







U11 U11Θ

Λ⊤U11 Λ⊤U11Θ













V11 V11Γ

∆⊤V11 ∆⊤V11Γ







, (15)

where Θ, Λ, Γ and ∆ are real matrices of compatible sizes. Upon comparison with (13), we see that
Λ = Φ = Γ. Taking a closer look at the product Λ⊤U11, we find that the signs of its entries are
given by

Λ⊤U11 =








+ − +
...

...
...

+ − +












1 0 ∗
∗ 1 0
0 ∗ 1



 =








∗ ⊡ +
...

...
...

∗ ⊡ +








,

where, again, ∗ indicates some undetermined nonnegative numbers, + some undetermined positive
numbers, and ⊡ some nonnegative numbers which can further be determined. Similarly, the signs
for entries of V11Γ are given by

V11Γ =





0 ∗ +
+ 0 ∗
∗ + 0









+ . . . +
− . . . −
+ . . . +



 =





∗ . . . ∗
+ . . . +
⊡ . . . ⊡



 .
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Being nonnegative, U and V are complementary to each other in the sense that uijvji = 0 for all
indices i and j. It follows that the +’s in the middle row of V11Γ must cause the ⊡’s in the middle
column of Λ⊤U11 to become zeros. This implies that the very same u32 would have to satisfy the
equalities

−

(
∑j−1

ℓ=1 sℓ

) (
∑j−1

ℓ=3 sℓ

)

s1s2
+

(
∑j−1

ℓ=1 sℓ

) (
∑j−1

ℓ=2 sℓ

)

s2(s1 + s2)
u32 = 0,

for all j = 4, . . . n, which is not possible if n ≥ 5.

To compute the nonnegative factorization of Qn for n ≥ 5 is considerably harder. The case
n = 5, for example, involves a polynomial system of 39 nonlinear equations in 41 unknowns two of
which can be normalized. A short cut from a geometric point of view might be worth mentioning.
Write

Q5 =







Q4 q5

q⊤
5 0







, (16)

with q5 ∈ R
4×1. Consider the submatrix [Q4,q5] only. Clearly, its columns are coplanar and, hence,

ϑ(q5) is a point in the interior of the quadrilateral drawn in Figure 1. In particular, if Q4 = UV is
one of the two nontrivial standard nonnegative factorizations of Q4, i.e., columns of ϑ(U) (or ϑ(V ⊤))
are the four vertices of the quadrilateral, then q5 is a nonnegative combination of columns of U (or
V ⊤). In this way, two of the nontrivial standard nonnegative factorizations of Q5 are given by

Q5 =







U 0

0⊤ 1













V w5

q⊤
5 0







=







U q5

z⊤ 0













V 0

0⊤ 1







, (17)

respectively, where w5 and z5 are some nonnegative vectors satisfying Uw5 = V ⊤z5 = q5. This
procedure can be generalized to higher n, but there might be other nonnegative factorizations which
are not of this particular form specified in (17).

4. A conjecture for higher dimensional EDM

In higher dimensional vector spaces, points p1, . . . ,pn cannot be totally ordered. Thus, for r > 1
and n ≥ r + 2, the EDM will not enjoy the inherent structure indicated in (12). Nevertheless, if we
denote pj = [pij ], then we can write

Q(p1, . . . ,pn) =
r∑

i=1

Q(pi1, . . . , pin).

We have shown earlier that generically rank+(Q(pi1, . . . , pin)) = n for each 1 ≤ i ≤ r. Representing
the distance matrices for respective components, these r linear EDMs in general are not related
to each other. For their summation (of nonnegative entries) to cause a reduction of rank, they
must satisfy some delicate algebraic constraints. We thus conjecture that rank+(Q(p1, . . . ,pn)) = n

generically for all r.
It might be informative to reexamine the geometric representation of the matrix Q4 when r > 1.

In contrast to the setting in Figure 1, columns of Q4 are not coplanar. Their representation becomes
that depicted in Figure 2. The vertex ϑ(q4) resides on the simplex D3. How the base plane
determined by vertices ϑ(q1), ϑ(q2), and ϑ(q3) intersects the axes characterizes the zero structure
of nonnegative factors. Different from the case r = 1, there are several possibilities and there is
simply no general rules here. The one shown in Figure 2 implies that the corresponding Q4 is prime,
which is another interesting contrast to the case when r = 1.
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Figure 2: A geometric representation of the matrix ϑ(Q4) when r > 1.
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