LOW RANK APPROXIMATION TO
ENTANGLED MULTIPARTITE QUANTUM SYSTEMS
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Abstract. Qualifying the entanglement of a mixed multipartite stageghuging its distance to the nearest separable state ofda fixe
rank is a challenging but critically important task in quanttechnologies. Such a task is computationally demandinlybecause of the
necessity of optimization over the complex field in order hamacterize the underlying quantum properties correctity @artly because
of the high nonlinearity due to the multipartite interaoto Representing the quantum states as complex densiticesatvith respect to
some suitably selected bases, this work offers two avemuikle this problem numerically. For the rank-1 approxiora an iterative
scheme solving a nonlinear singular value problem is iiyatgd. For the general low-rank approximation with pralgtie combination
coefficients, a projected gradient dynamics is proposedh Bxhniques are shown to converge globally to a local olutNumerical
experiments are carried out to demonstrate the effectbgeand the efficiency of these methods.
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1. Introduction. Entanglement is a ubiquitous phenomenon in nature. Givensgatem, in whatever
sense, it is almost inevitable that it will necessarily ratg with another or more systems. This involvement of
multiple systems, whether tangible or impalpable, can gdlyebe regarded as an entanglement. Depending
on the settings, entanglement can be characterized inetitféorms. Quantum entanglement, where multiple
guantum systems interact in such a way as if both their dgatiadinates and their linear momenta are linked,
even when the systems are widely separated in space, isyarty intriguing [1]. In modern days, quantum
entanglement plays an increasingly more important roleuangum technologies. Quantum informatics and
guantum communication, for example, exploit the entanglgnfor faster and more secure passage of infor-
mation than classical algorithms. In recent years undedstg of entanglement has advanced and diversified
into many subfields with applications across a variety afigimes. The scope is so broad that it is beyond our
technical competence, nor is there room in this short notprdvide even the most basic overview of the dif-
ferent subjects related to entanglement. Out of the nunsgraoany, we mention merely three review articles
[2, 3, 4] whose references to hundreds of research resubistamglement should be a conspicuous indication
of the breadth and the depth of the vast research endeawthiis Brea. This work concerns only about a fairly
focused subject of measuring numerically the distance &etva given mixed state and its nearest separable
state [5, 6, 7]. In this introduction, therefore, we shalllime only the needed background information pertain-
ing to our methods. For clarity, we divide the discussiow istibsections by topics for easy perusal. Readers
can skip the parts that they are familiar with.

1.1. Entanglement and separability.In this section we briefly review some basic notion of entanmnt
and separability. For a more thorough and in-depth treatiwfethe main ideas, we suggest [8, 9, 10] and the
classic book [11].

A quantum mechanical system is typically cast as a complélxektispace. The reasons that complex
numbers are needed in quantum mechanics are plainly egdl@n12, 13] and the references therein. Any
unit vector in the space is referred to as a pure state whigiledlly is denoted by the Dirac’s ket notation
|x). A mixed quantum state is a probabilistic ensemble of fipiteany pure states. It is more convenient to
represent a mixed stateas a density matrix

Q:ZZm %) (i ; Zuz:l; pi 2 0, (2.1)
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where the density matricés;) (x;| of pure statesx;) are simply the orthogonal projector that maps &ty
onto|x;) (x;|z) with (x;|z) denoting the inner product in the Hilbert space.

A bipartite system”’ = 4 ® 4% is a composition of two quantum mechanical subsysteffisand
2 which interact with each other through a bilinear rhadgnoted by the symbab. A pure quantum state
[¢p) € A is called separable if and only if

1) = Y1) @ [9,) (1.2)

where|y,) € J#, i = 1,2, are pure states, respectively; otherw|g#), is entangled. The real issue, however,
concerns the mixed state in the composite system. A gemeredd) quantum state € .77 is called separable
if it can be decomposed as a probabilistic mixture of tensodpcts of density matrices of pure states [14, 15]:

pP= 291(|X1> <Xi |yz yz Ze =1 i >0, (13)

where|x;) € 4 and|y;) € % are unit vectors. Thus, the collection of all separableestat a bipartite
system form a convex set with pure separable states asiigmexpoints [9].

The same notion of composition can be applied to more tharstussystems [16]. However, the classifi-
cation of quantum-entangled states is far more compliciu@al in the bipartite case. On one hand, a natural
generalization of (1.3) to A-partite density matriy is that if

P:ZQT(|X1,T> <X1,r|)®" |Xkr Xkr Zer— 1 r 207 (14)

where, for allr, |xiyr> € 4 is a unit vector, then is called a fully separable state; otherwise, it is said

to be fully entangled. On the other hand, there also exigtsithiion of partially separable states such as the
separability with respect to a particular partitiorkadr the more complicated semi-separability. Once a specific
class of separability is chosen, the collection of all sapke states under the associated definition still forms a
convex set.

Given a general mixed state if it is not separable, then it is nature to seek its neargsaable state. The
task involves calculating the shortest distance betweand the convex hull of separable states. This nearest
separable approximation problem offers a way to assessudiliication of entanglement. It is of practical
importance in quantum applications [2, 11].

1.2. Metric for measurement. We ought to make it clear that the qualification of entangletdepends
highly on the assumptions and the applications [17]. Fa thason, when measuring the nearness, different
metrics might be used for different purposes. We mentioeeloases.

If the goal is to measure the maximum probability of distiistpability between two quantum statesnd
o, then the trace metric

1
Dr(p,a) i= 5T/l =),

based on the so-called Kolmogorov-Smirnov (KS) test for paring random samples, is perhaps preferred.
On the other hand, since repeated measurements are ngéesgantum computation, it might be desired to

calculate the minimum number of measurements requiredstmduish two different states. For this purpose,

the Bures distance

Dg(p,0) := \/2 —2Try/\/po+/p,

1The very same notatio® has been used for many different meanings in the literafiine. distinction between a tensor product and
the Kronecker product is necessary for computation andbeiléxplained in Footnote 2. For a general composite systén® %, we
emphasize thap is merely a bilinear map.



an analogue of the Fisher information in classical stasitan be employed. If we regard the density matrix
as an integrated ensemble of the state in which the wholegnhmformation is contained, then the Frobenius
norm

1 1
Dr(pa) = 5llp - ol = 3V/T(o = 0)?

may be used to measure the geometric difference betweemiseonbles [18].

It is known in linear algebra that, over finite dimensionahaps, all norms are equivalent [19], but in
guantum applications different choices of metrics willdéa different approximation results and the associated
interpretations. Also, not all distance formulas are easyse for numerical computation. Taking the positive
square root of a positive definite matrix repeatedly in thepotation for the metric® or D is obviously
more expensive than taking the square root of a scalar in ttdaD . As a starter, we use the Frobenius
norm D in this work for its ease of implementation. i or D is to be used, then specifying the gradient
information will be much more involved. It will require sejde works to develop new schemes and the
pertinent convergence theory. A numerical comparison abua measures is worthy of further investigation,
but is beyond the scope of this paper.

1.3. Approximation problem. Supposes#; and. # are two finite dimensional quantum systems with
fixed basis statege; }7, and{f;}7_,, respectively. Then, elements) € 7 and|y) € % can be interpreted
as two column vectors € C™ andy € C™ of their coordinates, respectively. The density matrisgsx| and
ly) (y| are indeed rank-1 matrices with unit trace0ift *™ andC"*", respectively. Furthermore, with respect
to the basig; ® f; in the lexicographical order, the tensor product can bepnéted as the Kronecker product.

Therefore, the approximation problem

min p— 0;(1x;) (x:]) @ (lys) (yiD|%, (1.5)
o o= S (el @ (1) il
|yi)esn, (yilyi)=1
¥, 6;=1,0,>0

can be translated via the linear algebra interpretatiantime following equivalent problem
xr €C™ |Ixr =1,

yre€®, llyrl=1,
Ar>0,3, Ar=1

R
min lp— Z Ar(%,X7) @ (YTY:)”%N (1.6)
r=1

wherep € C™*™" js positive definite (hence hermitian) with unit tracedenotes the conjugate trans-
pose, andx is interpreted as the Kronecker product. Over the framewdrgeneral Hilbert spaces, the
term needed for the summation in (1.5) is difficult to deterni Over the finite dimensional spaces we
know by the Carathéodory theorem [20, Theorem 2.2.4] thatoee than(mn)? + 1 terms will provide
the best approximation gf over the convex hull of separable states. The problem theréfivolves at most
(2(m +n) + 1)((mn)? + 1) real variables. Suppose thitis a predetermined positive integer, then we have a
low-rank approximation problem. In this case, since we atdaking all the extreme points of the convex hull
of the pure states into the summation, the solution to (%.6pt unique.

This paper concerns the genekagbartite low-rank approximation problem of the form

R
min lp— Z Ar(X1pX] ) @+ ® (xk,rxlt,r)H%‘v (1.7)

xi,r€C™, ||x;,r|l2=1 r=1
Ar20,5f ) =1

for a given density matriyp € Cllica mixITiiimi gandk > 2. It might appear that we are dealing with the
full separability for ak-partite system. Nevertheless, our techniques applie@nrerml dimensionsy;. It is
possible that a single spa€&*: contains the composition of several subsystems. That ispethods can be
applied to explore the partial separability approximatsrnwell [21]. This can be best illustrated by the split
of ann-qubit system in the next section.



1.4. Qubit system. The setting we present in this work is over a general multifgegjuantum mechanical
system withx; , € C™:, wherem;, is an arbitrary positive integer. For applications in quaminformation
science, a commonly used basic unit for quantum computaitre 2-dimensional Hilbert spa€?. In this
context, we still can formulate the low-rank approximation

Denoting the canonical basis vectors o@érdenoted by0) = L } and|1) = { 0

0 1
|4}, a qubit is the quantum mechanical analogue of a classita e digital computer. Correspondingly,
in the bipartite systent? @ C? the produc{?t) ® |{) is often abbreviated ds$.), referred to as a 2-qubit. A
d-qubit system is represented b§?)®? = C? @ ... ® C2. Therefore, a state in the system can be thought
of as a complex vector of dimensi@d. One could regardC?)®? as and-partite entangled system 6f. If

we regard the zeros and ones as constituting the binary sikpaaof an integer, say, then we can replace
the representations of a baglaqubit state by a short forrft), 0 < ¢ < 2¢ — 1. On the other hand, if we
splitd = p + ¢, then we could also consid¢€?)®? = (C2)®? @ (C?)®? as a bipartite entanglement of
(C?)®P and(C?)®4. In the latter case, the problem (1.5) becomes a partialrabifity approximation with

m = 2P andn = 29. Given a32 x 32 density matrixp, for example, we can group thlequbits in 7 ways:
5=540=44+1=342=34+1+1=2424+1=2+1+141=1+1+1+1+ 1, each constitutes

a distinct low-rank approximation problems. The techn&tebe described in this paper can be applied to
handle each case with appropriate realizatioh ahdm; in (1.7).

} or simply|t1) and

1.5. Canonical polyadic decomposition.Before we move on to describe our numerical method, we
ought to point out that, for the cage = 1, the problem (1.7) can be recast as a specially structureddak
tensor approximation referred to as the canonical polydeliomposition with symmetry in the literature [22].
For example, ifp € R™™*™" is properly folded into an order-4 tenstire R™*™*"*" we may recast the
real version of (1.6) as an order-4 rank-1 tensor approxamatith symmetry in the first two and the last two
modes:

min [ - Axoxoyoyl|%, (1.8)
AER ,xER™,yeR™
lIx]=1,]lylI=1

whereo denotes the outer product. Many techniques, e.g., thodeeifensorlab toolbox [23], are readily
available to handle this specially structured rank-1 probl For the cas®& > 1, however, it becomes chal-
lenging to satisfy the probabilistic constraint by convenal techniques. So far as we know, ffensorlab
toolbox has not developed this functionality yet. Recalitttihe probabilistic ensemble is essential in quantum
applications. One of our contributions in this work is a mawkm to maintain this constraint.

This paper is organized as follows. In Section 2, we gensxaur recent results for real-valued bipartite
rank-1 approximation [24] to complex-valued multipartiémk-1 approximation. This generalization prepares
the way of using the Wirtinger calculus to derive the gratiadfra real-valued objective function with complex
variables. In order to address the probabilistic constraia propose in Section 3 a projected gradient flow to
tackle the multipartite low-rank approximation (1.7) ditlg. The most important features of this dynamical
system are that the nonnegativity and sum-to-one contrafithe combinations coefficients are preserved and
that the rank can be automatically adjusted downward duhiegntegration. We believe that the simplicity
of this approach might be employed as a useful tool entargi¢gualification. Numerical experiments are
carried out in Section 4 to demonstrate the working of ouorigms.

2. Multipartite Rank-1 Approximation. In an earlier study [24], we have considered the problem of
approximating a real-valued, symmetric and positive matric R™"*™™ by a real-valued rank-1 bipartite
system, i.e,

i A—N(xx" DE. 2.1
st B e | (xx )@ (yy F (2.1)

The idea is to reformulate (2.1) as either a nonlinear eiglei®problem or a nonlinear singular value problem.
Correspondingly, a nonlinear power-like and a nonlineaDSNKe iterative schemes have been proposed and
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analyzed. Numerical experiments suggest that these netn@dnot only easy to implement, but also are
highly efficient when comparing with the more sophisticataatines used in the packagensorlab.
In this section, we consider the most genéralartite approximation problem
min [A—Axi1x}) ® - @ (xpx}) || %, (2.2)

)\€|R+, i€[k]
X, €C™1, ||x;4||2=1

for a density matrixA € CIly mixITiy mi | The previous experiences we have learned in [24] help leut th
generalization is not as obvious because of the involvewfettimplex variables and the extended number of
factors wherk > 3.

2.1. Basics.To facilitate our subsequent discussion, we first introdsarae basic notations and review
some useful facts. Ld#] denote the set of integefs, . .., k}. Given column vectors;, i € [k], note that
the classical Kronecker produgtis equivalent to the tensor prodéetin a reversed order [25], i.e.,

X1 ®...0X, =Vvec(xgo...0xy), (2.3)
wherevec(¥) for an orderk tensor¥ € C™m1*m2X-X™mk ig g [inear array whose entry at the location
(st — D)mpg—1...m1+ (Sg—1 — D)mp—a...my + ... + (s2 — 1)mq + 51

is precisely the element, ., of T. It will be convenient to adopt the abbreviations

.....

®f:1xi = X1 QX2 Q- Q Xy,
O}:kxi ‘= XkO0...0Xq,
and define the ordertensor
k
D(x1,...,xk) := reshape(4  x;, [mk,...,my]) € CT+>Xm1,

=1

where the operatareshape is identical to that inMatlab which returns a multi-dimensional array with the
specified dimensions.

To handle the multi-indices more effectively, the folloginotation system proves handy [26]. Suppose
that the sef]k] is partitioned as the union of two disjoint nonempty subgets= {a1,...,a,} andg :=
{B1,-..,Br—¢}. LT = (i1,...,4¢) andJ = (41, ..., jr—¢) denote indices at locatiomsand3, respectively,
where each index in the arragsand.7 should be within the corresponding range of integers, .6, [, |

and so on. An element,, ., in the order-k tensdk can be identified aq(zol‘f]) with s, = i, andsg, = jy,

w €[4, v € [k —£]. The point to make is that via the location pointer, 3) we can enumerate elements
Ts;...s, IN any order we want. When the reference to a specific pariitg(c, 3) is clear, we abbreviate
the element as;z| 7. The partition(c, 3) may be regarded as generalizing the familiar notion of rome a
columns for matrices.

Given a partition[k] = a U 3, we may regard an ordértensor¥ as the matrix representation of a
linear transformation from the tensor spacg® ™™ —¢ to C™e1 *--X™ma,  Thus, we use the symbel,, to
replace the conventional "matrix-to-vector" multiplicat, that is, if& = [0, ,, ,] € C"" XXM —e then
theZ-th element of the produ@ = T ®, & € C™e1 X" is defined by

mgy MB_sg

(e, 8) ) _
Z B Z Z L AT TR TR e R

Ji=1 Jk—e=1

2 The tensor product of tensors leads to a multi-indexed awéjle the way to enumerate its elements is often immatéritieory,
it is essential to enumerate them consistently for numlecalaulation. One general rule adopted is that the indi¢e¢kenleftmost tensor
are counted first, e.g., the indices in the tensor produsthb of two vectors are enumerated in the same way as the madtrix. The
relationship (2.3) therefore follows.



Fora,b € C", let
(a,b)r =Y aib; (2.4)
=1

denote a formal inner product. Similarly, the notatighg can be generalized to matrices or tensors. The
relationship

k k—¢ 4
<‘Ia _:lei>R = <‘I ®OL (91 XﬂS)’tg Xat>R7 (25)

J4
which is nothing but the associative law of multiplicatitwvolds for any tensorg) x,, € C™1 > > and
t=1

k—¢
O xp, € C™or ™ *Ma—e . We shall employ (2.5) to help describe lengthy algebrainipaations.
s=1

Suppose thaf : C — R is a real-valued function over a complex variable= = + y. If we regard
f(2) = u(z,y), then the Wirtinger derivatives are defined by

_  1/90 9
a: = 2(am — 15
of . 1,0 e

That is, while maintaining the usual complex arithmetiotighout the operations, we take the formal partial
derivatives off (z) by treatingz andz as independent variables with respect to each other [2T]algeneral
real-valued functiorf : C* — R, the definition of the Wirtinger derivative can be genedizo:

9 .= LeL _, 9
0z : 2\ 0u ov '/
af 1,0f af (2.6)
oz = 3(gs tav);

where we regard(z) = f(u,v) in the real variables, v € R andz = u + «v € C". In this way, the “true"
gradient of functionf : C" — R can be calculated from the Wirtinger derivatives via thatiehship:

a [ 4+4
= Yl = § § . 2.7
vi of (2L — 91 @7
ov 0z 0z

2.2. Nonlinear Singular Value Formulation. For the optimization problem (2.2), and especially for
the case: > 3, we propose the idea of alternately applying the singularevdecomposition to update two
complex vectors at a time. We divide the discussion into taxs First, we motivate the iterative scheme by
exploring the first order optimal condition for the objeetifiunction. Then, we derive the convergence theory.

LEMMA 2.1.Let[k] = aUBwitha := {a1,a2} andg := {f, ..., Bx—2} be an arbitrary partition. If

(x1,...,xx) is alocal minimizer tq2.2), then it is necessary that
k—2
(:D(le"'axk) ®G(Q iﬁi))iam = A(Xl,...,Xk)Xal,
;‘12 (2.8)
(D(x1,...,Xk) Ba (Ql X8,)) %oy = AX1,...,Xk)Ray-
It is worth noting that the multiplication between the ordetensor®(xy,...,x;) and the order-(k-2)

tensoer;figi results a matrix. Also, sincfk] = « U 3 is an arbitrary partition, the specifics of and
a are immaterial. They refer to every possible indices. Theeasary condition (2.8) therefore is much more
involved than it appears.



Proof. Becaused is positive definite, the minimization of (2.2) is equivalémthe maximization of

e il X1y x) = (A (X1 @ @%) (X1 @ - @ XE)"), (2.9)
x; €EC™i | ||x4]|2=1
i€[k]

where(, ) denotes the Frobenius inner product over the complex speeean also write\ as
A1, Xk) = (A, (X1 @ @ xp) (X1 @ - @XE) R

Consider the variable,, = u,, + iv,, first. Taking the Wirtinger derivatives with respecg, yields

8A k72__ _
e = (D00 x0) @0 (O %a)%e,

Since
AX1, X)) = AMX1, . xk) = (A, (%1 @ @ %) (R ®---®§k)—r)ua,

we also have

k2
82_21 = (8221) = (D(X1,...,Xk) ®Ba (1:1 X5,))Xaz,

It follows from (2.7) that the partial gradient afwith respect to the real variables,, andv,, is given by

aax

Uay R

Viwa, va) A= | 5y —2[ T } (2.10)
Ova,

whereR andZ are, respectively, the real and imaginary parts of
k—2
D(X1,...,Xk) Bo (O Xp,))Xay, = R +1ZL.
=1

Let S?m=1~1 denote the unit sphere
§2ma; —1 . _ u R2maq 2 2 _q
=191y | € Hhallz +vlz =1

The projection oV, +..,)A onto the unit sphers®™s~! is given by

R * * ual
[ %] s v 2 . -

Observe that

A=A=(uh, —ivh ) (R+iT) = (Wi, R+ vi,I) +i(us, T — v R).

aq
Therefore it must be that
u;R + V:;I

T T —
u, I-v, R =

|
>

(2.12)
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Algorithm 1 (Best rank-1 approximation via SVD updating with randortiaa)

Require: An density matrix4 andk starting unit vectorxgol e C™i, i€ [k].
Ensure: A local best rank-1 approximation té in the sense of (2.2).

1. p<«+0

2 N (A (@ %)@, %))
3: repeat

4 p+p+1

5.« <« two random integers frorfk]
6

B+ [k] — {Complement ofa}
[p—1] [p—1] M2 -1
7 D—D(xy . xy, )®°‘(_le[5i )
8 [u,s,v] =svds(D,1) {Dominant singular value triplets via, e.datlab routinesvds}

9: 6« argument of first entry oft

10: xg’l =e¢ "

11: x[ﬂ =%

122 APl

13: until Al?! meets convergence criteria

The first order optimality condition requires that the podgel gradient in any direction be zero. By substituting
(2.12) into (2.11), we find that

k=2
(@(Xl ®- & Xk) ®q (q iﬁi))iag e )\(Xl, ce ,xk)xal.

which is the first equation in (2.8). The second equation @prbved by applying a similar argument to the

variablex,,,. O

Since the goal is to maximizgxy, . . . ,x ), we can interpret the relationship (2.8) in Lemma 2.1 in ®rm
of the singular value decomposition as follows.

COROLLARY 2.2. With respect to an arbitrary but fixed partitiofk] = a U 8 with a := {a3, a2}
andg := {f1,...,Br—2}, the triplets(x,, , \, X, ) such that (2.8) is satisfied and such thais as large as
possible must be the dominant singular triplets of the ma&ix, . .., X;) ®« (Qf;figi). In particular, x,
is the dominant left singular vector amg,, is the dominant right singular vector.

Corollary 2.2 thus motivates an SVD-like iteration where wpelate two pure states at a time by varying
the indices ina. The selections o& could be systematic such as cycling through the list of p@irg),
(2,3),...,(k—1,k)and(k, 1), or could be randomly generated at every iteration. Ourfozboonvergence
does not depend on how is generated. The updating scheme with random selectian isf sketched in
Algorithm 1.

A general purpose routine, sagyds, is employed as a black box to calculate the dominant simgula
triplets. To ensure continuity, we shall align all singutactors by requiring that the first entries of left singular
vectors be real and nonnegative. This can easily be accsimegliby a phase change. For exampléuifs, v)
represents the dominant singular triplets of a mak¥ix.e.,

Xv =su,

then so does the triplefs ~*’u, s, e~*?v) for any angled. Takingé to be the phase of the first entry afwill
make the first entry of ~*’u nonnegative. This mechanism is included in Algorithm 1.
For the sake of conveniently registering the iterates falysis, we have implied in the description

of Algorithm 1 that whenever two vecto(&ﬁ],xg’l) are updated tcﬁxﬁff”,xﬁff”), the remaining list in
(xP* L xPTY) are just exact copies ¢k, ..., x2 ), ie.,xP T = xT) fori e [k - 2].
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In our current apphcaﬂorﬁi)(x1 b [p]) varies inp. This is different from the SVD-based methods
developed earlier for stationary tensor apprommaﬂoﬁs&] We have to establish a new convergence theory.
Toward that goal, we first prove the monotone increasinggngmf the objective values of.

THEOREM2.3. Given a density matrix¥ € C™"*™ let{A[Pl} be the sequence generated by Algorithm 1
wherea € [k] is randomly selected. Then the inequalities

AP kPl <Al <\ P P < A2 (2.13)

hold. Therefore, both sequencs?! } and{/\(x1 yeen )} converge monotonically.
Proof. Define the abbreviatioal”! = x[lp le...® ch Then we can write

\(x! Aal?) alfly — (o (xl? (7 ey A
(xi",.. xk) <a Py = (D(x3 ,...,xk)®a(gx5i),9xai>,

k=2 2
AP+ — (Aa bl alp +1]> <©(X[lp]7 o 7XLP]) o (O fg)]) Q x[p+1 ).

The first inequality in (2 13) follows from the definition th&?+ is the dominant singular value of the matrix

D(x[f’], coX ) (_Q x[”) Similarly, the third inequality holds. To prove the secamequality, observe
that

/\(a[pﬂ]) A\t = <Aa[p+1],a[p+1]> _ <Aa[p],a[p+1]> - <a[p+1] _ a[”],Aa[T’H]>
- <a[p+1] _ a[p],A(a[pH] _ a[p])> + <a[p+1] _ a[p],Aa[p]> >0,

which completes the prodil

We next prove the convergence of iterates themselves uneéoltowing generic condition.

DEFINITION 2.4. We say that the matrix satisfies Condition P if the corresponding polynomial sys-
tem(2.8)has finitely many geometrically isolated real-valued Solus.

Though pathological examples can be constructed, it iskmelvn in algebraic geometry that almost every
square system of polynomial equations over the complex fiadfinitely many solutions [29]. Furthermore,
if F(z;q) is a system of polynomials in both the variableand the parameteks, and is square ia, then
for almost all parameterg the number of geometrically isolated solutions to this polyial system is finite
[30, Theorem 7.1.1]. The phrase “almost all” means thatd¢hvadues of parameters that fail to produce finitely
many and geometrically isolated solutions constitute ahea dense and measure zero subset in the ambient
space. These exceptions are referred to as “non-genedcthis reason, the condition P is generic.

THEOREM 2.5. Suppose that the given density matdixe C™"*™" satisfies the Condition P. Suppose
also that the matnce@ (x1 b ,ng’]) always have simple dominant singular values. Then the spaeding
|terates{(x1 yer ,xk )} converge.

Proof. As we have shown in the proof of Theorem 2.3, the interlapimgperty in (2.13) implies that

lim (A(a[”“] _ a[p]), (a[p+1] _ a[p])> —0.

p—o0

On one hand, becaugkis positive semi-definite, we have

lim |JalP* — a2 =2 -2 lim Re(Hfﬂ(pr],prH])) = 0.
p—00 p—00

On the other hand, becau&_ ( [”“ )| < 1,4 € [k], it must be that

11m(£p] PPy =1 ie 4]

p—o0
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Throughout the algorithm, with respect to arbitrarywe have required the phase of the first entries oi%]l
be positive. Therefore, the two unit vector%’] andxg”“], i € [k], must be gradually aligned asgoes to
infinity. In particular,

lim (xi[p"'l] — xi[p]) =0, 1i¢c[k].

p—0oQ
By the result already established in [31, Lemma 4.10] and [28nma 2.7], the above limiting behavior of
increments between two consecutive iterates is sufficteptdve that{ (x[lp], e ,ng])} converges]

Algorithm 1 is designed for multipartite rank-1 approximeatproblem (2.2). Since its convergence theory
is complete and its computation is highly efficient, it is f#ging to speculate that we can use it as the basic
building block in the so-called greedy ALS update schemétfeigeneral problem (1.7). The idea is that, while
advancingint = 0,1, ..., we repeatedly apply Algorithm 1 to solve a sequence of saliipms of the form

(AB—HH , x[ltjl], A Efj”) = arg min Hpg-tﬂ] “Axx]) Q- ® (xpxp)||%, 7 €[R], (2.14)
)\jEIR+,‘L€[[k]],
x; €C™7, ||x;[|2=1
where
j—1 . .
P = p = ST A I @ e ()
r=1
R . .
_ Z /\[rt] (X[lt,]rx[lt,]r ) R R (XE:}TXE:}T ) (215)
r=j5+1
The matring.t“] is composed of two parts — the factord, x[lt,]r, e ,ng,]r, r € [R]\[4], are available from
the t-th iteration and\i! ™, x{"71, .. x"T, € [j — 1], are newly updated at the + 1)-th iteration.

Nonetheless, such a successive displacement iteratieengcsuffers from several issues both computationally
and theoretically. First, it is expensive. For each fiked0, 1, . . ., we need to sweep througre [R], whereas
for each fixedj € [R] we need to solve (2.14) using Algorithm 1 which itself regsiiterations. Second, the

matrix pg.t“] is guaranteed only to be Hermitian but is not necessarilytipessemi-definite, whereas our
convergence analysis for Algorithm 1 relies heavily on tleéndteness of the underlying matrix. Third, the
foremost challenge in computation is to maintain the altjcimportant probability mixture of separable states
in (1.7), i.e., the conditions that

Sa=1, A =0 (2.16)

r=1

The /\.g.tﬂ] found by solving the individual problem (2.14), howeveredmot take this constraint into account

as a whole. In fact, since) ™"/ is a mixture byAl™, ... Al T andAl || ... Al which in general are not
even probabilistically related, we have no reason to thialt the constraint (2.16) will be satisfied eventually.

Enforcing such a condition seems to be a major difficulty iplging the greedy ALS method.

3. Quantum Low-rank Separability Approximation. In contrastto the SVD-based iterative method for
the casek = 1, in this section we propose a continuous dynamical systgroaph for the cas& > 1 when
solving the problem (1.7). The dynamical system is basedercomplex-valued gradient flow. We observe
at least four advantages in such an approach. First, thet@ume constraint imposed on the combination
coefficients can be built into the dynamical system. Secand violation of the nonnegativity constraint can
easily be detected and fixed. Third, the rank can be autoafigtidjusted downward and, hence, evemRif
is wrongly overestimated, it actually helps offer a broasksarch initially and will be downgraded along the
course of integration. Fourth, once the differential egunais in place, the coding is straightforward and any
available ODE solver can be used as the numerical integrator

10



3.1. Projected Gradient Flow. For convenience, we introduce the abbreviations

0 = p-— Zle )‘T(XI,TXT,T) R ® (Xk,rxzyr) c CHlemifozlmi7
wr = (X1, Q0 OXpr, O(X1, @ @Xpr)) €ER,
¢, = reshape (@(xl,r®---®xk7r),[mk,...,m1]) € CrueX-Xxmy

Note thatw,, and ¢, vary inr € [R]. Note also that the expressions involve every r € [R]. That is,
different from the greedy ALS scheme (2.14), we want to adjusentire arraf \1, . . ., Ag } simultaneously.
Despite of their seemingly complicated expressions, itlvélinteresting to find in the following development
that®, w,- and¢,. for the caseR > 1 generalize the roles of, A and® discussed in the preceding section for
the caseR = 1, respectively.

Rewrite the objection function in (1.7) as

g(Al,.. .,)\R,X171,. s XE1,X1,25 00 X2y -3 XTRy - - - ,Xk,R) = <®,®> = <@,@>R (31)

It is not difficult to calculate the Wirtinger derivative dfe functiong with respect to the various variables. We
summarize the results as follows:

1o)
e = 2w
24 ME®; (O xiy)
) = =2 r&r ®; Xir), .
I il 9, j e[k, r € [R]. (32)
9 1
6?(-] = _2/\r¢r @j ( O iiﬂ“)v
»r i=k,i#j

Note that the outer product is done specifically in the reversler. If we denot&;, = u;, + wv;, with
u, -, vj, € R™, then by using (2.7) the above Wirtinger gradients (3.2)m&converted to the real gradients
as follows:

) Re(€, ®; (_Igl) X))
oy T . jelMrelRl (3.9
Im(& ®; (O X))

k,i#j

(2

This expression is similar to that in (2.10). Using the sangaiment as that for deriving (2.12), we arrive at
the relationships

1 1
wr=uj, Re(€, @ ( O X)) +vi, Im&®;( O X)), 7relR] (3.4)
i=k,itj i=k,itj

Therefore, the projected gradients of objective funcjamnto the unit spher&?™i—1, j € [k], can be ex-
pressed in the condensed form:

dg 1
Projeem;-1 ——— = =40 (€, ®; ( O Xir) —wrXjr), 1€ [R]. (3.5)
0wy, i) iR ’

By (3.5), the first-order optimality condition should bettha

1
A& @ (O ii,r) _Wrxj,r) =0, jel[k],relR],
i=k,itj
11



which resembles that in Lemma 2.1 but is more involved bexausries. By now, we have established a
negative gradient flow

).\T = 2WT‘7

' 3.6
% = A€ 8 (O Fiv) - wrXin), j € [k], r € [RI, (3.6)

) )

i=1i#j

whose solution defines a trajectory along which the objeatalue of (1.7) is gradually decreased. However,
thus far there is no guarantee on whether the resulirig), » € [R], will satisfy the constraint (2.16). We
will modify the differential equation to address this issukile still maintaining the descent property in the
next section. We also have to devise an implementation éisgects the nonnegativity constraint.

3.2. Modified gradient flow and adaptive strategy.We address the sum-to-one constraint first. Suppose
that initially A,.(0) > 0, r € [R], ande”:1 Ar(0) = 1. To satisfy the constraint (2.16), it is necessary that

> A(t)=0, forallt>o. (3.7)

The dynamical system given in (3.6) alone can hardly mestdahindition. We propose to remedy the situation
by modifying the flow for\,.(¢) to

A = 2w, — @), rel[R] (3.8)
with @ := Zf:le while keeping intact the original governing equations%gy., j € [k], r € [R]. By
doing it this way, the condition (3.7) is met, but the direatof the flowx; ,-, j € [k], r € [R] will have been

altered. Even so, the following result shows that we stileha descent flow.
LEMMA 3.1.Let

Z(t) = (AM(t),.. ., Ar(t), x0,1(t), -y Xpg 1 (t)y ooy X1 0 (E), ooy Xp () (3.9

denote the flow corresponding to the newly modified diffeaksystem described above. Then the objection
value ofg is descending along the trajectof(t).
Proof. We first calculate that

W) _ g4(7(). 220
R dg k R u
\r + iy
Z1 ;; o u%“VJ, ) { Vr ]>

2

R
Z 99 )\r—l()’ZZ)\Q ¢ ®; ( o i) —w? . (3.10)

r=1 j=1r=1 =1,i#j

It follows from (3.4) that each term in the last summationsasnegative. Also,

R

R
Z;}? /'\7’:—42(,%( Wy — ) Zw - = ZWT <0, (3.11)
T r=1

r=1

where the last inequality follows from the Cauchy-Schwaemjuality and the fact that, € R, » € [R]. In
all, we see tha -"(ft(t)) < 0. We mention in passing that the equality in (3.11) holds @iy, = ﬁ. O
12



We next address the task of keepikg> 0, » € [R]. Maintaining nonnegativity in solutions of ordinary
differential systems has been widely discussed in thealitee. A variety of strategies for enforcing nonnega-
tivity can be found in the literature. See [32] and the refiees contained therein for a historic review of this
subject. For our application, we propose the following nzgibm to keep\, > 0, » € [R]. The mechanism
consists of three components working together:

1. Event Detection: By an event we mean that one of thesdt), r € [R], has decreased from a
positive value to zero (or near zero) for someuring the integration. It is critical to determine the
time when an event occurs up to the prescribed precision. Sudeetide machinery can effectively
be programmed in any numerical solver. For demonstrategsespve shall make use of the existing
event function in theMatlab ODE suite to carry out the task.

2. Rank Reduction: The event\,({) = 0 indicates two things. First, sincg.(f) < 0, any further
integration even at a tiny time step is likely to violate thennegative constraint. Second, since the
term, () (x1,- (£)x7 () ®- - - ® (xx.(£)x},.()) = 0is not making any contribution to the objective
value ofg at the moment, we can drop this term and continue. In dointhsanitial rankR is reduced
by one.

3. Restart: Once a term is dropped, we use the remaining informagiartt), x; ¢ (£), . . ., xx.s (%)),

s € [R]\{r}, as the initial value to restart the integration. In this ythg objective value is ratcheted
at the current value and can only continue to go down afterdbiart.

Recall that estimating a propgris always difficult in low-rank approximation. Starting Wia larger rank
R might seem redundant and wasteful initially, but it progidiee flexibility of searching multiple directions
for a better solution. The mechanism described above sas/asneans to filter out unneeded factors.

3.3. Convergence.The limiting behavior of a gradient dynamics is well studiacthe literature. In
particular, counterexamples have been found to evincentitall gradient flow will converge. For completion,
we now argue that our gradient flow, even with the modifica{®8), will converge to a singleton point.

If we separate each; , into real and imaginary parts, the right-hand side of oufedéntial system can
be regarded as a polynomial system in a tote(Dto:1 m; + 1) R real variables. Without loss of the original
sense, leg denote the vector of all real variables and abridge themdifféal system as a negative gradient flow

€ =—-VF() (3.12)
dt
for some abstract objective functidf(€) in £. Being polynomials irg, the vector fieldV F(€) is real analytic
in £. By construction£(t) is also bounded. It follows that the set of accumulation f®in

w(&(0)) := {E € R™ | x(t,) — & for some sequendg — oo} (3.13)
is a non-empty, compact, and connected subset of statipoans, i.e.,VF(E) =0.
Recall the following tojasiewicz gradient inequality [33}]. _
THEOREM 3.2. Suppose thal’ : U — R is a real analytic function in an open sét C R™ and§ € U.
Then there exist a neighborho®id of £, constants: > 0 andé € [0, 1), such that the inequality

IVF@) = cllF(§) - F(€)]°

holds for all¢ € .

An important consequence of the tojasiewicz gradient iadityuis that the trajectory of an analytic gra-
dient flow is necessary of finite length. The following resalteadily applicable to our differential system
and implies that the floW\,(¢),x;-(t)}, 7 € [k], r € [R] converge to a singleton stationary point. See [35,
Theorem2.2] and the lecture note [36] for its proof.

THEOREM 3.3. Suppose thaf' : U — R is real analytic in an open séf c R™. Then for any bounded
semi-orbit of(3.12)

£(t) > € ast — oo

for somet € U.
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4. Numerical Experiment. Quantifying the entanglement of a mixed state by findingetsrast separable
state is a challenging problem. Even the problem of deténgiwhether a a given state is separable or not
is NP-hard [37, 38]. However, we must not misconceive thaN&shard problem is forever hopeless and
untouchable. A practical example is the problem that exgimgs,/2 is NP-hard in theory because it requires
infinite complexity on a Turing machine but we do have polymdftime algorithms to approximate it to any
finite precision. Likewise, the NP-hardness encountereshtanglement quantification does not imply that
we cannot approximately solve the problem by numerical me&hus far, we have described an SVD-based
iterative method for the rank--partite problem (2.2) and a gradient flow approach for theensomplicated
rank-R k-partite problem. In this section we carry out some numéggperiments to test the effectiveness of
our methods.

Example 1.In the first part of this experiment, we produce the targetrimat

E1=(m®n0n;0n)(N @ny@nN; @ny)"

with randomly generated unit vectons, ..., n, € C®. Therefore, the target matrixc C%2°*%2 is already
separable and is of rank one. We test Algorithm 1 with rang@electedx as well as its analogue wheteis
varied cyclically. The iteration is terminated whenever ghopping criterion

4
:D(Xl,XQ,Xg,Xk)@j O xi— )\Xj < 10710, (4.2)
i=1,i4j .

is met. We repeat our experiments 20 times with distinct oamgl generated starting points. As a nonlinear
optimization problem, the limit points depend on the staypoints and may differ from the original generators
n4,-..,m4 € C°. It should be more feasible if we gauge the quality of the apjpnation not by a comparison
with the original generators but by the product

p= (X1 ®X2 ®X3®Xyg)(X1 ® X2 ® X3 ®Xyg)"
based on the limit pointxy, X2, X3, %4) Of the iterates. We measure the quantity
Error := |21 — p||F-

The test results in terms of the averages of errors, numbiétsrations, and CPU time in seconds of the 20
runs are tabulated in Table 4.1. Since Algorithm 1 utilizak/dhe first-order derivative information, its rate
of convergence should be at most linear. Nonetheless, ®ptbblem of decomposing@5 x 625 density
matrix as the tensor product of four pure state density wegrinC®, the empirical data seem to suggest that
our SVD-based approach can be effective in precision andesffiin time when calculating the optima.

a Error Iteration MinTime MaxTime AveTime

cyclic | 9.6389 x 10716 4 4.0921 x 1073 1.1574 x 10~*  1.0126 x 1072
random| 3.5439 x 10715 4.1 2.9594 x 1073 2.4689 x 1072 5.3788 x 1073

Table 4.1: Average errors, numbers of iterations, and CRId th seconds on 20 runs by Algorithm 1 far

In practice, the exact rank of a given entangled state is nowk. Indeed, for almost all information
gathering devices, it is inevitable that the data collectutain noise. The presence of even a small amount of
noise to a low-rank matrix will break up the low rank. In themead part of this experiment, we mete out the
perturbation in a controlled way and calculate the rank{raximation ofp under noise. Specifically, we use
the perturbed matrix

Po =21+ 0(7 = (4.2)
14



s Comparison of Elapsed Time

Comparison of Average Errors o210

elapsed time (in seconds)

exponent p

exponent p

(a) Average of|=Z1 — p||F- (b) Average CPU time.

Figure 4.1: Average errors and CPU time on 20 random runs ggrithm 1 forp,,.

as the target matrix, wheneis a randomly generated but fixed density matrix and 1077, p = 2,4, 6, 8, 10,
represents the intensity of the noise. In this particulgreeinent, we already knoyy — =] =~ 1.0001, so

o = ||ps — Z1]|. Observe thap, is still a density matrix and is of full rank in general, lytis made more of
the rank-1 matrixz; than of the full rank matrixy. For this reason, we find in Figure 4.1(a) that the ultimate
rank-1 approximatioip for p, is in fact closer to the rank-1 matri; than to the full rank matriy,. We also
find that the smaller the perturbatienthe closep is to Z;,. The CPU time is little affected.

Example 2. Despite the success of the SVD-based iterative method éocdkeR = 1, it is difficult to
generalize to the greedy method for the c&se 1. In the first part of this second experiment, we demonstrate
that the differential system approach can identify a prapak by the mechanism described in Section 3.2.
Consider a separable rank-2 target matrix:

2
52 = Z )‘T(nl,rnir) ® (,’72,7‘,’73,1”) ® (n3,rn§,r) ® (774,r772,r)7 (43)
r=1

wheren), ,. € C% i=1,...,4,r = 1,2, are randomly generated unit vectors and> 0, » = 1,2, satisfies
Zle A = 1. Pretending that we do not know of the exact low rankgfinitially, we start off withR = 4
with the hope the exact rank & will be found eventually.

Utilizing the existing routineodel5s in Matlab as the integrator, we turn on the optiement and set
the local error tolerance &bsTol = 10~!° andRelTol = 1071Y. We follow four trajectories, each with
a different set of starting points. The evolution of the chjee values when following these trajectories is
plotted in Figure 4.2(a). As can be seen, though the integnales follow different trajectories and might
end up with distinct stationary points, the ultimate ohjecvalues can be regarded as nearly zero within the
prescribed tolerance. Evidence about the preservatidreaum-to-one property, even with the overestimated
R, is plotted in Figure 4.2(b). Though their markings mightdmeeared due to the proximity of the curves,
the red circles in both graphs in Figure 4.2 indicate thatvemehas been detected and, hence, the VAlise
reduced by one. There are two red circles in each curve, somaw that the original low rank has been found.

Similar to the experiment done in Example 1, we next inveséidhow the noise affects our dynamical
approach’s performance. We deal out the perturbatiaiytim exactly the same way as in (4.2) to produce the
target matrixp,,. Let () denote the numerical solution to our different equatiore &wlution of| 22— 5(¢) || »
and|p, — p(t)|| r in response to different levels of perturbation strengétre plotted in Figure 4.3. In contrast
to the case o = 1 in Example 1, we have observed that the rank-2 separabkStas more sensitive to
perturbation in the sense th&Es — p, (t)||F ~ ||po — po (t)||F if ¢ > 1076, That s, the flowp, (¢) is about
equal distance to both the rank-2 staeand the full rank state,, if the perturbation is lightly too large.
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(a) Errors with respect to distinct starting points. (b) Preservation 0f 5, A-(t) = 1.

Figure 4.2: Convergence, event detection, and sum-to-em&i@int for approximating exag,.

Evolution of Errors Evolution of Residuals
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(a) Errors with respect to levels of perturbations. (b) Square roots of objective values.

Figure 4.3: Rank-4 approximation for perturbed matricg®f =5, 0 = 1077, p = 2, 4,6, 8, 10.

Different from the casd? = 1, two observations are worth noting. Firgf¢) does not show a preference to
=o. Second, we start witlR = 4, but not all trajectories encounter an event to reduce thk. rahe latter
phenomenon leads us to reconsider the definition of the gvent

Instead of defining an event rigorously only)at?) = 0, we may declare that an event happens whenever
IA-()| < € at a preselected The rationale is that sindex; - (t)||l2 = 1, j € [k], for all ¢, the contribution
of the term\,.(£)(x1 (£)x1 (1)) ® - -+ @ (X1 (£)xx.(£)*) to the overall summation is at mogt, ()|. If
the current approximation is several orders larger thahen maybe it is plausible to ignore the term whose
contribution is at most. We experiment with this more relaxed rank reduction meigmaron the perturbed
matrix p, with o = 10~* by choosinge = .5 « 10~%. We start withA,(0) = &, r € [R], to give every
component an equal chance to compete for survival. Sincetriewasier to qualify an event, we sBt= 40
with the hope of broadening the search in many more direstiohe red line at the top of Figure 4.4(a) shows
the preservation of the sum-to-one property. We also sdeathia~~ 100, many ). (¢)’s begin to diminish
and eventually trigger the event mechanism. The rank remtutom R = 40 to R = 2 happens quickly
within a small window oft, as can been seen from the cluster of red circles in Figui@).¥hile the rank
is being reduced, we see that the objective values contmndedrease until a local minimum is found. This
experiment supports the mechanism of relaxed event quidit, but in practice we usually do not have a
priori knowledge of the proper extent of relaxation.
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Evolution of)\r(t) and Sum-to-One Evolution of Errors

(a) Rank reduction froniz = 40 to R = 2. (b) Square roots of objective values.

Figure 4.4: Rank reduction for perturbed mafixwith o = 10~* and relaxed event qualification.

Example 3. Let =3 € C32*32 pe a randomly generated positive definite matrix. Suppoae3h is
regarded as a density matrix in a 5-qubit system. Recalletaalh qubit counts as an elementdf. Let the
notation[[ps, po, . . . , pe|| denote the composite syste®?)“”* @ (C2)“"* @ ... ® (C2)*"*. There are seven
ways to split the number 5 as a sum of nonnegative integeffse ilimber of partitions for d-qubit is the
Sloane sequence A000041.) Thus we may consider partiatad@|ity approximations associated with the
group assignmentgi1,1,1,1,1]},12,1,1, 1, [2,2, 1], 13,1, 1]], 13, 2], 4, 1]}, and[[5]).

The cas€f[5]] amounts to the ran® approximation in the conventional sense of linear algebfhe
problem can be resolved directly by the singular value dguasition of=s. It is a well-known fact from the
Eckart-Young-Mirsky theorem that, for ea¢h< 32, the truncated singular value decomposition gives rise to
the globally best rank? approximation tces [39, 19].

Starting fromR = 50, we apply the gradient flow approach to approxinigiever the other six types of
multipartite systems specified by the group assignmengsir€i4.5 shows the evolution of errdiSs — p(t)|| r-

We see that as the number of splits decreases, the erroredireed correspondingly. This observation is
expected because, for example, the di&d, 1] can be considered as a more restrictive structufg3o? ||

and, hence, it should have higher errors. In the order ffldmi, 1,1,1]| to 4, 1], we find that the final
reduced ranks arél, 46,41, 43,41, and36, respectively. The fluctuation of the final ranks might irdécthat

we have found a local solution only, but the general trendhad the higher the separability is involved, the
more demanding is the computation. It is interesting to tieaethe singular value decomposition of a generic
=3 requires exactly? = 32 for a complete decomposition &s3. The fact that our gradient approach for
the[[4, 1]]-type approximation reduces the final rank3tbseems to evince that the rank reduction mechanism
works reasonably well.

Example 4.In this experiment, we apply our gradient flow to a realistiztpem. We briefly describe some
background information before carrying out the experimémthe quantum information theory, the so-called
Greenberger-Horne-Zeilinger state (GHZ state) [40, 41]

L
V2

is a quantum state that involves the entanglement of attlesest subsystems, i.é:.,> 3. Because they exhibit
some extremely non-classical properties, GHZ states & insseveral protocols in quantum communication
and cryptography. In this example, we consider the simplestt = 3 and a density matriX/,, of the form

IGHZ) = —=(10)** + [1)®%)

W, = (1—0)|GHZ) (GHZ| + U%Ig, 0<o<l,

which represents a probabilistic mixture|6fH Z) with the operatoélg. The mixed statéV,, is known as the
17
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Figure 4.5: Low rank approximation offaqubit system.

generalized Werner state which has found applicationsamdbustness of entanglement [42], NMR quantum
computation [43], and purification schemes for entanglatest[44].
The matrix representation ®¥,, can be expressed as

1 0 ... ... 0]
1
10 - 0 %
0 0 0 0 0 1 0 :
W 7(1_0_) . . . . . _"_0_1 . . . . [R8><8
o= R gl 0 N .
0 0 0 0
1 0 0 1 . . . . 0
2 2 0O -+ ... 0o 1

It has been shown in theory thidf, is (totally) separable if and onlyg < o < 1[45]. Therefore, by adjusting
o we have a test case to explore the rank reduction mechanidto @stimate a possibly optimal rank.

Since the exact low rank d#¥, is not known a priori, we start out our experiments frén= 15 for the
three choices of = 2/3,4/5 and6/7. We are interested in observing two phenomena in each cheacehe
cases = 6/7, how low can the rank be reduced and can the separabilityliewed? What will happen to the
cases = 2/3 which is not separable? Can the rank be reduced at all whelelbfective value is decreased?
The borderline case = 4/5 is most curious. It is separable in theory, but will its rarkthe same as that for
o = 6/7 at total separation?

Starting from the same randomly generated unit vectars x» ., x3,» € C?, r € [15], and using the
rigorous event qualification, we plot the evolution trage@s of the residuals together with red circles when-
ever an event has been detected in Figure 4.6. The monotoreadig property guaranteed by our theory is
clearly manifested in these curves. The answers to the ah@aions for the cases= 2/3 ando = 6/7 are
also clear. It is estimated that the flow f@or= 2/3 reaches its local solution much sooner#(at 300) than
the flow forc = 6/7 reaches its total separability (atv 34000). These limiting behaviors strongly support
that W, is entangled ifr = 2/3 and is separable # = 6/7. For the case = 4/5, we estimate that the
residual decreases at approximately the €4te/t). That is, while the residuals keep going down, it converges
at a very slow pace. The behavior suggests that theccase /5 is separable, but it is much harder to find its
components.

Note that in the extreme case= 1,
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Figure 4.6: Low rank approximation of entangled densityrines.

where|i) denotes the 3-qubit whose binary representation is equal Ttat is, the optimal rank fol; is
R = 8. Counting the events for cases= 2/3,4/5, and6/7, we observe that the reduced ranks afrel1,
and12, respectively. While our rank reduction mechanism is te&tewvork for arbitraryo, it remains an open
question on whether these are the optimal ranks. It is alsteanwhether the trajectory for the case= 4/5
will have additional events in later stage of integration.

5. Conclusion. Quantum technologies have been rapidly advanced with thentineed to create more
complex and powerful quantum computers. The technolodiéglly developed, will have far-reaching ap-
plications including, for example, as critical as supe&nalytics capabilities or as practical as better battery
life. Atthe crux of quantum computing is the understandind eontrol of quantum entanglement, which has
already attracted many research endeavors. This papendéeiced with computing numerically the low rank
separable approximation of a given entangled multipasyistem, which might be used as a computational tool
for gauging the quality of entanglement of quantum states.

The notion of quantum mechanics is generally described ysiph terms, but there is rich mathematics
involved. This work employs a synthesis of techniques friowdr algebra, optimization, and dynamical system
to tackle the entanglement certification problem numesicall discussions are over the complex field, so the
methods are readily transferable to real-world problenos.r&nk-1 approximations, the SVD-based iterative
method is shown to be efficient and effective. For higher @pfiroximations, this work derives a complex-
valued differential system that not only guarantees glabalvergence but also is capable of maintaining a
probabilistic ensemble of pure states while dynamicalftymesting a proper rank in the ensemble.
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