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Abstract. Qualifying the entanglement of a mixed multipartite state by gauging its distance to the nearest separable state of a fixed
rank is a challenging but critically important task in quantum technologies. Such a task is computationally demanding partly because of the
necessity of optimization over the complex field in order to characterize the underlying quantum properties correctly and partly because
of the high nonlinearity due to the multipartite interactions. Representing the quantum states as complex density matrices with respect to
some suitably selected bases, this work offers two avenues to tackle this problem numerically. For the rank-1 approximation, an iterative
scheme solving a nonlinear singular value problem is investigated. For the general low-rank approximation with probabilistic combination
coefficients, a projected gradient dynamics is proposed. Both techniques are shown to converge globally to a local solution. Numerical
experiments are carried out to demonstrate the effectiveness and the efficiency of these methods.
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1. Introduction. Entanglement is a ubiquitous phenomenon in nature. Given one system, in whatever
sense, it is almost inevitable that it will necessarily interact with another or more systems. This involvement of
multiple systems, whether tangible or impalpable, can generally be regarded as an entanglement. Depending
on the settings, entanglement can be characterized in different forms. Quantum entanglement, where multiple
quantum systems interact in such a way as if both their spatial coordinates and their linear momenta are linked,
even when the systems are widely separated in space, is particularly intriguing [1]. In modern days, quantum
entanglement plays an increasingly more important role in quantum technologies. Quantum informatics and
quantum communication, for example, exploit the entanglement for faster and more secure passage of infor-
mation than classical algorithms. In recent years understanding of entanglement has advanced and diversified
into many subfields with applications across a variety of disciplines. The scope is so broad that it is beyond our
technical competence, nor is there room in this short note, to provide even the most basic overview of the dif-
ferent subjects related to entanglement. Out of the numerously many, we mention merely three review articles
[2, 3, 4] whose references to hundreds of research results onentanglement should be a conspicuous indication
of the breadth and the depth of the vast research endeavors inthis area. This work concerns only about a fairly
focused subject of measuring numerically the distance between a given mixed state and its nearest separable
state [5, 6, 7]. In this introduction, therefore, we shall outline only the needed background information pertain-
ing to our methods. For clarity, we divide the discussion into subsections by topics for easy perusal. Readers
can skip the parts that they are familiar with.

1.1. Entanglement and separability.In this section we briefly review some basic notion of entanglement
and separability. For a more thorough and in-depth treatment of the main ideas, we suggest [8, 9, 10] and the
classic book [11].

A quantum mechanical system is typically cast as a complex Hilbert space. The reasons that complex
numbers are needed in quantum mechanics are plainly explained in [12, 13] and the references therein. Any
unit vector in the space is referred to as a pure state which typically is denoted by the Dirac’s ket notation
|x〉. A mixed quantum state is a probabilistic ensemble of finitely many pure states. It is more convenient to
represent a mixed state̺as a density matrix

̺ :=
∑

i

µi |xi〉 〈xi| ;
∑

i

µi = 1; µi ≥ 0, (1.1)
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where the density matrices|xi〉 〈xi| of pure states|xi〉 are simply the orthogonal projector that maps any|z〉
onto|xi〉 〈xi|z〉 with 〈xi|z〉 denoting the inner product in the Hilbert space.

A bipartite systemH = H1 ⊗ H2 is a composition of two quantum mechanical subsystemsH1 and
H2 which interact with each other through a bilinear map1 denoted by the symbol⊗. A pure quantum state
|ψ〉 ∈H is called separable if and only if

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 , (1.2)

where|ψi〉 ∈ Hi, i = 1, 2, are pure states, respectively; otherwise,|ψ〉 is entangled. The real issue, however,
concerns the mixed state in the composite system. A general (mixed) quantum stateρ ∈H is called separable
if it can be decomposed as a probabilistic mixture of tensor products of density matrices of pure states [14, 15]:

ρ =
∑

i

θi(|xi〉 〈xi|)⊗ (|yi〉 〈yi|),
∑

i

θi = 1; θi ≥ 0, (1.3)

where|xi〉 ∈ H1 and |yi〉 ∈ H2 are unit vectors. Thus, the collection of all separable states in a bipartite
system form a convex set with pure separable states as its extreme points [9].

The same notion of composition can be applied to more than twosubsystems [16]. However, the classifi-
cation of quantum-entangled states is far more complicatedthan in the bipartite case. On one hand, a natural
generalization of (1.3) to ak-partite density matrixρ is that if

ρ =
∑

r

θr(
∣∣x1,r

〉 〈
x1,r

∣∣)⊗ · · · ⊗ (
∣∣xk,r

〉 〈
xk,r

∣∣),
∑

i

θr = 1; θr ≥ 0, (1.4)

where, for allr,
∣∣xi,r

〉
∈ Hi is a unit vector, thenρ is called a fully separable state; otherwise, it is said

to be fully entangled. On the other hand, there also exists the notion of partially separable states such as the
separability with respect to a particular partition ofk or the more complicated semi-separability. Once a specific
class of separability is chosen, the collection of all separable states under the associated definition still forms a
convex set.

Given a general mixed stateρ, if it is not separable, then it is nature to seek its nearest separable state. The
task involves calculating the shortest distance betweenρ and the convex hull of separable states. This nearest
separable approximation problem offers a way to assess the qualification of entanglement. It is of practical
importance in quantum applications [2, 11].

1.2. Metric for measurement. We ought to make it clear that the qualification of entanglement depends
highly on the assumptions and the applications [17]. For this reason, when measuring the nearness, different
metrics might be used for different purposes. We mention three cases.

If the goal is to measure the maximum probability of distinguishability between two quantum statesρ and
σ, then the trace metric

DT (ρ, σ) :=
1

2
Tr
√
(ρ− σ)2,

based on the so-called Kolmogorov-Smirnov (KS) test for comparing random samples, is perhaps preferred.
On the other hand, since repeated measurements are necessary in quantum computation, it might be desired to
calculate the minimum number of measurements required to distinguish two different states. For this purpose,
the Bures distance

DB(ρ, σ) :=

√
2− 2Tr

√√
ρσ
√
ρ ,

1The very same notation⊗ has been used for many different meanings in the literature.The distinction between a tensor product and
the Kronecker product is necessary for computation and willbe explained in Footnote 2. For a general composite systemH1 ⊗ H2, we
emphasize that⊗ is merely a bilinear map.
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an analogue of the Fisher information in classical statistics, can be employed. If we regard the density matrix
as an integrated ensemble of the state in which the whole inherent information is contained, then the Frobenius
norm

DF (ρ, σ) =
1

2
‖ρ− σ‖F =

1

2

√
Tr(ρ− σ)2

may be used to measure the geometric difference between two ensembles [18].
It is known in linear algebra that, over finite dimensional spaces, all norms are equivalent [19], but in

quantum applications different choices of metrics will lead to different approximation results and the associated
interpretations. Also, not all distance formulas are easy to use for numerical computation. Taking the positive
square root of a positive definite matrix repeatedly in the computation for the metricsDT or DB is obviously
more expensive than taking the square root of a scalar in the metricDF . As a starter, we use the Frobenius
normDF in this work for its ease of implementation. IfDT or DB is to be used, then specifying the gradient
information will be much more involved. It will require separate works to develop new schemes and the
pertinent convergence theory. A numerical comparison of various measures is worthy of further investigation,
but is beyond the scope of this paper.

1.3. Approximation problem. SupposeH1 andH2 are two finite dimensional quantum systems with
fixed basis states{ei}mi=1 and{fj}nj=1, respectively. Then, elements|x〉 ∈H1 and|y〉 ∈H2 can be interpreted
as two column vectorsx ∈ Cm andy ∈ Cn of their coordinates, respectively. The density matrices|x〉 〈x| and
|y〉 〈y| are indeed rank-1 matrices with unit trace inCm×m andCn×n, respectively. Furthermore, with respect
to the basisei⊗ fj in the lexicographical order, the tensor product can be interpreted as the Kronecker product.
Therefore, the approximation problem

min
|xi〉∈H1,〈xi|xi〉=1

|yi〉∈H2,〈yi|yi〉=1
∑

i θi=1,θi≥0

‖ρ−
∑

i

θi(|xi〉 〈xi|)⊗ (|yi〉 〈yi|)‖2F , (1.5)

can be translated via the linear algebra interpretation into the following equivalent problem

min
xr∈Cm,‖xr‖=1,

yr∈Cn,‖yr‖=1,

λr≥0,
∑

r λr=1

‖ρ−
R∑

r=1

λr(xrx
∗
r)⊗ (yry

∗
r)‖2F , (1.6)

whereρ ∈ Cmn×mn is positive definite (hence hermitian) with unit trace,∗ denotes the conjugate trans-
pose, and⊗ is interpreted as the Kronecker product. Over the frameworkof general Hilbert spaces, the
term needed for the summation in (1.5) is difficult to determine. Over the finite dimensional spaces we
know by the Carathéodory theorem [20, Theorem 2.2.4] that nomore than(mn)2 + 1 terms will provide
the best approximation ofρ over the convex hull of separable states. The problem therefore involves at most
(2(m+ n) + 1)((mn)2 + 1) real variables. Suppose thatR is a predetermined positive integer, then we have a
low-rank approximation problem. In this case, since we are not taking all the extreme points of the convex hull
of the pure states into the summation, the solution to (1.6) is not unique.

This paper concerns the generalk-partite low-rank approximation problem of the form

min
xi,r∈Cmi , ‖xi,r‖2=1

λr≥0,
∑R

r=1
λr=1

‖ρ−
R∑

r=1

λr(x1,rx
∗
1,r)⊗ · · · ⊗ (xk,rx

∗
k,r)‖2F , (1.7)

for a given density matrixρ ∈ C∏k
i=1

mi×
∏k

i=1
mi andk ≥ 2. It might appear that we are dealing with the

full separability for ak-partite system. Nevertheless, our techniques applied to general dimensionsmi. It is
possible that a single spaceCmi contains the composition of several subsystems. That is, our methods can be
applied to explore the partial separability approximationas well [21]. This can be best illustrated by the split
of ann-qubit system in the next section.
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1.4. Qubit system.The setting we present in this work is over a general multipartite quantum mechanical
system withxi,r ∈ Cmi , wheremi is an arbitrary positive integer. For applications in quantum information
science, a commonly used basic unit for quantum computationis the 2-dimensional Hilbert spaceC2. In this
context, we still can formulate the low-rank approximation.

Denoting the canonical basis vectors overC2 denoted by|0〉 =
[

1
0

]
and|1〉 =

[
0
1

]
or simply|↑〉 and

|↓〉, a qubit is the quantum mechanical analogue of a classical bit in the digital computer. Correspondingly,
in the bipartite systemC2 ⊗ C2 the product|↑〉 ⊗ |↓〉 is often abbreviated as|↑↓〉, referred to as a 2-qubit. A
d-qubit system is represented by(C2)⊗d = C2 ⊗ . . . ⊗ C2. Therefore, a state in the system can be thought
of as a complex vector of dimension2d. One could regard(C2)⊗d as and-partite entangled system ofC2. If
we regard the zeros and ones as constituting the binary expansion of an integer, say,ℓ, then we can replace
the representations of a basicd-qubit state by a short form|ℓ〉, 0 ≤ ℓ < 2d − 1. On the other hand, if we
split d = p + q, then we could also consider(C2)⊗d = (C2)⊗p ⊗ (C2)⊗q as a bipartite entanglement of
(C2)⊗p and(C2)⊗q. In the latter case, the problem (1.5) becomes a partial separability approximation with
m = 2p andn = 2q. Given a32 × 32 density matrixρ, for example, we can group the5 qubits in 7 ways:
5 = 5 + 0 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1, each constitutes
a distinct low-rank approximation problems. The techniques to be described in this paper can be applied to
handle each case with appropriate realization ofk andmi in (1.7).

1.5. Canonical polyadic decomposition.Before we move on to describe our numerical method, we
ought to point out that, for the caseR = 1, the problem (1.7) can be recast as a specially structured low-rank
tensor approximation referred to as the canonical polyadicdecomposition with symmetry in the literature [22].
For example, ifρ ∈ Rmn×mn is properly folded into an order-4 tensorA ∈ Rm×m×n×n, we may recast the
real version of (1.6) as an order-4 rank-1 tensor approximation with symmetry in the first two and the last two
modes:

min
λ∈R+,x∈Rm,y∈Rn

‖x‖=1,‖y‖=1

‖A− λx ◦ x ◦ y ◦ y‖2F , (1.8)

where◦ denotes the outer product. Many techniques, e.g., those in the Tensorlab toolbox [23], are readily
available to handle this specially structured rank-1 problem. For the caseR > 1, however, it becomes chal-
lenging to satisfy the probabilistic constraint by conventional techniques. So far as we know, theTensorlab
toolbox has not developed this functionality yet. Recall that the probabilistic ensemble is essential in quantum
applications. One of our contributions in this work is a mechanism to maintain this constraint.

This paper is organized as follows. In Section 2, we generalize our recent results for real-valued bipartite
rank-1 approximation [24] to complex-valued multipartiterank-1 approximation. This generalization prepares
the way of using the Wirtinger calculus to derive the gradient of a real-valued objective function with complex
variables. In order to address the probabilistic constraint, we propose in Section 3 a projected gradient flow to
tackle the multipartite low-rank approximation (1.7) directly. The most important features of this dynamical
system are that the nonnegativity and sum-to-one constraints of the combinations coefficients are preserved and
that the rank can be automatically adjusted downward duringthe integration. We believe that the simplicity
of this approach might be employed as a useful tool entanglement qualification. Numerical experiments are
carried out in Section 4 to demonstrate the working of our algorithms.

2. Multipartite Rank-1 Approximation. In an earlier study [24], we have considered the problem of
approximating a real-valued, symmetric and positive matrix A ∈ Rmn×mn by a real-valued rank-1 bipartite
system, i.e,

min
x∈Sm−1,y∈Sn−1,λ∈R+

‖A− λ(xx⊤)⊗ (yy⊤)‖2F . (2.1)

The idea is to reformulate (2.1) as either a nonlinear eigenvalue problem or a nonlinear singular value problem.
Correspondingly, a nonlinear power-like and a nonlinear SVD-like iterative schemes have been proposed and
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analyzed. Numerical experiments suggest that these methods are not only easy to implement, but also are
highly efficient when comparing with the more sophisticatedroutines used in the packageTensorlab.

In this section, we consider the most generalk-partite approximation problem

min
λ∈R+, i∈JkK

xi∈Cmi , ‖xi‖2=1

‖A− λ(x1x
∗
1)⊗ · · · ⊗ (xkx

∗
k)‖2F , (2.2)

for a density matrixA ∈ C∏k
i=1

mi×
∏k

i=1
mi . The previous experiences we have learned in [24] help but the

generalization is not as obvious because of the involvementof complex variables and the extended number of
factors whenk ≥ 3.

2.1. Basics.To facilitate our subsequent discussion, we first introducesome basic notations and review
some useful facts. LetJkK denote the set of integers{1, . . . , k}. Given column vectorsxi, i ∈ JkK, note that
the classical Kronecker product⊗ is equivalent to the tensor product2 ◦ in a reversed order [25], i.e.,

x1 ⊗ . . .⊗ xk = vec(xk ◦ . . . ◦ x1), (2.3)

wherevec(T) for an order-k tensorT ∈ Cm1×m2×...×mk is a linear array whose entry at the location

(sk − 1)mk−1 . . .m1 + (sk−1 − 1)mk−2 . . .m1 + ...+ (s2 − 1)m1 + s1

is precisely the elementτs1,...,sk of T. It will be convenient to adopt the abbreviations




⊗k
i=1 xi := x1 ⊗ x2 ⊗ · · · ⊗ xk,

©1
i=kxi := xk ◦ . . . ◦ x1,

and define the order-k tensor

D(x1, . . . ,xk) := reshape(A
k⊗

i=1

xi, [mk, . . . ,m1]) ∈ Cmk×...×m1 ,

where the operatorreshape is identical to that inMatlab which returns a multi-dimensional array with the
specified dimensions.

To handle the multi-indices more effectively, the following notation system proves handy [26]. Suppose
that the setJkK is partitioned as the union of two disjoint nonempty subsetsα := {α1, . . . , αℓ} andβ :=
{β1, . . . , βk−ℓ}. LetI = (i1, . . . , iℓ) andJ = (j1, . . . , jk−ℓ) denote indices at locationsα andβ, respectively,
where each index in the arraysI andJ should be within the corresponding range of integers, e.g.,i1 ∈ Jmα1

K

and so on. An elementτs1...sk in the order-k tensorT can be identified asτ (α,β)
[I|J ] with sαµ

= iµ andsβν
= jν ,

µ ∈ JℓK, ν ∈ Jk − ℓK. The point to make is that via the location pointer(α,β) we can enumerate elements
τs1...sk in any order we want. When the reference to a specific partitioning (α,β) is clear, we abbreviate
the element asτ[I|J ]. The partition(α,β) may be regarded as generalizing the familiar notion of rows and
columns for matrices.

Given a partitionJkK = α ∪ β, we may regard an order-k tensorT as the matrix representation of a
linear transformation from the tensor spaceCmβ1

×...×mβk−ℓ toCmα1
×...×mαℓ . Thus, we use the symbol⊛α to

replace the conventional "matrix-to-vector" multiplication, that is, ifS = [σj1...jk−ℓ
] ∈ Cmβ1

×...×mβk−ℓ , then
theI-th element of the productY = T⊛α S ∈ Cmα1

×...×mαℓ is defined by

(Y)I :=

mβ1∑

j1=1

. . .

mβk−ℓ∑

jk−ℓ=1

τ
(α,β)
[I|j1...jk−ℓ]

σj1,...,jk−ℓ
.

2 The tensor product of tensors leads to a multi-indexed array. While the way to enumerate its elements is often immaterialin theory,
it is essential to enumerate them consistently for numerical calculation. One general rule adopted is that the indices of the leftmost tensor
are counted first, e.g., the indices in the tensor producta ◦ b of two vectors are enumerated in the same way as the matrixab⊤. The
relationship (2.3) therefore follows.
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Fora,b ∈ Cn, let

〈a,b〉R :=

n∑

i=1

aibi (2.4)

denote a formal inner product. Similarly, the notation〈, 〉R can be generalized to matrices or tensors. The
relationship

〈T,
k

©
i=1

xi〉R = 〈T⊛α (
k−ℓ

©
s=1

xβs
),

ℓ

©
t=1

xαt
〉R, (2.5)

which is nothing but the associative law of multiplication,holds for any tensors
ℓ

©
t=1

xαt
∈ Cmα1

×...×mαℓ and

k−ℓ

©
s=1

xβs
∈ Cmβ1

×...×mβk−ℓ . We shall employ (2.5) to help describe lengthy algebraic manipulations.

Suppose thatf : C → R is a real-valued function over a complex variablez = x + ıy. If we regard
f(z) = u(x, y), then the Wirtinger derivatives are defined by





∂f
∂z

:= 1
2 (

∂u
∂x
− ı∂u

∂y
),

∂f
∂z

:= 1
2 (

∂u
∂x

+ ı∂u
∂y

).

That is, while maintaining the usual complex arithmetic throughout the operations, we take the formal partial
derivatives off(z) by treatingz andz as independent variables with respect to each other [27]. For a general
real-valued functionf : Cn → R, the definition of the Wirtinger derivative can be generalized to:





∂f
∂z

:= 1
2 (

∂f
∂u
− ı ∂f

∂v
),

∂f
∂z

:= 1
2 (

∂f
∂u

+ ı ∂f
∂v

),
(2.6)

where we regardf(z) = f(u,v) in the real variablesu,v ∈ Rn andz = u+ ıv ∈ Cn. In this way, the “true"
gradient of functionf : Cn → R can be calculated from the Wirtinger derivatives via the relationship:

∇f =




∂f
∂u

∂f
∂v


 =




∂f
∂z

+ ∂f
∂z

ı(∂f
∂z
− ∂f

∂z
)


 . (2.7)

2.2. Nonlinear Singular Value Formulation. For the optimization problem (2.2), and especially for
the casek ≥ 3, we propose the idea of alternately applying the singular value decomposition to update two
complex vectors at a time. We divide the discussion into two parts. First, we motivate the iterative scheme by
exploring the first order optimal condition for the objective function. Then, we derive the convergence theory.

LEMMA 2.1. Let JkK = α∪β withα := {α1, α2} andβ := {β1, . . . , βk−2} be an arbitrary partition. If
(x1, . . . ,xk) is a local minimizer to(2.2), then it is necessary that





(D(x1, . . . ,xk)⊛α (
k−2

©
i=1

xβi
))xα2

= λ(x1, . . . ,xk)xα1
,

(D(x1, . . . ,xk)⊛α (
k−2

©
i=1

xβi
))∗xα1

= λ(x1, . . . ,xk)xα2
.

(2.8)

It is worth noting that the multiplication between the order-k tensorD(x1, . . . ,xk) and the order-(k-2)
tensor©k−2

i=1 xβi
results a matrix. Also, sinceJkK = α ∪ β is an arbitrary partition, the specifics ofα1 and

α2 are immaterial. They refer to every possible indices. The necessary condition (2.8) therefore is much more
involved than it appears.
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Proof. BecauseA is positive definite, the minimization of (2.2) is equivalent to the maximization of

max
xi∈Cmi , ‖xi‖2=1

i∈JkK

λ(x1, . . . ,xk) := 〈A, (x1 ⊗ · · · ⊗ xk)(x1 ⊗ · · · ⊗ xk)
∗〉, (2.9)

where〈, 〉 denotes the Frobenius inner product over the complex space.We can also writeλ as

λ(x1, . . . ,xk) = 〈A, (x1 ⊗ · · · ⊗ xk)(x1 ⊗ · · · ⊗ xk)
⊤〉R.

Consider the variablexα1
= uα1

+ ivα1
first. Taking the Wirtinger derivatives with respect toxα1

yields

∂λ

∂xα1

= (D(x1, . . . ,xk)⊛α (
k−2

©
i=1

xβi
))xα2

Since

λ(x1, . . . ,xk) = λ(x1, . . . ,xk) = 〈A, (x1 ⊗ · · · ⊗ xk)(x1 ⊗ · · · ⊗ xk)
⊤〉R,

we also have

∂λ
∂xα1

= ( ∂λ
∂xα1

) = (D(x1, . . . ,xk)⊛α (
k−2

©
i=1

xβi
))xα2

,

It follows from (2.7) that the partial gradient ofλ with respect to the real variablesuα1
andvα1

is given by

∇(uα1
,vα1

)λ =




∂λ
∂uα1

∂λ
∂vα1


 = 2

[
R
I

]
, (2.10)

whereR andI are, respectively, the real and imaginary parts of

D(x1, . . . ,xk)⊛α (
k−2

©
i=1

xβi
))xα2

= R+ ıI.

LetS2mα1
−1 denote the unit sphere

S2mα1
−1 :=

{[
u

v

]
∈ R2mα1 | ‖u‖22 + ‖v‖22 = 1

}
.

The projection of∇(uα1
,vα1

)λ onto the unit sphereS2mj−1 is given by

2

[
R
I

]
− 2(u∗

α1
R+ v∗

α1
I)
[

uα1

vα1

]
. (2.11)

Observe that

λ = λ̄ = (u∗
α1
− iv∗

α1
)(R+ iI) = (u∗

α1
R+ v∗

α1
I) + i(u∗

α1
I − v∗

α1
R).

Therefore it must be that




u⊤
α1
R+ v⊤

α1
I = λ,

u⊤
α1
I − v⊤

α1
R = 0.

(2.12)
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Algorithm 1 (Best rank-1 approximation via SVD updating with randomization.)

Require: An density matrixA andk starting unit vectorsx[0]
i ∈ Cmi , i ∈ JkK.

Ensure: A local best rank-1 approximation toA in the sense of (2.2).

1: p← 0

2: λ[0] ← 〈A, (
⊗k

i=1 x
[0]
i )(

⊗k
i=1 x

[0]
i )∗〉

3: repeat
4: p← p+ 1
5: α← two random integers fromJkK
6: β ← JkK−α {Complement ofα}

7: D ← D(x
[p−1]
1 , . . . ,x

[p−1]
k )⊛α (

k−2

©
i=1

x
[p−1]
βi

)

8: [u, s,v] = svds(D, 1) {Dominant singular value triplets via, e.g.,Matlab routinesvds}
9: θ ← argument of first entry ofu

10: x
[p]
α1

= e−ıθu

11: x
[p]
α2

= eıθv
12: λ[p] ← s
13: until λ[p] meets convergence criteria

The first order optimality condition requires that the projected gradient in any direction be zero. By substituting
(2.12) into (2.11), we find that

(D(x1 ⊗ · · · ⊗ xk)⊛α (
k−2

©
i=1

xβi
))xα2

= λ(x1, . . . ,xk)xα1
.

which is the first equation in (2.8). The second equation can be proved by applying a similar argument to the
variablexα2

.
Since the goal is to maximizeλ(x1, . . . ,xk), we can interpret the relationship (2.8) in Lemma 2.1 in terms

of the singular value decomposition as follows.
COROLLARY 2.2. With respect to an arbitrary but fixed partitionJkK = α ∪ β with α := {α1, α2}

andβ := {β1, . . . , βk−2}, the triplets(xα1
, λ,xα2

) such that (2.8) is satisfied and such thatλ is as large as
possible must be the dominant singular triplets of the matrixD(x1, . . . ,xk)⊛α (©k−2

i=1 xβi
). In particular,xα1

is the dominant left singular vector andxα2
is the dominant right singular vector.

Corollary 2.2 thus motivates an SVD-like iteration where weupdate two pure states at a time by varying
the indices inα. The selections ofα could be systematic such as cycling through the list of pairs(1, 2),
(2, 3), . . . , (k − 1, k) and(k, 1), or could be randomly generated at every iteration. Our proof of convergence
does not depend on howα is generated. The updating scheme with random selection ofα is sketched in
Algorithm 1.

A general purpose routine, say,svds, is employed as a black box to calculate the dominant singular
triplets. To ensure continuity, we shall align all singularvectors by requiring that the first entries of left singular
vectors be real and nonnegative. This can easily be accomplished by a phase change. For example, if(u, s,v)
represents the dominant singular triplets of a matrixX , i.e.,

Xv = su,

then so does the triplets(e−ıθu, s, e−ıθv) for any angleθ. Takingθ to be the phase of the first entry ofu will
make the first entry ofe−ıθu nonnegative. This mechanism is included in Algorithm 1.

For the sake of conveniently registering the iterates for analysis, we have implied in the description
of Algorithm 1 that whenever two vectors(x[p]

α1
,x

[p]
α2
) are updated to(x[p+1]

α1
,x

[p+1]
α2

), the remaining list in

(x
[p+1]
1 , . . . ,x

[p+1]
k ) are just exact copies of(x[p]

β1
, . . . ,x

[p]
βk−2

), i.e.,x[p+1]
βi

= x
[p]
βi

for i ∈ Jk − 2K.
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In our current application,D(x
[p]
1 , . . . ,x

[p]
k ) varies inp. This is different from the SVD-based methods

developed earlier for stationary tensor approximations [26, 28]. We have to establish a new convergence theory.
Toward that goal, we first prove the monotone increasing property of the objective values ofλ.

THEOREM2.3.Given a density matrixA ∈ Cmn×mn, let{λ[p]} be the sequence generated by Algorithm 1
whereα ∈ JkK is randomly selected. Then the inequalities

λ(x
[p]
1 , . . . ,x

[p]
k ) ≤ λ[p+1] ≤ λ(x

[p+1]
1 , . . . ,x

[p+1]
k ) ≤ λ[p+2] (2.13)

hold. Therefore, both sequences{λ[p]} and{λ(x[p]
1 , . . . ,x

[p]
k )} converge monotonically.

Proof. Define the abbreviationa[p] = x
[p]
1 ⊗ . . .⊗ x

[p]
k . Then we can write

λ(x
[p]
1 , . . . ,x

[p]
k ) = 〈Aa[p], a[p]〉 = 〈D(x

[p]
1 , . . . ,x

[p]
k )⊛α (

k−2

©
i=1

x
[p]
βi
),

2

©
i=1

x[p]
αi
〉,

λ[p+1] = 〈Aa[p], a[p+1]〉 = 〈D(x
[p]
1 , . . . ,x

[p]
k )⊛α (

k−2

©
i=1

x
[p]
βi
),

2

©
i=1

x[p+1]
αi
〉.

The first inequality in (2.13) follows from the definition that λ[p+1] is the dominant singular value of the matrix

D(x
[p]
1 , . . . ,x

[p]
k )⊛α (

k−2

©
i=1

x
[p]
βi
). Similarly, the third inequality holds. To prove the secondinequality, observe

that

λ(a[p+1])− λ[p+1] = 〈Aa[p+1], a[p+1]〉 − 〈Aa[p], a[p+1]〉 = 〈a[p+1] − a[p], Aa[p+1]〉
= 〈a[p+1] − a[p], A(a[p+1] − a[p])〉+ 〈a[p+1] − a[p], Aa[p]〉 ≥ 0,

which completes the proof.
We next prove the convergence of iterates themselves under the following generic condition.
DEFINITION 2.4. We say that the matrixA satisfies Condition P if the corresponding polynomial sys-

tem(2.8)has finitely many geometrically isolated real-valued solutions.
Though pathological examples can be constructed, it is wellknown in algebraic geometry that almost every

square system of polynomial equations over the complex fieldhas finitely many solutions [29]. Furthermore,
if F (z;q) is a system of polynomials in both the variablesz and the parametersq, and is square inz, then
for almost all parametersq the number of geometrically isolated solutions to this polynomial system is finite
[30, Theorem 7.1.1]. The phrase “almost all” means that those values of parameters that fail to produce finitely
many and geometrically isolated solutions constitute a nowhere dense and measure zero subset in the ambient
space. These exceptions are referred to as “non-generic”. For this reason, the condition P is generic.

THEOREM 2.5. Suppose that the given density matrixA ∈ Cmn×mn satisfies the Condition P. Suppose
also that the matricesD(x

[p]
1 , . . . ,x

[p]
k ) always have simple dominant singular values. Then the corresponding

iterates{(x[p]
1 , . . . ,x

[p]
k )} converge.

Proof. As we have shown in the proof of Theorem 2.3, the interlacingproperty in (2.13) implies that

lim
p→∞

〈A(a[p+1] − a[p]), (a[p+1] − a[p])〉 = 0.

On one hand, becauseA is positive semi-definite, we have

lim
p→∞

‖a[p+1] − a[p]‖2F = 2− 2 lim
p→∞

Re(Πk
i=1〈x

[p]
i ,x

[p+1]
i 〉) = 0.

On the other hand, because|Πk
i=1〈x

[p]
i ,x

[p+1]
i 〉| ≤ 1, i ∈ JkK, it must be that

lim
p→∞
〈x[p]

i ,x
[p+1]
i 〉 = 1, i ∈ JkK.
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Throughout the algorithm, with respect to arbitraryα, we have required the phase of the first entries of allx
[p]
α1

be positive. Therefore, the two unit vectorsx[p]
i andx[p+1]

i , i ∈ JkK, must be gradually aligned asp goes to
infinity. In particular,

lim
p→∞

(xi
[p+1] − xi

[p]) = 0, i ∈ JkK.

By the result already established in [31, Lemma 4.10] and [28, Lemma 2.7], the above limiting behavior of
increments between two consecutive iterates is sufficient to prove that{(x[p]

1 , . . . ,x
[p]
k )} converges.

Algorithm 1 is designed for multipartite rank-1 approximation problem (2.2). Since its convergence theory
is complete and its computation is highly efficient, it is tempting to speculate that we can use it as the basic
building block in the so-called greedy ALS update scheme forthe general problem (1.7). The idea is that, while
advancing int = 0, 1, . . ., we repeatedly apply Algorithm 1 to solve a sequence of subproblems of the form

(λ
[t+1]
j ,x

[t+1]
1,j , . . . ,x

[t+1]
k,j ) := argmin

λj∈R+, i∈JkK,

xi∈Cmi , ‖xi‖2=1

‖ρ[t+1]
j − λj(x1x

∗
1)⊗ · · · ⊗ (xkx

∗
k)‖2F , j ∈ JRK, (2.14)

where

ρ
[t+1]
j := ρ−

j−1∑

r=1

λ[t+1]
r (x

[t+1]
1,r x

[t+1]
1,r

∗
)⊗ · · · ⊗ (x

[t+1]
k,r x

[t+1]
k,r

∗
)

−
R∑

r=j+1

λ[t]
r (x

[t]
1,rx

[t]
1,r

∗
)⊗ · · · ⊗ (x

[t]
k,rx

[t]
k,r

∗
). (2.15)

The matrixρ[t+1]
j is composed of two parts — the factorsλ[t]

r , x[t]
1,r, . . . ,x

[t]
k,r, r ∈ JRK\JjK, are available from

the t-th iteration andλ[t+1]
r , x[t+1]

1,r , . . . ,x
[t+1]
k,r , r ∈ Jj − 1K, are newly updated at the(t + 1)-th iteration.

Nonetheless, such a successive displacement iterative scheme suffers from several issues both computationally
and theoretically. First, it is expensive. For each fixedt = 0, 1, . . ., we need to sweep throughj ∈ JRK, whereas
for each fixedj ∈ JRK we need to solve (2.14) using Algorithm 1 which itself requires iterations. Second, the
matrix ρ

[t+1]
j is guaranteed only to be Hermitian but is not necessarily positive semi-definite, whereas our

convergence analysis for Algorithm 1 relies heavily on the definiteness of the underlying matrix. Third, the
foremost challenge in computation is to maintain the critically important probability mixture of separable states
in (1.7), i.e., the conditions that

R∑

r=1

λr = 1, λr ≥ 0. (2.16)

Theλ[t+1]
j found by solving the individual problem (2.14), however, does not take this constraint into account

as a whole. In fact, sinceρ[t+1]
j is a mixture byλ[t+1]

1 , . . . λ
[t+1]
j−1 andλ[t]

j+1, . . . , λ
[t]
R which in general are not

even probabilistically related, we have no reason to think that the constraint (2.16) will be satisfied eventually.
Enforcing such a condition seems to be a major difficulty in applying the greedy ALS method.

3. Quantum Low-rank Separability Approximation. In contrast to the SVD-based iterative method for
the caseR = 1, in this section we propose a continuous dynamical system approach for the caseR > 1 when
solving the problem (1.7). The dynamical system is based on the complex-valued gradient flow. We observe
at least four advantages in such an approach. First, the sum-to-one constraint imposed on the combination
coefficients can be built into the dynamical system. Second,any violation of the nonnegativity constraint can
easily be detected and fixed. Third, the rank can be automatically adjusted downward and, hence, even ifR
is wrongly overestimated, it actually helps offer a broadersearch initially and will be downgraded along the
course of integration. Fourth, once the differential equation is in place, the coding is straightforward and any
available ODE solver can be used as the numerical integrator.
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3.1. Projected Gradient Flow. For convenience, we introduce the abbreviations




Θ := ρ−∑R
r=1 λr(x1,rx

∗
1,r)⊗ · · · ⊗ (xk,rx

∗
k,r) ∈ CΠk

i=1mi×Πk
i=1mi ,

ωr := 〈x1,r ⊗ · · · ⊗ xk,r,Θ(x1,r ⊗ · · · ⊗ xk,r)〉 ∈ R,
Cr := reshape

(
Θ(x1,r ⊗ · · · ⊗ xk,r), [mk, . . . ,m1]

)
∈ Cmk×···×m1 .

Note thatωr andCr vary in r ∈ JRK. Note also that the expressions involve everyλr, r ∈ JRK. That is,
different from the greedy ALS scheme (2.14), we want to adjust the entire array{λ1, . . . , λR} simultaneously.
Despite of their seemingly complicated expressions, it will be interesting to find in the following development
thatΘ, ωr andCr for the caseR > 1 generalize the roles ofA, λ andD discussed in the preceding section for
the caseR = 1, respectively.

Rewrite the objection function in (1.7) as

g(λ1, . . . , λR,x1,1, . . . ,xk,1,x1,2, . . . ,xk,2, . . . ,x1,R, . . . ,xk,R) := 〈Θ,Θ〉 = 〈Θ,Θ〉R. (3.1)

It is not difficult to calculate the Wirtinger derivative of the functiong with respect to the various variables. We
summarize the results as follows:





∂g
∂λr

= −2ωr,

∂g
∂xj,r

= −2λrCr ⊛j (
1

©
i=k,i6=j

xi,r),

∂g
∂xj,r

= −2λrCr ⊛j (
1

©
i=k,i6=j

xi,r),

j ∈ JkK, r ∈ JRK. (3.2)

Note that the outer product is done specifically in the reverse order. If we denotexj,r = uj,r + ıvj,r with
uj,r,vj,r ∈ Rmj , then by using (2.7) the above Wirtinger gradients (3.2) canbe converted to the real gradients
as follows:

∂g

∂(uj,r,vj,r)
= −4λr




Re(Cr ⊛j (
1

©
i=k,i6=j

xi,r))

Im(Cr ⊛j (
1

©
i=k,i6=j

xi,r))



, j ∈ JkK, r ∈ JRK. (3.3)

This expression is similar to that in (2.10). Using the same argument as that for deriving (2.12), we arrive at
the relationships

ωr = u∗
j,r Re(Cr ⊛j (

1

©
i=k,i6=j

xi,r)) + v∗
j,r Im(Cr ⊛j (

1

©
i=k,i6=j

xi,r)), r ∈ JRK. (3.4)

Therefore, the projected gradients of objective functiong onto the unit sphereS2mj−1, j ∈ JkK, can be ex-
pressed in the condensed form:

Proj
S

2mj−1

∂g

∂(uj,r,vj,r)
= −4λr(Cr ⊛j (

1

©
i=k,i6=j

xi,r)− ωrxj,r), r ∈ JRK. (3.5)

By (3.5), the first-order optimality condition should be that

λr(Cr ⊛j (
1

©
i=k,i6=j

xi,r)− ωrxj,r) = 0, j ∈ JkK, r ∈ JRK,
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which resembles that in Lemma 2.1 but is more involved because r varies. By now, we have established a
negative gradient flow





λ̇r = 2ωr,

ẋj,r = 4λr(Cr ⊛j (
k

©
i=1,i6=j

xi,r)− ωrxj,r),
j ∈ JkK, r ∈ JRK, (3.6)

whose solution defines a trajectory along which the objective value of (1.7) is gradually decreased. However,
thus far there is no guarantee on whether the resultingλr(t), r ∈ JRK, will satisfy the constraint (2.16). We
will modify the differential equation to address this issuewhile still maintaining the descent property in the
next section. We also have to devise an implementation that respects the nonnegativity constraint.

3.2. Modified gradient flow and adaptive strategy.We address the sum-to-one constraint first. Suppose
that initially λr(0) > 0, r ∈ JRK, and

∑R
r=1 λr(0) = 1. To satisfy the constraint (2.16), it is necessary that

R∑

r=1

λ̇r(t) = 0, for all t ≥ 0. (3.7)

The dynamical system given in (3.6) alone can hardly meet this condition. We propose to remedy the situation
by modifying the flow forλr(t) to

λ̇r = 2(ωr − ω̃), r ∈ JRK, (3.8)

with ω̃ :=
∑R

r=1
ωr

R
, while keeping intact the original governing equations forẋj,r , j ∈ JkK, r ∈ JRK. By

doing it this way, the condition (3.7) is met, but the direction of the flowxj,r, j ∈ JkK, r ∈ JRK will have been
altered. Even so, the following result shows that we still have a descent flow.

LEMMA 3.1. Let

Z(t) := (λ1(t), . . . , λR(t),x1,1(t), . . . ,xk,1(t), . . . ,x1,r(t), . . . ,xk,r(t)) (3.9)

denote the flow corresponding to the newly modified differential system described above. Then the objection
value ofg is descending along the trajectoryZ(t).

Proof. We first calculate that

dg(Z(t))

dt
= ∇g(Z(t)).

dZ(t)

dt

=

R∑

r=1

∂g

∂λr

λ̇r +

k∑

j=1

R∑

r=1

〈 ∂g

∂(uj,r,vj,r)
,

[
u̇r

v̇r

]
〉

=

R∑

r=1

∂g

∂λr

λ̇r − 16

k∑

j=1

R∑

r=1

λ2
r




∥∥∥∥∥∥
Cr ⊛j

(
k

©
i=1,i6=j

xi,r

)∥∥∥∥∥∥

2

− ω2
r


 . (3.10)

It follows from (3.4) that each term in the last summations isnonnegative. Also,

R∑

r=1

∂g

∂λr

λ̇r = −4
R∑

r=1

ωr(ωr − ω̃) = −4(
R∑

r=1

ω2
r −

1

R
(

R∑

r=1

ωr)
2) ≤ 0, (3.11)

where the last inequality follows from the Cauchy-Schwarz inequality and the fact thatωr ∈ R, r ∈ JRK. In
all, we see thatdg(Z(t))

dt
≤ 0. We mention in passing that the equality in (3.11) holds onlyif ωr = 1√

R
.
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We next address the task of keepingλr ≥ 0, r ∈ JRK. Maintaining nonnegativity in solutions of ordinary
differential systems has been widely discussed in the literature. A variety of strategies for enforcing nonnega-
tivity can be found in the literature. See [32] and the references contained therein for a historic review of this
subject. For our application, we propose the following mechanism to keepλr ≥ 0, r ∈ JRK. The mechanism
consists of three components working together:

1. Event Detection: By an event we mean that one of theseλr(t), r ∈ JRK, has decreased from a
positive value to zero (or near zero) for somet during the integration. It is critical to determine the
time t̂ when an event occurs up to the prescribed precision. Such a detection machinery can effectively
be programmed in any numerical solver. For demonstrate purpose, we shall make use of the existing
event function in theMatlab ODE suite to carry out the task.

2. Rank Reduction: The eventλr(t̂) = 0 indicates two things. First, sincėλr(t̂) ≤ 0, any further
integration even at a tiny time step is likely to violate the nonnegative constraint. Second, since the
termλr(t̂)(x1,r(t̂)x

∗
1,r(t̂))⊗· · ·⊗(xk,r(t̂)x

∗
k,r(t̂)) = 0 is not making any contribution to the objective

value ofg at the moment, we can drop this term and continue. In doing so,the initial rankR is reduced
by one.

3. Restart: Once a term is dropped, we use the remaining information(λs(t̂),x1,s(t̂), . . . ,xk,s(t̂)),
s ∈ JRK\{r}, as the initial value to restart the integration. In this way, the objective value is ratcheted
at the current value and can only continue to go down after therestart.

Recall that estimating a properR is always difficult in low-rank approximation. Starting with a larger rank
R might seem redundant and wasteful initially, but it provides the flexibility of searching multiple directions
for a better solution. The mechanism described above servesas a means to filter out unneeded factors.

3.3. Convergence.The limiting behavior of a gradient dynamics is well studiedin the literature. In
particular, counterexamples have been found to evince thatnot all gradient flow will converge. For completion,
we now argue that our gradient flow, even with the modification(3.8), will converge to a singleton point.

If we separate eachxj,r into real and imaginary parts, the right-hand side of our differential system can
be regarded as a polynomial system in a total of(2

∑k
i=1 mi + 1)R real variables. Without loss of the original

sense, letξ denote the vector of all real variables and abridge the differential system as a negative gradient flow

dξ

dt
= −∇F (ξ) (3.12)

for some abstract objective functionF (ξ) in ξ. Being polynomials inξ, the vector field∇F (ξ) is real analytic
in ξ. By construction,ξ(t) is also bounded. It follows that the set of accumulation points

ω(ξ(0)) :=
{
ξ̃ ∈ Rn |x(tν)→ ξ̃ for some sequencetν →∞

}
(3.13)

is a non-empty, compact, and connected subset of stationarypoints, i.e.,∇F (ξ̃) = 0.
Recall the following Łojasiewicz gradient inequality [33,34].
THEOREM 3.2. Suppose thatF : U → R is a real analytic function in an open setU ⊂ Rn and ξ̃ ∈ U .

Then there exist a neighborhoodW of ξ̃, constantsc > 0 andθ ∈ [0, 1), such that the inequality

‖∇F (ξ)‖ ≥ c‖F (ξ)− F (ξ̃)‖θ

holds for allξ ∈ W .
An important consequence of the Łojasiewicz gradient inequality is that the trajectory of an analytic gra-

dient flow is necessary of finite length. The following resultis readily applicable to our differential system
and implies that the flow{λr(t),xj,r(t)}, j ∈ JkK, r ∈ JRK converge to a singleton stationary point. See [35,
Theorem2.2] and the lecture note [36] for its proof.

THEOREM 3.3. Suppose thatF : U → R is real analytic in an open setU ⊂ Rn. Then for any bounded
semi-orbit of(3.12)

ξ(t)→ ξ̃ ast→∞

for somẽξ ∈ U .
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4. Numerical Experiment. Quantifying the entanglement of a mixed state by finding its nearest separable
state is a challenging problem. Even the problem of determining whether a a given state is separable or not
is NP-hard [37, 38]. However, we must not misconceive that anNP-hard problem is forever hopeless and
untouchable. A practical example is the problem that expressing

√
2 is NP-hard in theory because it requires

infinite complexity on a Turing machine but we do have polynomial-time algorithms to approximate it to any
finite precision. Likewise, the NP-hardness encountered inentanglement quantification does not imply that
we cannot approximately solve the problem by numerical means. Thus far, we have described an SVD-based
iterative method for the rank-1k-partite problem (2.2) and a gradient flow approach for the more complicated
rank-R k-partite problem. In this section we carry out some numerical experiments to test the effectiveness of
our methods.

Example 1. In the first part of this experiment, we produce the target matrix

Ξ1 = (η1 ⊗ η2 ⊗ η3 ⊗ η4)(η1 ⊗ η2 ⊗ η3 ⊗ η4)
∗

with randomly generated unit vectorsη1, . . . ,η4 ∈ C5. Therefore, the target matrixρ ∈ C625×625 is already
separable and is of rank one. We test Algorithm 1 with randomly selectedα as well as its analogue whereα is
varied cyclically. The iteration is terminated whenever the stopping criterion

∥∥∥∥∥∥

[
D(x1,x2,x3,xk)⊛j

4

©
i=1,i6=j

xi − λxj

]

j=1,...,4

∥∥∥∥∥∥
F

< 10−10. (4.1)

is met. We repeat our experiments 20 times with distinct randomly generated starting points. As a nonlinear
optimization problem, the limit points depend on the starting points and may differ from the original generators
η1, . . . ,η4 ∈ C5. It should be more feasible if we gauge the quality of the approximation not by a comparison
with the original generators but by the product

ρ̂ = (x̂1 ⊗ x̂2 ⊗ x̂3 ⊗ x̂4)(x̂1 ⊗ x̂2 ⊗ x̂3 ⊗ x̂4)
∗

based on the limit point(x̂1, x̂2, x̂3, x̂4) of the iterates. We measure the quantity

Error := ‖Ξ1 − ρ̂‖F .

The test results in terms of the averages of errors, numbers of iterations, and CPU time in seconds of the 20
runs are tabulated in Table 4.1. Since Algorithm 1 utilizes only the first-order derivative information, its rate
of convergence should be at most linear. Nonetheless, for this problem of decomposing a625 × 625 density
matrix as the tensor product of four pure state density matrices inC5, the empirical data seem to suggest that
our SVD-based approach can be effective in precision and efficient in time when calculating the optima.

α Error Iteration MinTime MaxTime AveTime

cyclic 9.6389× 10−16 4 4.0921× 10−3 1.1574× 10−1 1.0126× 10−2

random 3.5439× 10−15 4.1 2.9594× 10−3 2.4689× 10−2 5.3788× 10−3

Table 4.1: Average errors, numbers of iterations, and CPU time in seconds on 20 runs by Algorithm 1 forρ.

In practice, the exact rank of a given entangled state is not known. Indeed, for almost all information
gathering devices, it is inevitable that the data collectedcontain noise. The presence of even a small amount of
noise to a low-rank matrix will break up the low rank. In the second part of this experiment, we mete out the
perturbation in a controlled way and calculate the rank-1 approximation ofρ under noise. Specifically, we use
the perturbed matrix

ρσ = Ξ1 + σ(γ − Ξ1) (4.2)
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(a) Average of‖Ξ1 − ρ̂‖F .
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Figure 4.1: Average errors and CPU time on 20 random runs by Algorithm 1 forρσ.

as the target matrix, whereγ is a randomly generated but fixed density matrix andσ = 10−p, p = 2, 4, 6, 8, 10,
represents the intensity of the noise. In this particular experiment, we already know‖γ − Ξ1‖ ≈ 1.0001, so
σ ≈ ‖ρσ − Ξ1‖. Observe thatρσ is still a density matrix and is of full rank in general, butρσ is made more of
the rank-1 matrixΞ1 than of the full rank matrixγ. For this reason, we find in Figure 4.1(a) that the ultimate
rank-1 approximation̂ρ for ρσ is in fact closer to the rank-1 matrixΞ1 than to the full rank matrixρσ. We also
find that the smaller the perturbationσ, the closer̂ρ is toΞ1. The CPU time is little affected.

Example 2. Despite the success of the SVD-based iterative method for the caseR = 1, it is difficult to
generalize to the greedy method for the caseR > 1. In the first part of this second experiment, we demonstrate
that the differential system approach can identify a properrank by the mechanism described in Section 3.2.
Consider a separable rank-2 target matrix:

Ξ2 =

2∑

r=1

λr(η1,rη
∗
1,r)⊗ (η2,rη

∗
2,r)⊗ (η3,rη

∗
3,r)⊗ (η4,rη

∗
4,r), (4.3)

whereηi,r ∈ C5, i = 1, . . . , 4, r = 1, 2, are randomly generated unit vectors andλr > 0, r = 1, 2, satisfies∑2
r=1 λr = 1. Pretending that we do not know of the exact low rank ofΞ2 initially, we start off withR = 4

with the hope the exact rank ofΞ2 will be found eventually.
Utilizing the existing routineode15s in Matlab as the integrator, we turn on the optionevent and set

the local error tolerance atAbsTol = 10−10 andRelTol = 10−10. We follow four trajectories, each with
a different set of starting points. The evolution of the objective values when following these trajectories is
plotted in Figure 4.2(a). As can be seen, though the integralcurves follow different trajectories and might
end up with distinct stationary points, the ultimate objective values can be regarded as nearly zero within the
prescribed tolerance. Evidence about the preservation of the sum-to-one property, even with the overestimated
R, is plotted in Figure 4.2(b). Though their markings might besmeared due to the proximity of the curves,
the red circles in both graphs in Figure 4.2 indicate that an event has been detected and, hence, the valueR is
reduced by one. There are two red circles in each curve, so we know that the original low rank has been found.

Similar to the experiment done in Example 1, we next investigate how the noise affects our dynamical
approach’s performance. We deal out the perturbation toΞ2 in exactly the same way as in (4.2) to produce the
target matrixρσ. Let ρ̂(t) denote the numerical solution to our different equation. The evolution of‖Ξ2−ρ̂(t)‖F
and‖ρσ− ρ̂(t)‖F in response to different levels of perturbation strengthσ are plotted in Figure 4.3. In contrast
to the case ofR = 1 in Example 1, we have observed that the rank-2 separable stateΞ2 is more sensitive to
perturbation in the sense that‖Ξ2 − ρ̂σ(t)‖F ≈ ‖ρσ − ρ̂σ(t)‖F if σ ≥ 10−6. That is, the flowρ̂σ(t) is about
equal distance to both the rank-2 stateΞ2 and the full rank stateρσ if the perturbationσ is lightly too large.
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Figure 4.2: Convergence, event detection, and sum-to-one constraint for approximating exactΞ2.
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Figure 4.3: Rank-4 approximation for perturbed matricesρσ of Ξ2, σ = 10−p, p = 2, 4, 6, 8, 10.

Different from the caseR = 1, two observations are worth noting. First,ρ̂(t) does not show a preference to
Ξ2. Second, we start withR = 4, but not all trajectories encounter an event to reduce the rank. The latter
phenomenon leads us to reconsider the definition of the event,

Instead of defining an event rigorously only atλr(t̂) = 0, we may declare that an event happens whenever
|λr(t̂)| < ǫ at a preselectedǫ. The rationale is that since‖xj,r(t)‖2 = 1, j ∈ JkK, for all t, the contribution
of the termλr(t̂)(x1,r(t̂)x1,r(t̂)

∗) ⊗ · · · ⊗ (xk,r(t̂)xk,r(t̂)
∗) to the overall summation is at most|λr(t̂)|. If

the current approximation is several orders larger thanǫ, then maybe it is plausible to ignore the term whose
contribution is at mostǫ. We experiment with this more relaxed rank reduction mechanism on the perturbed
matrix ρσ with σ = 10−4 by choosingǫ = .5 ∗ 10−4. We start withλr(0) = 1

R
, r ∈ JRK, to give every

component an equal chance to compete for survival. Since nowit is easier to qualify an event, we setR = 40
with the hope of broadening the search in many more directions. The red line at the top of Figure 4.4(a) shows
the preservation of the sum-to-one property. We also see that at t ≈ 100, manyλr(t)’s begin to diminish
and eventually trigger the event mechanism. The rank reduction from R = 40 to R = 2 happens quickly
within a small window oft, as can been seen from the cluster of red circles in Figure 4.4(b). While the rank
is being reduced, we see that the objective values continue to decrease until a local minimum is found. This
experiment supports the mechanism of relaxed event qualification, but in practice we usually do not have a
priori knowledge of the proper extent of relaxation.

16



100 101 102 103

t

10 -5

10 -4

10 -3

10 -2

10 -1

100

Evolution of 
r
(t) and Sum-to-One

(a) Rank reduction fromR = 40 to R = 2.

100 101 102 103

t

10 -5

10 -4

10 -3

10 -2

10 -1

100
Evolution of Errors

(b) Square roots of objective values.

Figure 4.4: Rank reduction for perturbed matrixρσ with σ = 10−4 and relaxed event qualification.

Example 3. Let Ξ3 ∈ C32×32 be a randomly generated positive definite matrix. Suppose that Ξ3 is
regarded as a density matrix in a 5-qubit system. Recall thateach qubit counts as an element inC2. Let the
notationVp1, p2, . . . , pℓU denote the composite system(C2)

⊗p1 ⊗ (C2)
⊗p2 ⊗ . . . ⊗ (C2)

⊗pℓ . There are seven
ways to split the number 5 as a sum of nonnegative integers. (The number of partitions for ad-qubit is the
Sloane sequence A000041.) Thus we may consider partial separability approximations associated with the
group assignments:V1, 1, 1, 1, 1U, V2, 1, 1, 1U, V2, 2, 1U, V3, 1, 1U, V3, 2U, V4, 1U, andV5U.

The caseV5U amounts to the rank-R approximation in the conventional sense of linear algebra.The
problem can be resolved directly by the singular value decomposition ofΞ3. It is a well-known fact from the
Eckart-Young-Mirsky theorem that, for eachR ≤ 32, the truncated singular value decomposition gives rise to
the globally best rank-R approximation toΞ3 [39, 19].

Starting fromR = 50, we apply the gradient flow approach to approximateΞ3 over the other six types of
multipartite systems specified by the group assignments. Figure 4.5 shows the evolution of errors‖Ξ3−ρ̂(t)‖F .
We see that as the number of splits decreases, the errors are reduced correspondingly. This observation is
expected because, for example, the caseV3, 1, 1U can be considered as a more restrictive structure ofV3, 2U
and, hence, it should have higher errors. In the order fromV1, 1, 1, 1, 1U to V4, 1U, we find that the final
reduced ranks are41, 46, 41, 43, 41, and36, respectively. The fluctuation of the final ranks might indicate that
we have found a local solution only, but the general trend is that the higher the separability is involved, the
more demanding is the computation. It is interesting to notethat the singular value decomposition of a generic
Ξ3 requires exactlyR = 32 for a complete decomposition ofΞ3. The fact that our gradient approach for
theV4, 1U-type approximation reduces the final rank to36 seems to evince that the rank reduction mechanism
works reasonably well.

Example 4. In this experiment, we apply our gradient flow to a realistic problem. We briefly describe some
background information before carrying out the experiment. In the quantum information theory, the so-called
Greenberger-Horne-Zeilinger state (GHZ state) [40, 41]

|GHZ〉 = 1√
2
(|0〉⊗k

+ |1〉⊗k
)

is a quantum state that involves the entanglement of at leastthree subsystems, i.e.,k ≥ 3. Because they exhibit
some extremely non-classical properties, GHZ states are used in several protocols in quantum communication
and cryptography. In this example, we consider the simplestcasek = 3 and a density matrixWσ of the form

Wσ := (1− σ) |GHZ〉 〈GHZ|+ σ
1

8
I8, 0 ≤ σ ≤ 1,

which represents a probabilistic mixture of|GHZ〉 with the operator18I8. The mixed stateWσ is known as the
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Figure 4.5: Low rank approximation of a5-qubit system.

generalized Werner state which has found applications in the robustness of entanglement [42], NMR quantum
computation [43], and purification schemes for entangled states [44].

The matrix representation ofWσ can be expressed as

Wσ = (1 − σ)




1
2 0 · · · 0 1

2
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0
1
2 0 · · · 0 1

2



+ σ

1

8




1 0 · · · · · · 0

0 1 0 · · ·
...

... 0
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 1




∈ R8×8.

It has been shown in theory thatWσ is (totally) separable if and only if45 ≤ σ ≤ 1 [45]. Therefore, by adjusting
σ we have a test case to explore the rank reduction mechanism and to estimate a possibly optimal rank.

Since the exact low rank ofWσ is not known a priori, we start out our experiments fromR = 15 for the
three choices ofσ = 2/3, 4/5 and6/7. We are interested in observing two phenomena in each choice. For the
caseσ = 6/7, how low can the rank be reduced and can the separability be achieved? What will happen to the
caseσ = 2/3 which is not separable? Can the rank be reduced at all while the objective value is decreased?
The borderline caseσ = 4/5 is most curious. It is separable in theory, but will its rank be the same as that for
σ = 6/7 at total separation?

Starting from the same randomly generated unit vectorsx1,r,x2,r,x3,r ∈ C2, r ∈ J15K, and using the
rigorous event qualification, we plot the evolution trajectories of the residuals together with red circles when-
ever an event has been detected in Figure 4.6. The monotone decreasing property guaranteed by our theory is
clearly manifested in these curves. The answers to the abovequestions for the casesσ = 2/3 andσ = 6/7 are
also clear. It is estimated that the flow forσ = 2/3 reaches its local solution much sooner (att ≈ 300) than
the flow forσ = 6/7 reaches its total separability (att ≈ 34000). These limiting behaviors strongly support
thatWσ is entangled ifσ = 2/3 and is separable ifσ = 6/7. For the caseσ = 4/5, we estimate that the
residual decreases at approximately the rateO(1/t). That is, while the residuals keep going down, it converges
at a very slow pace. The behavior suggests that the caseσ = 4/5 is separable, but it is much harder to find its
components.

Note that in the extreme caseσ = 1,

W1 =
1

8
I8 =

1

8

7∑

i=0

|i〉 〈i| ,
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Figure 4.6: Low rank approximation of entangled density matrices.

where|i〉 denotes the 3-qubit whose binary representation is equal toi. That is, the optimal rank forW1 is
R = 8. Counting the events for casesσ = 2/3, 4/5, and6/7, we observe that the reduced ranks are11, 11,
and12, respectively. While our rank reduction mechanism is tested to work for arbitraryσ, it remains an open
question on whether these are the optimal ranks. It is also unclear whether the trajectory for the caseσ = 4/5
will have additional events in later stage of integration.

5. Conclusion. Quantum technologies have been rapidly advanced with the urgent need to create more
complex and powerful quantum computers. The technologies,if fully developed, will have far-reaching ap-
plications including, for example, as critical as superioranalytics capabilities or as practical as better battery
life. At the crux of quantum computing is the understanding and control of quantum entanglement, which has
already attracted many research endeavors. This paper is concerned with computing numerically the low rank
separable approximation of a given entangled multipartitesystem, which might be used as a computational tool
for gauging the quality of entanglement of quantum states.

The notion of quantum mechanics is generally described in physics terms, but there is rich mathematics
involved. This work employs a synthesis of techniques from linear algebra, optimization, and dynamical system
to tackle the entanglement certification problem numerically. All discussions are over the complex field, so the
methods are readily transferable to real-world problems. For rank-1 approximations, the SVD-based iterative
method is shown to be efficient and effective. For higher rankapproximations, this work derives a complex-
valued differential system that not only guarantees globalconvergence but also is capable of maintaining a
probabilistic ensemble of pure states while dynamically estimating a proper rank in the ensemble.
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