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DRAFT AS OF May 11, 2013

LIQI WANG* BO YU, AND MOODY T. CHU?

Abstract. Solving a system of linear equations by its normal equatisaally is highly unrecommended because this approach
worsens the condition number and inflates the computatimogtl For linear systems whose unknowns are matrices, suible Sylvester
equation, Lyapunov equation, Stein equation, and a vaoidteeir generalizations, the formulation of the correging normal equation
in the sense of tensor operators offers a common structargradient dynamics. This paper explains the setting offtaimework and
demonstrates its versatility by one simple ODE integrdtat tan handle almost all these types of problems.
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1. Introduction. The purpose of this paper is to bring forth the recognitiat thlinear matrix equations
can be regarded as an operator equation, whence we can sgéneral framework for numerical computation.
So as to outline the structure more clearly, we begin withviéry basic concept of matrix representation in
linear algebra.

Given two finite dimensional vector spacksand V over R with respective base$a,,...,a,} and
{b1,...,b,,}, a prevailing fact in linear algebra is that any linear opar&” : / — V can be represented
by a matrixL = [¢;;] € R™*" defined by the relationship

,iﬂ.aj :Zémb“ j: 1,7’L (11)
i=1

with respect to these bases, where the notatibindicates the action of the operator . The representatifars
to characterizing the action o by describing its effect on the transformation of coord#sdh the sense that

m n

ZLx=2. ixjaj = in <i gngz> = Z &jxj bl
Jj=1 j=1 i=1 1

i=1 \j=

It is thus conventional to denote this linear actighx by merely the matrix-to-vector multiplicatiohx.
The very same notion is applicable to a linear operatbr. RP*4 — R™*™, Let matrix entries be
indicated by a double indek= (i, j). Without causing ambiguity, let the same notation= [eZ,], where

1 _{ 13 ifI:(Sat)v

€t =1 0, otherwise

typify a standard basis element for both matrix spaces. dgmlis to (1.1), assume the fundamental actions

L Ey= ZZI,JEI, J=(1,1),...,(p,q)
T

on each of thevg basis elements, where the summation is over all doubleesdicelevant inR™*". Note
that for each fixed, ¢, ; is a matrix of sizen x n. From the relationship

LX=Z. (; IJEJ> - ;m <ZJ: é;,JE1> = XI: <XJ: éz,J:c.1> Er,
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we conclude that the matrix representationsfis actual an order-4 tensf; ;] whose action oX € RP*?
should be interpreted as a tensor-to-matrix multiplicatiodefined by

] () )]
U,
Zx=| — X = [0, X)] € R™*", (1.2)
lnn lnn
L

wherel; . € RP*7 and
(€r:, X Zél JTJ

is the Frobenius inner product (ovig) of matrices. There is nothing extraordinary about the afi@n® be-
cause, if so desired, we can get back to the usual matrixe¢tey multiplication by vectorizing these matrices.
Our emphasis here is not so much on the tensor represent@idmear map? : RP*49 — R™*™ and
the associated tensor-to-matrix multiplicati@nFor a linear matrix equation, such an approach would mean a
mundane task of recasting the equation via the Kroneckelyatas a standard linear systetw = b which
is then solved by standard algorithms. Rather, we want tarceg linear matrix equations as it is without the
vectorization. We want to bypass the usual requirementtbéeinversion or factorization when tackling the
tensor equations. Our approach provides a general frarkdaioalmost all types of linear matrix equations.
A critical component in our discussion is the notion of thgoad, denoted byZ ", with respect to the
operatorZ. Itis known that the operata?’ " : R™*" — RP*4 must satisfy the adjoint condition

(Z.X,G)=(X,2".G) (1.3)

forall X € RP*? andG € R™*". For real-valued matrix representations, the adjointnspty the usual
notion of matrix transpose. For tensor operators, we haimi&s expression

Dg/ﬂX G Zg[ <Z£1 JSC]) ZSE} <Zg]€] ]) X gT > (14)

Since each summation is double indexed, the notion of tsesfor an order-4 tensor need be interpreted
somewhat differently. In terms of (1.2), the representatyd the adjoint operato " is the transpose of
the blocks which themselves are transposed. We shall deérat;én subsequent discourse that the actual
computation ofZ " need not be so involved.

2. Generalized normal equation. Given a linear operata? : RP*¢ — R™*™ and a matrixQ) €
R™>*™ consider the equation

ZX+Q=0. 2.1)

Assuming henceforth th&} is in the range space d¥, the goal is to find its preimag®¥ € RP*4¢. Define the
quadratic map : RP*?9 — R via

h(X) = %w.x +Q,.2.X +Q). (2.2)

Then the Fréchet derivative bfat X € RP*? acting onH € RP*? is given by

W(X).H=(Z.H.2X+Q).
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By the Riesz representation theorem, the gradiehntadn be expressed as
VhX)=2T.(ZL.X+Q) (2.3)

whereZ T : Rm*™ — RP*4 refers to the adjoint of the operatéf.

It is easy to argue that(X) is convex. Thus, the optimal objective value is zero and iguas Any local
minimizer is also a global minimizer. Indeed, the formwdat{2.2) is precisely the typical linear least squares
setting and the equation

LT (ZLX+Q) =0 (2.4)

is precisely the corresponding normal equation. The orffg@ince is that the equation involves order-4 tensors
and their actions on matrices. For this reason, we refer.f) é& the generalized normal equation.

Solving a least squares problem by means of a normal equasioally is regarded as a poor way for
computation. When dealing with a general linear system whosgknown is a matrix, however, the lack of
commutativity makes the conventional manipulations sic@aussian elimination or other types of factoriza-
tion even harder. For this reason, linear matrix equatiomstien handled individually by specifically designed
algorithms. Existing results are widely scattered acrafésrdnt fields. A good discussion on general theory
and some algorithms for matrix equations can be found in thek$®[16, 23]. In contrast, the generalized
normal equation for a tensor equation is fairly easy to fdateu This is due to, in particular, the action of
the adjoint operator is often a straightforward calculatibhere is no need to concern about vectorization The
gradient flow we propose offers a unified framework which duasnvolved inversion or factorization.

The gradient flowX (¢) is defined by the dynamical system

% = 2T (ZLX+Q). (2.5)
Trivially, it can be seen that
PO _ 27 (2. x0)+ Q)

implying thatX (¢) convergesto a global minimizer 4 X). If the equation (2.1) does have a solution to begin
with, as we have assumed, then the stationary point of (2 ®}blution.

At first glance, the differential equation (2.5) is a linegstem with constant coefficient. Keep in mind,
however, that this constant coefficient in our contextist@en4 tensor whose action is more than just ordinary
matrix multiplications. Though mathematically equivaleme do not wish to invoke the vectorization. The
convergence of the solutiaki (¢) should be easy to analyze via the variation of constantsiflzzm

X(t)=e % £t X(0) - ( / te—f-ff’(f-sms) Z7Q. (2.6)

0

wheree=¢"-Z* should be interpreted as the semi-group generated by thatop&” " ..# overRP*4. For a
stable linear system, the rate of convergence is typicaflgsared by the notion of spectral gap

w1 = min {|RA|| A is an eigenvalue with nonzero real gart
In our application the eigenvalue of the “positive semi-diédi matrix".# ™. in the sense of
(¢7.%).Z2=)z

for some nonzerdZ € RP*? are necessarily real and nonnegative. We shall work out quwpelar linear
matrix equations to demonstrate the concepts mentionadabo
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Example 1. Consider the generalized Sylvester equation
AXB+CXD+Q=0 (2.7)

whereA,C € R™*P, B, D € R?*", and@ € R™*"™ are given. This problem is general enough to include
the eight special cases listed under the subheading “derset&ylvester” in Table 4.1 which arise in various
important applications. For solvability, we assume a ganeinimum requirement thatin < pq, though
in practice there are other restrictions, such as the s&gsmetry, or positive definiteness, on the constant
matrices. Some are listed in Table 4.1.

The linear operataZ : RP*? — R™*" can be thought of as

Z X =AXB+CXD.

Using the relationship (1.3), we can easily verify that thgat .~ T : R™*" — RP*4 acting on an arbitrary
G € R™*™ is given by

ZLTG=A"GB" +C'GD".
The gradient flow corresponding to (2.5) therefore is chtarazed by the differential system

dX
= = —(AT(AXB+CXD+ Q)BT +CT(AXB+CXD+Q)DT). (2.8)

We propose to solve the generalized normal equation (2stcasted with the linear system (2.7) by tracking
the integral curve of the matrix differential equation (2u8til reaching an equilibrium point which then is a
solution to the generalized Sylvester equation (2.7). @/fhie global convergence is guaranteed, note that no
factorization or inversion is needed, except for eight Rat-matrix multiplications whenevek is updated.

In this particular setting, the flow (2.7) serves as a unifigltesne for handling all eight cases listed under
generalized Sylvester in Table 4.1 each of which has redaivasiderable interest in the literature and often
algorithms are designed individually.

We are not interested in vectorizing (2.8) via the Kronegkeduct since, by doing that way, the constant
coefficient “tensor'Z " ..Z becomes theq x pg matrix BB' ® ATA+ BD" @ ATC +DBT @ CTA+
DDT ® CTC which is considerably more involved. We intend to integ&t8) as it is. Indeed, our primary
point is to solve the linear matrix equation (2.1) by integrgthe generalized normal flow (2.5) in its natural
form without vectorization.

3. Convergencerate. For a general discussion on spectral problems on matrixtiemsawe refer to the
book [30]. But for the gradient dynamics (2.5), we can do @kjainalysis as follows.

First, itis clear that the vector field defined in (2.5) is atialin the variableX. Being an analytic gradient
flow, the isolation of limit points is guaranteed by using ttgasiewicz inequalities [8, 29].

To see how fast the flow converges to the limit point, note tivatextreme values defined by

XT.GHF

2T = ”7, 3.1

oL )= LB Tl @1
T

(L") := min 1< Glr (3.2)

0£Germxn |G| F
do exist over finite dimensional spaces, according to the&@utFischer theoreh |t follows that

—20%(ZL")h > % > —20%(ZL")h. (3.3)

1Upon vectorization, the Frobenius norm for matrices isisady the Euclidean norm for vectors. 0.2 1) is precisely the operator
norm|.Z T || induced by the 2-norm and is the largest “singular valuehefdperator? T . Likewise,0(.Z ") corresponds to the smallest
singular value. Note also that it is possible thaZ T) = 0.
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The differential inequality implies that
e 2 (LR (X(0)) > (X () > e 20 € DiR(X(0)). (3.4)

Thus, in order to achieve a relative improvemg(X (¢)(t) < nh(X(0)) for a specified scalay, we need a
minimal length of integration

Inn
Z _202($T)' (3.5)
If (£ T) # 0, then
Inn
t Z _m. (3.6)

guarantees the relative improvement. This estimate stgytfest if there is reasonable gap between 0 and
6(£ "), the interval of integration need not be long.

Whenf (£ ") = 0, the estimate (3.6) is useless. However, a more preciseematical tool can be em-
ployed to analyze the flow (2.5) in greater details. Sincesseigenvalues of’ " ..# under such a circumstance
must be zero, the space spanned by eigenvectorsZsay,., Z, € RP*?, corresponding to zero eigenvalues
forms a center manifold which, in fact, is also the null spate?. By the center manifold theorem [7], we
know that the solution flowk (¢) can be expressed as

X(t)=X+a1Z1 +...anZ, +O0(e™ )

for some scalara;, . . ., ag, whereX is a particular solution of (2.1) andis the smallest nonzero (positive)
eigenvalue ofZ " .Z. In other words X (t) converges exponentially to an equilibrium point that sel{@1).
The rate of convergence is equal to the square of the smadlegero “singular value" of the operat@f. Note
that this statement about rate of convergence remainsririe isense of (3.4) even whénZ ") # 0.

Regardless of the rate of convergence, since the qua@tity + @ — 0, the vector field in (2.5) is
nearly zero whert — oco. From a numerical ODE prospective, the numerical integnagian generally take
significantly large step size to move toward the asymptiyistable limit point. The computational cost is not
necessarily expensive.

Example 2. Consider the linear matrix equation

AXB+CYD+Q=0 (3.7)

for variables(X,Y) € RP*? x R*** with fixed A € R™*?, B € R?*", C € R™**, D € R"*", and

@ € R™*™, This problem can be cast as a specially structured Sylvegteation. Assume that the number
mn of equations is no greater than the numpager¢s of unknowns. Using the producttopology and the induced
Frobenius norm, we see that the adjoint corresponding tdirtbar operator? : RP*4 x R$*t —; R™M*"
defined by

Z.(X,Y)=AXB+CYD
is given by the map
£T.G=(ATGB",CTGDT").

According to the definition (3.1), we can calculate [17]

o) =2" = \/HB ®ATIE+ D& CT|3 = \/HAI@IIBH% +IICIEIDI3,
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where|| - || stands for the spectral norm and is the largest singulaevalthe corresponding matrix. Likewise,
we have

0(LT) = \/92(AT)92(B) +602(CT)92(D)

whered(-) stands for the smallest singular value of the corresponahiaix. It is possible tha#(.£ ") = 0,
due to the rectangular sizes of these matrices. For insténBec R?*"™ andD € R**™ are such thag < n
andt < n, thend(B) = (D) = 0. The actual rate of convergence f&i(¢), according to the center manifold
theorem, is equal to

w= min 2 g2 402 o2

1,T 1B 1~T 1D
0?2 _ o2 402 o2 #0 A c
i T B ieT D

wheref;,, denotes an arbitrary singular values, including zerohhehbatrix /.

4. Linear Matrix Equations. Linear matrix equations arise in a variety of important &agilons, includ-
ing control theory [5], completely integrable systems Bdisson equation solving, Lie algebra [14], invariant
subspace computation, and so on [36]. Research effortsotoflic are extensive and discussions usually are
focused on one special type of equation a time. This sectatains a collection of problems and, far from
being complete, a few major references. It would be of grgtarést, but mammoth, and is definitely beyond
our capacity to review the development of widespread tlesand algorithms on linear matrix equations, as
the literature is so scattered and the techniques are so. imstyad, so that we can demonstrate the generality
of our flow approach, we classify most problems found in therditure into four categories. Although there
are a few stand-alone cases not belonging to any of these&begories and it is possible that there might be
some others which we have missed, the extension to those slageld be similar.

Listed in Table 4.1 are Type | equations which can be expdaissthe form

k

> AXB;i+Q =0, 4.1)

i=1

£.X

where the proper dimensions of all matrices are assumedh&casé: = 2, namely, the generalized Sylvester
equation, the problem can be handled by either the Bartelse8t method or the Hessenberg-Schur method,
both involving orthogonal similarity transformations,dsa companion software package is available [15]. But
for the general case, the factorization approach breaks @od little can be said about the general maf¥ix
if (4.1) is reduced to the ordinary fordix = c [24]. In contrast, the adjoint operatéf " : R"™*" —s RP*4
is given by

k
T T T
Z7.G=) A]GB].

j=1

The gradient flow corresponding to (2.5) therefore is chtaraed by the differential system

dX k k
== > oAl (Z A;XB; + Q) B/ (4.2)
j=1

i=1

whose flow X (¢) converges globally to either a solution of (4.1), if the etiprais consistent, or the least
squares solution. The flow (4.2) requitgsmatrix multiplications whenevek is updated and can handle all
cases ofk.

Sometimes the equation is further structured in practica:. ifstance, in the Lyapunov equation, both
versions of continuous time and discrete time, often thédficeent matrix A is stable and the constant matrix
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S AXBi+Q=0

A; €ER™XP B; € R, Q € R™X™, X € RPX

Equation Remark Ref.

Generalized Sylvester

_ mn < pq
AXB+CXD+Q=0 (15

Lyapunov AX+XAT+Q=0|m=p=q¢=n,Q=Q"
Generalized Lyal{ AXB+ BTXAT + | m=n,p=gq
punov Q=0

AXB + B"XA" + | m=n=p=q, X =symmetric| [35, 37]

Q=0
Sylvester AX+XD+Q=0 | m=p,n=q [5]
Stein AXB-—-X+Q=0 | m=p,n=gq [13, 22, 25, 34]

Discrete Lyapunov | AXAT —X4+Q=0 | m=p=q=n,Q=Q"

Generalize Discrete AXAT — CXCT + | m=n,p=g¢q
Lyapunov Q=0

AXAT =B B=0,X+0

X -2 AT XA + Zle BIXB; =1

TABLE 4.1
Linear matrix equations: Type I.

Q is symmetric and positive definite. Then the solutiris expected to be unique, symmetric and positive
definite. Such a property usually can be realized inherdmytihe limit point of X (¢).

Listed in Table 4.2 are a few Type Il equations which vary fitvmse in (4.1) in that the transpode’ of
the unknown variabl& also appears in the equations. The general form is exprassed

k 4
Y AXBi+Y> C;X'Dj+Q=0 (4.3)
i=1 j=1
Z£.X

wherel need not be the same &s Because of the similarity to the original Sylvester equatifor the ease
of comparison we refer to each equation by the original baaine followed by a superscript Such a twist,
though linear, changes both the computation and the thegmnyfisantly [6, 10]. In all, we still can easily
formulate the adjoint operator associated with (4.3) as

k £
ZT.G=) AlGB] +> D:\G'C,
s=1 t=1
7



Y AXBi+ Y GX D+ Q=0

A; €R™XP B, ¢ RIX™, Q € R™*™, C; € R™*%, D; € RPX™, X € RPX4

Equation Remark Ref.

Generalized Sylvestér

AXB+CX'D+Q=0 mn < pq
Lyapunov’ AX+XTAT +Q =0 m=q=n | [6,14]
Generalized Lyapundv AXBE+BTXTAT +Q =0 [28]
AXB+ATX'BT =C
Sylvestef’ AX+XT'TD+Q=0 m=gq=mn | [10, 18]
Stein!’ AXB-XT4+Q=0
Generalized Discrete Lyapunbv | AXAT + BX"BT +Q =0

TABLE 4.2
Linear matrix equations: Type Il.

from which the corresponding gradient flow (2.5) can be dbedrstraightforwardly.
Type lll equations in the form

k 4
> AXBi+)» CYD;+Q =0 (4.4)
i=1 j=1
ZLAX)Y)

involve two matrix variables( andY of different sizes. Filling in zeros, if necessary, we masuase without
loss of generality thatt = ¢. A proper rearrangement

a X 0][ B
shows that a Type lll equation is a specially structured Typgquation. For this reason we identify each
equation by the original basic name followed by a superséripeferring to either the structure or the split of
the variable[ 2 ] As such, we mention that there are other types of structimedr matrix equations in
the literature, including cases where the solution is kahito a certain subspace or manifold. For constrained
linear matrix equations, all we need to do is to modify thedggat into the projected gradient and the idea
discussed in this paper prevails. For problem (4.4), wel sbghrd.¥ : RP*4 x R$*t — R™X" as a linear
map over the product topology equipped with the induced &nals inner product

(X,Y),(Z,W) =(X,Z)+ (Y, W).

Then the adjointZ’ T : R"™*"” — RPX4 x R*** js given by

k 2
T T T T T
27.6a= Y AleB!,Y cfap,
i=1

j=1
8



The gradient flow is governed by

@& = _ZleAiT(Zi 1A-XB- +Zu 1 GVY D,y +Q) i

(4.5)
@ o= - 25:1 cf (Zf:l A-XB: + ZV:I CYD, + Q)

k £
Zi:l A; XB; + Zj:l C;YD; +Q =0
Ai c anxpyBi c qun,’Q c R7n><nycj c anxs’Dj c RtXn’X c Rpquy c Rsxt

Equation Remark | Ref.

Generalized Sylvesteér

mn < pq
AXB+CYD+Q =
FOYD Q=0 [27, 31, 32, 38]

Lyapunov’ AX+YAT +Q=0

AX +YA+Q=0

Sylvestef AX+YD+Q=0 [3, 33, 42]
Generalized Discrete Lyapundv| AXAT + BYBT +Q =0 [26]
TABLE 4.3

Linear matrix equations: Type lIl.

Finally, a generalization of Type Ill equation is the coupteatrix system of the form

> AyXiBij+Qi=0, i=1,...,p, (4.6)

j=1

which has been less studied, but begun to receive attentioecent years [11, 12, 39, 40]. Similar to the
Type lll equations, we shall regar#f : RP1*% x ... x RPaXqa —3 R™1X71 5 x R™8%"8 gs one linear
map via

L(X1,..., Xo) = (Z A XByj,. 0y Angngj) (4.7)

j=1 j=1

where the spaces are equipped with the induced Frobenies product. The adjoint equation should be
interpreted as

(L(X1,...,X0), (G1,...,Gp)) = ((X1,..., Xa), L (Gy,...,Gp)), (4.8)
whereas
B o B
(Z(X1,...,Xa), (G1,...,Gp)) = > ( ZA”X B, Gi) =Y (X;,) AlGiB]).
i=1 j=1 j=1 i=1

Thus the action ofZ T : R™M1 %71 x . x RMsX"8 — RPIX0 x| x RP=X= js given by

B
ZT(Gl,...Gg)_<ZAiT1G- A ZATGBT>.
=1

9



The gradient flow is governed by the system

B e}
d—tj = — E Aij < E A“-XTB“- + QZ> Bij7 ] = 1, R 6N (49)
=1

T=1

« .
Zj:l AinjBij =+ Qz =0, 2=1,... ,ﬁ
Aij €R™I¥PI, By € R XM, Q €R™IXM, X € RPIXY

Equation Remark | Ref.
Generalized Sylvester
AXB+CYD+Q = 0 mn < pq
EXF+RYS+T = 0 [9. 11]
AX+YD+Q = 0 [19]
Sylvestef’
EX+YS+T = 0
TABLE 4.4

Linear matrix equations: Type IV.

5. Numerical techniques. Because of the important role they play in a wide range ofiagfibns, linear
matrix equations have been extensively studied in thealitee. Many numerical algorithms are available.
Often these methods are designed for solving specific typesguations and are effective. At present, we
certainly are not in a position to compare the efficiency & tiradient flow approach with these existent
techniques. However, the framework we have proposed faligmaflows is still worth theoretical consideration
dueto its easy formulation and generalization to otheriegpbns [1, 2]. Additionally, we are indeed interested
in following the flows for practical purpose. In this sectiove outline a few possible numerical methods for
gradient flows.

As a dynamical system, the gradient flow can be tracked by eaifahle numerical ODE integrator. As
reliable as this approach might be, one possible drawbablaighese integrators usually work hard in finding
uniform precision for all points along the solution curvéheveas what we are mainly interested in is the limit
point. Taking advantage of the fact that the limit point issslatedattractor, one possible strategy to reduce
the overhead of computation is to set the local toleranceesdrat higher. The idea is to stay near the true
trajectory, but not to strive for accuracy per se with the éntipat the numerical solution will eventually be
attracted to the equilibrium. Note that this strategy doasamange the fact that we need theoretically an
interval of length estimated by (3.6) for the flow to convergéne “faster" computation is due to the usage
of high local error tolerance which might allow larger steépes and, hence, less calculation efforts for the
integration. We find that settingbsTol = RelTol = 102 usually is sufficient for serving the purpose of
tracking the solution curve. In the long run, the limit poaampresses the flow, by its inherent power of
attracting, to the equilibrium to within the machine préamms

Another straightforward approach is to apply the explicitde method

Xiy1 =X — el (LX1+ Q) (5.1)

with variable step size; to be determined by a line search scheme. This amounts tdebpest descent
10



method. Itis trivial to see that if a constant step sizeto be used, thenis necessarily limited by

2
0<e< (LT
implying slow convergence if the largest singular value®f is large. Instead of trying to reinvent a good
step size selection strategy such as that done in [39, 4Mioméd suggest taking advantage of the variable step
size strategy already developed in the numerical ODE titeedfor the benefits that not only these methods are
readily available, but also that these control strategiepeoven to ensure precision and stability.

Along the same idea of staying near the trajectory, thereotirer specifically designed algorithms for
following a gradient flow. The so called pseudo-transientticwation [21] applied to our gradient system
works as follows. Assuming that an approximate solutkbnhas already been computed, one implicit Euler
step with step size; to (2.5) yields an equation,

(I+e&l".L) X1 =X —an?".Q, (5.2)

for the next steX 1. Instead of solving (5.2) to high precision, which itsel&isother linear tensor equation,
one single correction using any reason iteration scheningfat X, is accepted aX;, 1. The scheme may
be written as

1 1
X1 = Xp — (;In + VQh(Xk)) Vh(X}), (5.3)

which is a special implicit upwind method popular for conipgtsteady-state solutions in the PDE community.
Note that for small values aof;, the scheme (5.3) behaves like a steepest descent methoekastier large
values ofe;, it behaves like a Newton iteration. Taking into account thet thatVh(X) should have small
norm near the optimal poifX*, the so-called “switched evolution relaxation" strategy $electing the step
sizes, namely,

Vh(X
e = K

VA ) (54)

seems to be able to capture the characteristics of beintiyvedjalarge in the initial phase, and small in the
terminal phase of the iteration. The convergence theoryraptmentation issues can be found in [20].

The treatment in the Ph.D. thesis [4] of the gradient flow ia efmilar spirit. From a given pointy, the
algorithm calculates a curve, (¢), in closed form, that is an approximation to the gradient ffléy¢). It then
does a search along this curyg(t) for a pointX}, that reduces the value of the objective function subject to
certain predesignated criteria and then repeats the ocgisa limit point is found. Under mild assumptions
the method is shown to converge to a critical point from arityaihpoint and to converge quadratically in the
neighborhood of a solution. After pasting gll’s together, this algorithm yields a piecewise smooth ctineg
approximates the gradient flow. It turns out that the appnaté curvey,(¢) is precisely the integral curve of
the linearized gradient dynamics.&j. Since our gradient dynamics (2.5) is already linear, sucalgorithm
applied to our problem leads tg(t) = X (¢), resulting in the breakdown of the curve search mechanism.

6. Numerical experiments. In this section, we report numerical results from some prelary experi-
ments to support our gradient flow approach.

Example 3. As a continuation of Example 1, we compute the expected lenfjintegration needed
for reducing the residudl.#.X + Q|| by a factor of10~!* relative to the original error. To fix the idea,
we demonstrate the case when= p = ¢ = n = 10 and use the same set of coefficiertsB, C, and
D, whenever they appear, for all seven special cases undeetire of generalized Sylvester equation. We
generate randomly 200 sets of coefficient matriceR'it“1° and compute the correspondingased on (3.6).
Depicted in Figure 6.1 are the boxplots of the logarithm efsthlengths for the various equations. There are
some outliers, but the inner-quartiles are approximatedy the same range.
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Expected Length of Integration Needed for Convergence
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FIGURE 6.1. Expected lengths of integration for generalized Sylvestemtions to reduce residuals relatively by—14.

Example 4 The theoretical results from Example 3 indicate a long irgkfor integration and seem to
suggest the need for lots of steps in order to reach to thdilegun. In this example, we take a closer look at
the application of a variable-step variable-order ODE rodtavailable fromMatlab to the gradient dynamics
(2.8). For the very same set of coefficient matrices, we ren@DE integrator twice with the local error
tolerance is set at0—2 and10~1, respectively. Based on these prescribed local erroraota, step sizes are
selected internally to meet both precision and stabiliipc& the high tolerance (—2) scheme computes an
approximate solution curve which might drift longer, weoallone and half times of the theoretical estimate
interval of integration for the low precision method. Péattin Figure 6.2 are the number steps needed by the
integrator to cover the intervals out of 200 randomly getegtzets of coefficient matrices. We observe two
important facts. First, even with the low toleran¢8('°) scheme, it takes an order arouriif steps/iterations
to complete the task of integration. The average step sifarlg large, confirming the statement we made
earlier in the paragraph before Example 2. Second, evegthibie high tolerance scheme is forced to integrate
over an interval that is one and half times longer than thahielow tolerance scheme, it still takes significantly
fewer steps to complete the task. Indeed, the drawing inEig12 seems to suggest a linear correlation between
steps take for convergence. The linear regression modppi®aimatelyy = 12.4146x + 177.8944, showing
that the high tolerance scheme is using step sizes apprtelintavelve times larger than the low tolerance
scheme.

Example 5. We have mentioned that using existent ODE integrators fogtiadient flows has the disad-
vantage of working too hard in the transit state of acquipnecision for all points along the solution curve,
whereas we are only interested in is the limit point. We ssgtigt using high tolerance scheme might alleviate
the computation cost, as is demonstrated in Example 4. Battthe question of precision becomes a concern.
Itis known that if a equilibrium point of a different systemasymptotically stable, then under mild conditions
it is also an asymptotically stable equilibrium for pertedsystems nearby. With this in mind, there is a hope
that the less precise approximate curve also converge®teatime limit point of the original gradient flow.
We carry out this experiment with the same 200 sets of rancatused in Example 4 and compute the final
residualg|£.X + Q|| r at the end of integration. Plotted in Figure 6.3 are theithistions of the absolute errors
with the two prescribed local error tolerant& 2 and10~1°. It should be quite convincing that while the high
tolerance scheme is considerably cheaper, with ar@Qhdgterations, its final precision in finding the solution
to the generalized Sylvester equation is surprisingly g&wen the outliers returns a precision at arolifrd” .
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Correlation between Steps Taken for Convergence
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FIGURE 6.2. Correlation between step taken betwe@r2 and10—10,
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FIGURE 6.3. Final residuals with step size€)~2 and10—10.

7. Conclusion. Linear matrix equations can be regarded as order-4 lingmoteequations. The key
ingredient in linear theory of computing the “adjoint” ofensor operator is readily available. We thus propose
a unifying framework that can handle almost all linear maggjuations via the notion of generalized normal
equations. Though it is not advisable to solve a classicgtksy of linear equations by its normal equation, as
more direct methods such as matrix factorization are mdiseft, forming the generalized normal equation
for a matrix equation has the advantages of being straighiial, being uniform, working directly with the
original sizes without Kronecker product or vectorizatiawoiding inversion or factorization, and being easy
to analyze the convergence behavior. This paper outlirethiéory, exemplifies a collection of applications,
suggests a few numerical procedures, and reports some icaheidences.

13



(1]
(2]
(3]
(4]
(5]
(6]
[7]
(8]
El
[10]
[11]
[12]

[13]
[14]

[15]
[16]

[17]
(18]

[19]
[20]
[21]
[22]
[23]

[24]
[25]

[26]
[27]
(28]

[29]
[30]

[31]
[32]
[33]
[34]
[35]
(36]

[37]

REFERENCES

P.-A.ABSIL, R. MAHONY, AND R. SEPULCHRE Optimization algorithms on matrix manifoldBrinceton University Press, Prince-
ton, NJ, 2008.

L. AMBROSIO, N. GIGLI, AND G. SAVARE, Gradient flows in metric spaces and in the space of probghifieasures_ectures in
Mathematics ETH Zdrich, Birkhauser Verlag, Basel, secahgd2008.

J. K. BAKSALARY AND R. KALA, The matrix equatiod X — Y B = C, Linear Algebra Appl., 25 (1979), pp. 41-43.

W. BEHRMAN, An efficient gradient flow method for unconstrained optitiize PhD thesis, Stanford University, 1998.

R. BHATIA AND P. ROSENTHAL, How and why to solve the operator equatidn’X — X B = Y, Bull. London Math. Soc., 29
(1997), pp. 1-21.

H. W. BRADEN, The equationsdA” X + X7 A = B, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 295-302 (eleatic).

J. CARR, Applications of centre manifold theqryol. 35 of Applied Mathematical Sciences, Springer-\gridew York, 1981.

R. CHILL, On the tojasiewicz-Simon gradient inequaliy Funct. Anal., 201 (2003), pp. 572—-601.

H. DAI AND P. LANCASTER, Linear matrix equations from an inverse problem of vibratiheory Linear Algebra Appl., 246
(1996), pp. 31-47.

F. DE TERAN, F. M. Dopico, N. GUILLERY, D. MONTEALEGRE, AND N. REYES, The solution of the equatiocAX + X* B = 0,
Linear Algebra Appl., 438 (2013), pp. 2817-2860.

M. DEHGHAN AND M. HAJARIAN, An efficient algorithm for solving general coupled matribuations and its applicationMath.
Comput. Modelling, 51 (2010), pp. 1118-1134.

F. DING AND T. CHEN, On iterative solutions of general coupled matrix equatiddl\M J. Control Optim., 44 (2006), pp. 2269—
2284 (electronic).

P. A. FUHRMANN, A functional approach to the Stein equatidrinear Algebra Appl., 432 (2010), pp. 3031-3071.

S. R. GARCIA AND A. L. SHOEMAKER, On the matrix equatiodl A + AXT = 0, Linear Algebra Appl., 438 (2013), pp. 2740—
2746.

J. D. GARDINER, A. J. LAUB, J. J. AMATO, AND C. B. MOLER, Solution of the Sylvester matrix equatidX BT +CXDT =
E, ACM Trans. Math. Software, 18 (1992), pp. 223-231.

N. J. HGHAM, Functions of matricesSociety for Industrial and Applied Mathematics (SIAM),iRRbelphia, PA, 2008. Theory
and computation.

R. A. HORN AND C. R. DHNSON Topics in matrix analysisCambridge University Press, Cambridge, 1991.

K. D. IkRAMOV, On conditions for the unique solvability of the matrix edqoatAX 4+ X7 B = C, Dokl. Akad. Nauk, 430
(2010), pp. 444-447.

B. KAGSTROM, A perturbation analysis of the generalized Sylvester équdtAR — LB, DR — LE) = (C, F'), SIAM J. Matrix
Anal. Appl., 15 (1994), pp. 1045-1060.

C. T. KeLLEY AND D. E. KEYES, Convergence analysis of pseudo-transient continuat®iAM J. Numer. Anal., 35 (1998),
pp. 508-523 (electronic).

C. T. KELLEY, L.-Z. Lia0O, L. QI, M. T. CHuU, J. P. REESE AND C. WINTON, Projected pseudotransient continuatj@AM J.
Numer. Anal., 46 (2008), pp. 3071-3083.

A. KLEIN AND P. SPREIJ On Stein’s equation, Vandermonde matrices and Fisherssimation matrix of time series processes. .
The autoregressive moving average procéssear Algebra Appl., 329 (2001), pp. 9-47.

M. KONSTANTINOV, D.-W. Gu, V. MEHRMANN, AND P. PETKOV, Perturbation theory for matrix equationsol. 9 of Studies in
Computational Mathematics, North-Holland Publishing,@ansterdam, 2003.

P. LANCASTER, Explicit solutions of linear matrix equationSIAM Rev., 12 (1970), pp. 544-566.

L. LERER ANDA. C. M. RAN, A new inertia theorem for Stein equations, inertia of inleet Hermitian block Toeplitz matrices
and matrix orthogonal polynomigl$ntegral Equations Operator Theory, 47 (2003), pp. 330-36

A.-P.LIAO AND Z.-Z. BAl, Least squares symmetric and skew-symmetric solutions afigitrix equatiomd X AT + BY BT = C
with the least normMath. Numer. Sin., 27 (2005), pp. 81-95.

A.-P. LIAO, Z.-Z. BAI, AND Y. LEI, Best approximate solution of matrix equatignX B + CY D = E, SIAM J. Matrix Anal.
Appl., 27 (2005), pp. 675-688.

A.-P.LIAO, Y. LEI, AND X.-Y. Hu, Least-squares solution with the minimum-norm for the matguationA” X B+ BT XT A =
D and its applicationsActa Math. Appl. Sin. Engl. Ser., 23 (2007), pp. 269—-280.

S. LOJASIEWICZ ANDM.-A. ZURRO, On the gradient inequalityBull. Polish Acad. Sci. Math., 47 (1999), pp. 143-145.

A. G. MAZKO, Matrix equations, spectral problems and stability of dymasystemsvol. 2 of Stability, Oscillations and Optimiza-
tion of Systems, Cambridge Scientific Publishers, Camieti@§08.

A. B. OzGULER, The equationAX B + CY D = E over a principal ideal domainSIAM J. Matrix Anal. Appl., 12 (1991),
pp. 581-591.

Z.-Y. PENG AND Y.-X. PENG, An efficient iterative method for solving the matrix equatibX B + CY D = E, Numer. Linear
Algebra Appl., 13 (2006), pp. 473-485.

W. E. ROTH, The equationsAX — Y B = C and AX — X B = C in matrices Proc. Amer. Math. Soc., 3 (1952), pp. 392—-396.

F. C. SLva AND R. SMOES, On the Lyapunov and Stein equations Liihear Algebra Appl., 426 (2007), pp. 305-311.

M. J. TobD, Semidefinite optimizatipriActa Numer., 10 (2001), pp. 515-560.

C. F. VAN LoAN, The ubiquitous Kronecker prodyct. Comput. Appl. Math., 123 (2000), pp. 85-100. Numericellgsis 2000,
Vol. lll. Linear algebra.

L. VANDENBERGHE AND S. BoYD, Semidefinite programmin&IAM Rev., 38 (1996), pp. 49-95.

14



[38] G. Xu, M. WEI, AND D. ZHENG, On solutions of matrix equatiod X B + CY D = F, Linear Algebra Appl., 279 (1998),
pp. 93-109.

[39] J.-J. ZHANG, A note on the iterative solutions of general coupled matguation Appl. Math. Comput., 217 (2011), pp. 9380—
9386.

[40] B. ZHou, G.-R. DUAN, AND Z.-Y. L1, Gradient based iterative algorithm for solving coupled maéquations Systems Control
Lett., 58 (2009), pp. 327-333.

[41] B. ZHou, J. LAM, AND G.-R. DUAN, Gradient-based maximal convergence rate iterative metbodolving linear matrix equa-
tions Int. J. Comput. Math., 87 (2010), pp. 515-527.

[42] K. ZIETAK, On a particular case of the inconsistent linear matrix eqoatAX + Y B = C, Linear Algebra Appl., 66 (1985),
pp. 249-258.

15



