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Abstract. Solving a system of linear equations by its normal equation usually is highly unrecommended because this approach
worsens the condition number and inflates the computationalcost. For linear systems whose unknowns are matrices, such as the Sylvester
equation, Lyapunov equation, Stein equation, and a variateof their generalizations, the formulation of the corresponding normal equation
in the sense of tensor operators offers a common structure via gradient dynamics. This paper explains the setting of thisframework and
demonstrates its versatility by one simple ODE integrator that can handle almost all these types of problems.
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1. Introduction. The purpose of this paper is to bring forth the recognition that a linear matrix equations
can be regarded as an operator equation, whence we can set up ageneral framework for numerical computation.
So as to outline the structure more clearly, we begin with thevery basic concept of matrix representation in
linear algebra.

Given two finite dimensional vector spacesU and V over R with respective bases{a1, . . . , an} and
{b1, . . . ,bm}, a prevailing fact in linear algebra is that any linear operator L : U −→ V can be represented
by a matrixL = [ℓij ] ∈ R

m×n defined by the relationship

L .aj =
m∑

i=1

ℓijbi, j = 1, . . . n (1.1)

with respect to these bases, where the notation "." indicates the action of the operator . The representation refers
to characterizing the action ofL by describing its effect on the transformation of coordinates in the sense that

L .x = L .




n∑

j=1

xjaj


 =

n∑

j=1

xj

(
m∑

i=1

ℓijbi

)
=

m∑

i=1




n∑

j=1

ℓijxj


bi.

It is thus conventional to denote this linear actionL .x by merely the matrix-to-vector multiplicationLx.
The very same notion is applicable to a linear operatorL : Rp×q −→ R

m×n. Let matrix entries be
indicated by a double indexI = (i, j). Without causing ambiguity, let the same notationEI = [eIst], where

eIst =

{
1, if I = (s, t),
0, otherwise,

typify a standard basis element for both matrix spaces. Analogous to (1.1), assume the fundamental actions

L .EJ =
∑

I

ℓI,JEI , J = (1, 1), . . . , (p, q)

on each of thepq basis elements, where the summation is over all double indicesI relevant inRm×n. Note
that for each fixedJ , ℓ:,J is a matrix of sizem× n. From the relationship

L .X = L .

(
∑

J

xJEJ

)
=
∑

J

xJ

(
∑

I

ℓI,JEI

)
=
∑

I

(
∑

J

ℓI,JxJ

)
EI ,
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we conclude that the matrix representation ofL is actual an order-4 tensor[ℓI,J ] whose action onX ∈ R
p×q

should be interpreted as a tensor-to-matrix multiplication⊛ defined by

L .X ≡




ℓ11,: ℓ12,:
. . .

ℓ1n,:

ℓ21,:

...

ℓm1,:
. . .

ℓmn,:




︸ ︷︷ ︸
L

⊛X = [〈ℓI,:, X〉] ∈ R
m×n. (1.2)

whereℓI,: ∈ R
p×q and

〈ℓI,:, X〉 :=
∑

J

ℓI,JxJ

is the Frobenius inner product (overR) of matrices. There is nothing extraordinary about the operation⊛ be-
cause, if so desired, we can get back to the usual matrix-to-vector multiplication by vectorizing these matrices.

Our emphasis here is not so much on the tensor representationof a linear mapL : Rp×q −→ R
m×n and

the associated tensor-to-matrix multiplication⊛. For a linear matrix equation, such an approach would mean a
mundane task of recasting the equation via the Kronecker product as a standard linear systemAx = b which
is then solved by standard algorithms. Rather, we want to regard a linear matrix equations as it is without the
vectorization. We want to bypass the usual requirement of either inversion or factorization when tackling the
tensor equations. Our approach provides a general framework for almost all types of linear matrix equations.

A critical component in our discussion is the notion of the adjoint, denoted byL ⊤, with respect to the
operatorL . It is known that the operatorL ⊤ : Rm×n → R

p×q must satisfy the adjoint condition

〈L .X,G〉 = 〈X,L ⊤.G〉 (1.3)

for all X ∈ R
p×q andG ∈ R

m×n. For real-valued matrix representations, the adjoint is simply the usual
notion of matrix transpose. For tensor operators, we have a similar expression

〈L .X,G〉 =
∑

I

gI

(
∑

J

ℓI,JxJ

)
=
∑

J

xJ

(
∑

I

gIℓI,J

)
= 〈X,L ⊤.G〉. (1.4)

Since each summation is double indexed, the notion of transpose for an order-4 tensor need be interpreted
somewhat differently. In terms of (1.2), the representation of the adjoint operatorL ⊤ is the transpose of
the blocks which themselves are transposed. We shall demonstrate in subsequent discourse that the actual
computation ofL ⊤ need not be so involved.

2. Generalized normal equation. Given a linear operatorL : R
p×q −→ R

m×n and a matrixQ ∈
R

m×n, consider the equation

L .X +Q = 0. (2.1)

Assuming henceforth thatQ is in the range space ofL , the goal is to find its preimageX ∈ R
p×q. Define the

quadratic maph : Rp×q → R via

h(X) :=
1

2
〈L .X +Q,L .X +Q〉. (2.2)

Then the Fréchet derivative ofh atX ∈ R
p×q acting onH ∈ R

p×q is given by

h′(X).H = 〈L .H,L .X +Q〉.
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By the Riesz representation theorem, the gradient ofh can be expressed as

∇h(X) = L
⊤. (L .X +Q) (2.3)

whereL ⊤ : Rm×n → R
p×q refers to the adjoint of the operatorL .

It is easy to argue thath(X) is convex. Thus, the optimal objective value is zero and is unique. Any local
minimizer is also a global minimizer. Indeed, the formulation (2.2) is precisely the typical linear least squares
setting and the equation

L
⊤. (L .X +Q) = 0 (2.4)

is precisely the corresponding normal equation. The only difference is that the equation involves order-4 tensors
and their actions on matrices. For this reason, we refer to (2.4) as the generalized normal equation.

Solving a least squares problem by means of a normal equationusually is regarded as a poor way for
computation. When dealing with a general linear system whose unknown is a matrix, however, the lack of
commutativity makes the conventional manipulations such as Gaussian elimination or other types of factoriza-
tion even harder. For this reason, linear matrix equations are often handled individually by specifically designed
algorithms. Existing results are widely scattered across different fields. A good discussion on general theory
and some algorithms for matrix equations can be found in the books [16, 23]. In contrast, the generalized
normal equation for a tensor equation is fairly easy to formulate. This is due to, in particular, the action of
the adjoint operator is often a straightforward calculation. There is no need to concern about vectorization The
gradient flow we propose offers a unified framework which doesnot involved inversion or factorization.

The gradient flowX(t) is defined by the dynamical system

dX

dt
= −L

⊤. (L .X +Q) . (2.5)

Trivially, it can be seen that

dh(X(t))

dt
= −‖L ⊤.(L .X(t) +Q)‖2F ,

implying thatX(t) converges to a global minimizer ofh(X). If the equation (2.1) does have a solution to begin
with, as we have assumed, then the stationary point of (2.5) is a solution.

At first glance, the differential equation (2.5) is a linear system with constant coefficient. Keep in mind,
however, that this constant coefficient in our context is an order-4 tensor whose action is more than just ordinary
matrix multiplications. Though mathematically equivalent, we do not wish to invoke the vectorization. The
convergence of the solutionX(t) should be easy to analyze via the variation of constants formula

X(t) = e−L
⊤.L t.X(0)−

(∫ t

0

e−L
⊤.L (t−s)ds

)
.L ⊤Q. (2.6)

wheree−L
⊤.L t should be interpreted as the semi-group generated by the operatorL ⊤.L overRp×q. For a

stable linear system, the rate of convergence is typically measured by the notion of spectral gap

µ := min {|ℜλ| |λ is an eigenvalue with nonzero real part} .

In our application the eigenvalue of the “positive semi-definite matrix"L ⊤.L in the sense of

(
L

⊤.L
)
.Z = λZ

for some nonzeroZ ∈ R
p×q are necessarily real and nonnegative. We shall work out somepopular linear

matrix equations to demonstrate the concepts mentioned above.
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Example 1. Consider the generalized Sylvester equation

AXB + CXD +Q = 0 (2.7)

whereA,C ∈ R
m×p, B,D ∈ R

q×n, andQ ∈ R
m×n are given. This problem is general enough to include

the eight special cases listed under the subheading “generalized Sylvester" in Table 4.1 which arise in various
important applications. For solvability, we assume a general minimum requirement thatmn ≤ pq, though
in practice there are other restrictions, such as the sizes,symmetry, or positive definiteness, on the constant
matrices. Some are listed in Table 4.1.

The linear operatorL : Rp×q −→ R
m×n can be thought of as

L .X = AXB + CXD.

Using the relationship (1.3), we can easily verify that the adjoint L ⊤ : Rm×n → R
p×q acting on an arbitrary

G ∈ R
m×n is given by

L
⊤.G = A⊤GB⊤ + C⊤GD⊤.

The gradient flow corresponding to (2.5) therefore is characterized by the differential system

dX

dt
= −

(
A⊤(AXB + CXD +Q)B⊤ + C⊤(AXB + CXD +Q)D⊤

)
. (2.8)

We propose to solve the generalized normal equation (2.4) associated with the linear system (2.7) by tracking
the integral curve of the matrix differential equation (2.8) until reaching an equilibrium point which then is a
solution to the generalized Sylvester equation (2.7). While the global convergence is guaranteed, note that no
factorization or inversion is needed, except for eight matrix-to-matrix multiplications wheneverX is updated.
In this particular setting, the flow (2.7) serves as a unified scheme for handling all eight cases listed under
generalized Sylvester in Table 4.1 each of which has received considerable interest in the literature and often
algorithms are designed individually.

We are not interested in vectorizing (2.8) via the Kroneckerproduct since, by doing that way, the constant
coefficient “tensor"L ⊤.L becomes thepq × pq matrixBB⊤ ⊗ A⊤A + BD⊤ ⊗ A⊤C + DB⊤ ⊗ C⊤A +
DD⊤ ⊗ C⊤C which is considerably more involved. We intend to integrate(2.8) as it is. Indeed, our primary
point is to solve the linear matrix equation (2.1) by integrating the generalized normal flow (2.5) in its natural
form without vectorization.

3. Convergence rate. For a general discussion on spectral problems on matrix equations, we refer to the
book [30]. But for the gradient dynamics (2.5), we can do a quick analysis as follows.

First, it is clear that the vector field defined in (2.5) is analytic in the variableX . Being an analytic gradient
flow, the isolation of limit points is guaranteed by using theŁojasiewicz inequalities [8, 29].

To see how fast the flow converges to the limit point, note thatthe extreme values defined by

σ(L ⊤) := max
06=G∈Rm×n

‖L ⊤.G‖F
‖G‖F

, (3.1)

θ(L ⊤) := min
06=G∈Rm×n

‖L ⊤.G‖F
‖G‖F

(3.2)

do exist over finite dimensional spaces, according to the Courant-Fischer theorem1. It follows that

−2θ2(L ⊤)h ≥
dh

dt
≥ −2σ2(L ⊤)h. (3.3)

1Upon vectorization, the Frobenius norm for matrices is precisely the Euclidean norm for vectors. Soσ(L ⊤) is precisely the operator
norm‖L ⊤‖ induced by the 2-norm and is the largest “singular value" of the operatorL ⊤. Likewise,θ(L ⊤) corresponds to the smallest
singular value. Note also that it is possible thatθ(L ⊤) = 0.
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The differential inequality implies that

e−2θ2(L ⊤)th(X(0)) ≥ h(X(t)) ≥ e−2σ2(L ⊤)th(X(0)). (3.4)

Thus, in order to achieve a relative improvementh(X(t)(t) ≤ ηh(X(0)) for a specified scalarη, we need a
minimal length of integration

t ≥ −
ln η

2σ2(L ⊤)
. (3.5)

If θ(L ⊤) 6= 0, then

t ≥ −
ln η

2θ2(L ⊤)
. (3.6)

guarantees the relative improvement. This estimate suggests that if there is reasonable gap between 0 and
θ(L ⊤), the interval of integration need not be long.

Whenθ(L ⊤) = 0, the estimate (3.6) is useless. However, a more precise mathematical tool can be em-
ployed to analyze the flow (2.5) in greater details. Since some eigenvalues ofL ⊤.L under such a circumstance
must be zero, the space spanned by eigenvectors, say,Z1, . . . , Zk ∈ R

p×q, corresponding to zero eigenvalues
forms a center manifold which, in fact, is also the null spaceof L . By the center manifold theorem [7], we
know that the solution flowX(t) can be expressed as

X(t) = X̂ + α1Z1 + . . . αkZk +O(e−µt)

for some scalarsα1, . . . , αk, whereX̂ is a particular solution of (2.1) andµ is the smallest nonzero (positive)
eigenvalue ofL ⊤L . In other words,X(t) converges exponentially to an equilibrium point that solves (2.1).
The rate of convergence is equal to the square of the smallestnonzero “singular value" of the operatorL . Note
that this statement about rate of convergence remains true in the sense of (3.4) even whenθ(L ⊤) 6= 0.

Regardless of the rate of convergence, since the quantityL .X + Q → 0, the vector field in (2.5) is
nearly zero whent → ∞. From a numerical ODE prospective, the numerical integration can generally take
significantly large step size to move toward the asymptotically stable limit point. The computational cost is not
necessarily expensive.

Example 2. Consider the linear matrix equation

AXB + CY D +Q = 0 (3.7)

for variables(X,Y ) ∈ R
p×q × R

s×t with fixed A ∈ R
m×p, B ∈ R

q×n, C ∈ R
m×s, D ∈ R

t×n, and
Q ∈ R

m×n. This problem can be cast as a specially structured Sylvester equation. Assume that the number
mn of equations is no greater than the numberpq+ℓs of unknowns. Using the product topology and the induced
Frobenius norm, we see that the adjoint corresponding to thelinear operatorL : Rp×q × R

s×t −→ R
m×n

defined by

L .(X,Y ) = AXB + CY D

is given by the map

L
⊤.G =

(
A⊤GB⊤, C⊤GD⊤

)
.

According to the definition (3.1), we can calculate [17]

σ(L ⊤) = ‖L ⊤‖ =
√
‖B ⊗A⊤‖22 + ‖D ⊗ C⊤‖22 =

√
‖A‖22‖B‖22 + ‖C‖22‖D‖22,
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where‖·‖2 stands for the spectral norm and is the largest singular value of the corresponding matrix. Likewise,
we have

θ(L ⊤) =
√
θ2(A⊤)θ2(B) + θ2(C⊤)θ2(D)

whereθ(·) stands for the smallest singular value of the correspondingmatrix. It is possible thatθ(L ⊤) = 0,
due to the rectangular sizes of these matrices. For instance, if B ∈ R

q×n andD ∈ R
t×n are such thatq < n

andt < n, thenθ(B) = θ(D) = 0. The actual rate of convergence forX(t), according to the center manifold
theorem, is equal to

µ = min
σ2

i
A⊤

σ2

iB
+σ2

i
C⊤

σ2

iD
6=0

σ2
i
A⊤

σ2
iB

+ σ2
i
C⊤

σ2
iD
,

whereθiM denotes an arbitrary singular values, including zeros, of the matrixM .

4. Linear Matrix Equations. Linear matrix equations arise in a variety of important applications, includ-
ing control theory [5], completely integrable systems [6],Poisson equation solving, Lie algebra [14], invariant
subspace computation, and so on [36]. Research efforts on this topic are extensive and discussions usually are
focused on one special type of equation a time. This section contains a collection of problems and, far from
being complete, a few major references. It would be of great interest, but mammoth, and is definitely beyond
our capacity to review the development of widespread theories and algorithms on linear matrix equations, as
the literature is so scattered and the techniques are so many. Instead, so that we can demonstrate the generality
of our flow approach, we classify most problems found in the literature into four categories. Although there
are a few stand-alone cases not belonging to any of these fourcategories and it is possible that there might be
some others which we have missed, the extension to those cases should be similar.

Listed in Table 4.1 are Type I equations which can be expressed in the form

k∑

i=1

AiXBi

︸ ︷︷ ︸
L .X

+Q = 0, (4.1)

where the proper dimensions of all matrices are assumed. Forthe casek = 2, namely, the generalized Sylvester
equation, the problem can be handled by either the Bartels-Stewart method or the Hessenberg-Schur method,
both involving orthogonal similarity transformations, and a companion software package is available [15]. But
for the general case, the factorization approach breaks down and little can be said about the general matrixG

if (4.1) is reduced to the ordinary formGx = c [24]. In contrast, the adjoint operatorL ⊤ : Rm×n −→ R
p×q

is given by

L
⊤.G =

k∑

j=1

A⊤
j GB⊤

j .

The gradient flow corresponding to (2.5) therefore is characterized by the differential system

dX

dt
= −

k∑

j=1

A⊤
j

(
k∑

i=1

AiXBi +Q

)
B⊤

j (4.2)

whose flowX(t) converges globally to either a solution of (4.1), if the equation is consistent, or the least
squares solution. The flow (4.2) requires4k matrix multiplications wheneverX is updated and can handle all
cases ofk.

Sometimes the equation is further structured in practice. For instance, in the Lyapunov equation, both
versions of continuous time and discrete time, often the coefficient matrixA is stable and the constant matrix
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∑k
i=1 AiXBi +Q = 0

Ai ∈ R
m×p, Bi ∈ R

q×n, Q ∈ R
m×n, X ∈ R

p×q

Equation Remark Ref.

Generalized Sylvester

AXB + CXD +Q = 0
mn ≤ pq

[15]

Lyapunov AX +XA⊤+Q = 0 m = p = q = n, Q = Q⊤

Generalized Lya-
punov

AXB + B⊤XA⊤ +
Q = 0

m = n, p = q

AXB + B⊤XA⊤ +
Q = 0

m = n = p = q, X = symmetric [35, 37]

Sylvester AX +XD +Q = 0 m = p, n = q [5]

Stein AXB −X +Q = 0 m = p, n = q [13, 22, 25, 34]

Discrete Lyapunov AXA⊤−X+Q = 0 m = p = q = n, Q = Q⊤

Generalize Discrete
Lyapunov

AXA⊤ − CXC⊤ +
Q = 0

m = n, p = q

AXA⊤ = B B � 0, X � 0

X −
∑α

i=1 A
⊤
i XAi +

∑β
j=1 B

⊤
j XBj = I

TABLE 4.1
Linear matrix equations: Type I.

Q is symmetric and positive definite. Then the solutionX is expected to be unique, symmetric and positive
definite. Such a property usually can be realized inherentlyby the limit point ofX(t).

Listed in Table 4.2 are a few Type II equations which vary fromthose in (4.1) in that the transposeX⊤ of
the unknown variableX also appears in the equations. The general form is expressedas

k∑

i=1

AiXBi +

ℓ∑

j=1

CjX
⊤Dj

︸ ︷︷ ︸
L .X

+Q = 0 (4.3)

whereℓ need not be the same ask. Because of the similarity to the original Sylvester equation, for the ease
of comparison we refer to each equation by the original basicname followed by a superscript⊤. Such a twist,
though linear, changes both the computation and the theory significantly [6, 10]. In all, we still can easily
formulate the adjoint operator associated with (4.3) as

L
⊤.G =

k∑

s=1

A⊤
s GB⊤

s +
ℓ∑

t=1

DtG
⊤Ct
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∑k
i=1 AiXBi +

∑ℓ
j=1 CjX

⊤Dj +Q = 0

Ai ∈ R
m×p, Bi ∈ R

q×n , Q ∈ R
m×n, Cj ∈ R

m×q , Dj ∈ R
p×n, X ∈ R

p×q

Equation Remark Ref.

Generalized SylvesterT

AXB + CX⊤D +Q = 0
mn ≤ pq

LyapunovT AX ±X⊤A⊤ +Q = 0 m = q = n [6, 14]

Generalized LyapunovT AXB ±B⊤X⊤A⊤ +Q = 0 [28]

AXB ±A⊤X⊤B⊤ = C

SylvesterT AX +X⊤D +Q = 0 m = q = n [10, 18]

SteinT AXB −X⊤ +Q = 0

Generalized Discrete LyapunovT AXA⊤ ±BX⊤B⊤ +Q = 0

TABLE 4.2
Linear matrix equations: Type II.

from which the corresponding gradient flow (2.5) can be described straightforwardly.
Type III equations in the form

k∑

i=1

AiXBi +

ℓ∑

j=1

CjY Dj

︸ ︷︷ ︸
L .(X,Y )

+Q = 0 (4.4)

involve two matrix variablesX andY of different sizes. Filling in zeros, if necessary, we may assume without
loss of generality thatk = ℓ. A proper rearrangement

k∑

i=1

[Ai, Ci]

[
X 0
0 Y

] [
Bi

Di

]
+Q = 0

shows that a Type III equation is a specially structured TypeI equation. For this reason we identify each
equation by the original basic name followed by a superscript S , referring to either the structure or the split of
the variable

[
X 0

0 Y

]
. As such, we mention that there are other types of structuredlinear matrix equations in

the literature, including cases where the solution is limited to a certain subspace or manifold. For constrained
linear matrix equations, all we need to do is to modify the gradient into the projected gradient and the idea
discussed in this paper prevails. For problem (4.4), we shall regardL : Rp×q × R

s×t −→ R
m×n as a linear

map over the product topology equipped with the induced Frobenius inner product

〈(X,Y ), (Z,W )〉 = 〈X,Z〉+ 〈Y,W 〉.

Then the adjointL ⊤ : Rm×n −→ R
p×q × R

s×t is given by

L
⊤.G =




k∑

i=1

A⊤
i GB⊤

i ,

ℓ∑

j=1

C⊤
j GD⊤

j


 .
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The gradient flow is governed by




dX
dt

= −
∑k

i=1 A
⊤
i

(∑k
τ=1AτXBτ +

∑ℓ
ν=1 CνY Dν +Q

)
B⊤

i ,

dY
dt

= −
∑ℓ

j=1 C
⊤
j

(∑k
τ=1AτXBτ +

∑ℓ
ν=1 CνY Dν +Q

)
D⊤

j .
(4.5)

∑k
i=1 AiXBi +

∑ℓ
j=1 CjY Dj +Q = 0

Ai ∈ R
m×p, Bi ∈ R

q×n , Q ∈ R
m×n, Cj ∈ R

m×s, Dj ∈ R
t×n, X ∈ R

p×q, Y ∈ R
s×t

Equation Remark Ref.

Generalized SylvesterS

AXB + CY D +Q = 0
mn ≤ pq

[27, 31, 32, 38]

LyapunovS AX + Y A⊤ +Q = 0

AX + Y A+Q = 0

SylvesterS AX + Y D +Q = 0 [3, 33, 42]

Generalized Discrete LyapunovS AXA⊤ +BY B⊤ +Q = 0 [26]
TABLE 4.3

Linear matrix equations: Type III.

Finally, a generalization of Type III equation is the coupled matrix system of the form
α∑

j=1

AijXjBij +Qi = 0, i = 1, . . . , β, (4.6)

which has been less studied, but begun to receive attention in recent years [11, 12, 39, 40]. Similar to the
Type III equations, we shall regardL : Rp1×q1 × . . .× R

pα×qα −→ R
m1×n1 × . . .× R

mβ×nβ as one linear
map via

L (X1, . . . , Xα) =




α∑

j=1

A1jXjB1j , . . . ,

α∑

j=1

AβjXjBβj


 (4.7)

where the spaces are equipped with the induced Frobenius inner product. The adjoint equation should be
interpreted as

〈L (X1, . . . , Xα), (G1, . . . , Gβ)〉 = 〈(X1, . . . , Xα),L
⊤(G1, . . . , Gβ)〉, (4.8)

whereas

〈L (X1, . . . , Xα), (G1, . . . , Gβ)〉 =

β∑

i=1

〈

α∑

j=1

AijXjBij , Gi〉 =

α∑

j=1

〈Xj ,

β∑

i=1

A⊤
ijGiB

⊤
ij〉.

Thus the action ofL ⊤ : Rm1×n1 × . . .× R
mβ×nβ −→ R

p1×q1 × . . .× R
pα×qα is given by

L
⊤(G1, . . . Gβ) =

(
β∑

i=1

A⊤
i1GiB

⊤
i1, . . . ,

β∑

i=1

A⊤
iαGiB

⊤
iα

)
.
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The gradient flow is governed by the system

dXj

dt
= −

β∑

i=1

A⊤
ij

(
α∑

τ=1

AiτXτBiτ +Qi

)
B⊤

ij , j = 1, . . . α. (4.9)

∑α
j=1 AijXjBij +Qi = 0, i = 1, . . . , β

Aij ∈ R
mi×pj , Bi ∈ R

qj×ni , Q ∈ R
mi×ni , Xj ∈ R

pj×qj

Equation Remark Ref.

Generalized SylvesterC





AXB + CY D +Q = 0

EXF +RY S + T = 0

mn ≤ pq

[9, 11]

SylvesterC





AX + Y D +Q = 0

EX + Y S + T = 0

[19]

TABLE 4.4
Linear matrix equations: Type IV.

5. Numerical techniques. Because of the important role they play in a wide range of applications, linear
matrix equations have been extensively studied in the literature. Many numerical algorithms are available.
Often these methods are designed for solving specific types of equations and are effective. At present, we
certainly are not in a position to compare the efficiency of the gradient flow approach with these existent
techniques. However, the framework we have proposed for gradient flows is still worth theoretical consideration
due to its easy formulation and generalization to other applications [1, 2]. Additionally, we are indeed interested
in following the flows for practical purpose. In this section, we outline a few possible numerical methods for
gradient flows.

As a dynamical system, the gradient flow can be tracked by any available numerical ODE integrator. As
reliable as this approach might be, one possible drawback isthat these integrators usually work hard in finding
uniform precision for all points along the solution curve, whereas what we are mainly interested in is the limit
point. Taking advantage of the fact that the limit point is anisolatedattractor, one possible strategy to reduce
the overhead of computation is to set the local tolerance somewhat higher. The idea is to stay near the true
trajectory, but not to strive for accuracy per se with the hope that the numerical solution will eventually be
attracted to the equilibrium. Note that this strategy does not change the fact that we need theoretically an
interval of length estimated by (3.6) for the flow to converge. The “faster" computation is due to the usage
of high local error tolerance which might allow larger step sizes and, hence, less calculation efforts for the
integration. We find that settingAbsTol = RelTol = 10−2 usually is sufficient for serving the purpose of
tracking the solution curve. In the long run, the limit pointcompresses the flow, by its inherent power of
attracting, to the equilibrium to within the machine precision.

Another straightforward approach is to apply the explicit Euler method

Xk+1 = Xk − ǫkL
⊤(LXk +Q) (5.1)

with variable step sizeǫk to be determined by a line search scheme. This amounts to the steepest descent
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method. It is trivial to see that if a constant step sizeǫ is to be used, thenǫ is necessarily limited by

0 < ǫ <
2

σ2(L ⊤)
,

implying slow convergence if the largest singular value ofL ⊤ is large. Instead of trying to reinvent a good
step size selection strategy such as that done in [39, 41], wewould suggest taking advantage of the variable step
size strategy already developed in the numerical ODE literature for the benefits that not only these methods are
readily available, but also that these control strategies are proven to ensure precision and stability.

Along the same idea of staying near the trajectory, there areother specifically designed algorithms for
following a gradient flow. The so called pseudo-transient continuation [21] applied to our gradient system
works as follows. Assuming that an approximate solutionXk has already been computed, one implicit Euler
step with step sizeǫk to (2.5) yields an equation,

(
I + ǫkL

⊤.L
)
.Xk+1 = Xk − ǫkL

⊤.Q, (5.2)

for the next stepXk+1. Instead of solving (5.2) to high precision, which itself isanother linear tensor equation,
one single correction using any reason iteration scheme starting atXk is accepted asXk+1. The scheme may
be written as

Xk+1 = Xk −

(
1

ǫk
In +∇2h(Xk)

)−1

∇h(Xk), (5.3)

which is a special implicit upwind method popular for computing steady-state solutions in the PDE community.
Note that for small values ofǫk the scheme (5.3) behaves like a steepest descent method, whereas for large
values ofǫk it behaves like a Newton iteration. Taking into account the fact that∇h(X) should have small
norm near the optimal pointX∗, the so-called “switched evolution relaxation" strategy for selecting the step
sizes, namely,

ǫk+1 = ǫk
‖∇h(Xk)‖

‖∇h(Xk+1)‖
, (5.4)

seems to be able to capture the characteristics of being relatively large in the initial phase, and small in the
terminal phase of the iteration. The convergence theory andimplementation issues can be found in [20].

The treatment in the Ph.D. thesis [4] of the gradient flow is ofa similar spirit. From a given pointXk, the
algorithm calculates a curveγk(t), in closed form, that is an approximation to the gradient flowX(t). It then
does a search along this curveγk(t) for a pointXk+1 that reduces the value of the objective function subject to
certain predesignated criteria and then repeats the process until a limit point is found. Under mild assumptions
the method is shown to converge to a critical point from any initial point and to converge quadratically in the
neighborhood of a solution. After pasting allγk ’s together, this algorithm yields a piecewise smooth curvethat
approximates the gradient flow. It turns out that the approximate curveγk(t) is precisely the integral curve of
the linearized gradient dynamics atXk. Since our gradient dynamics (2.5) is already linear, such an algorithm
applied to our problem leads toγ(t) = X(t), resulting in the breakdown of the curve search mechanism.

6. Numerical experiments. In this section, we report numerical results from some preliminary experi-
ments to support our gradient flow approach.

Example 3. As a continuation of Example 1, we compute the expected length of integration needed
for reducing the residual‖L .X + Q‖F by a factor of10−14 relative to the original error. To fix the idea,
we demonstrate the case whenm = p = q = n = 10 and use the same set of coefficientsA,B,C, and
D, whenever they appear, for all seven special cases under thegenre of generalized Sylvester equation. We
generate randomly 200 sets of coefficient matrices inR

10×10 and compute the correspondingt based on (3.6).
Depicted in Figure 6.1 are the boxplots of the logarithm of these lengths for the various equations. There are
some outliers, but the inner-quartiles are approximately over the same range.
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FIGURE 6.1.Expected lengths of integration for generalized Sylvesterequations to reduce residuals relatively by10−14 .

Example 4 The theoretical results from Example 3 indicate a long interval for integration and seem to
suggest the need for lots of steps in order to reach to the equilibrium. In this example, we take a closer look at
the application of a variable-step variable-order ODE method available fromMatlab to the gradient dynamics
(2.8). For the very same set of coefficient matrices, we run the ODE integrator twice with the local error
tolerance is set at10−2 and10−10, respectively. Based on these prescribed local error tolerance, step sizes are
selected internally to meet both precision and stability. Since the high tolerance (10−2) scheme computes an
approximate solution curve which might drift longer, we allow one and half times of the theoretical estimate
interval of integration for the low precision method. Plotted in Figure 6.2 are the number steps needed by the
integrator to cover the intervals out of 200 randomly generated sets of coefficient matrices. We observe two
important facts. First, even with the low tolerance (10−10) scheme, it takes an order around103 steps/iterations
to complete the task of integration. The average step size isfairly large, confirming the statement we made
earlier in the paragraph before Example 2. Second, even though the high tolerance scheme is forced to integrate
over an interval that is one and half times longer than that for the low tolerance scheme, it still takes significantly
fewer steps to complete the task. Indeed, the drawing in Figure 6.2 seems to suggest a linear correlation between
steps take for convergence. The linear regression model is approximatelyy = 12.4146x+ 177.8944, showing
that the high tolerance scheme is using step sizes approximately twelve times larger than the low tolerance
scheme.

Example 5. We have mentioned that using existent ODE integrators for the gradient flows has the disad-
vantage of working too hard in the transit state of acquiringprecision for all points along the solution curve,
whereas we are only interested in is the limit point. We suggest that using high tolerance scheme might alleviate
the computation cost, as is demonstrated in Example 4. But then the question of precision becomes a concern.
It is known that if a equilibrium point of a different system is asymptotically stable, then under mild conditions
it is also an asymptotically stable equilibrium for perturbed systems nearby. With this in mind, there is a hope
that the less precise approximate curve also converges to the same limit point of the original gradient flow.
We carry out this experiment with the same 200 sets of random data used in Example 4 and compute the final
residuals‖L.X+Q‖F at the end of integration. Plotted in Figure 6.3 are the distributions of the absolute errors
with the two prescribed local error tolerance10−2 and10−10. It should be quite convincing that while the high
tolerance scheme is considerably cheaper, with around102 iterations, its final precision in finding the solution
to the generalized Sylvester equation is surprisingly good. Even the outliers returns a precision at around10−7.
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7. Conclusion. Linear matrix equations can be regarded as order-4 linear tensor equations. The key
ingredient in linear theory of computing the “adjoint" of a tensor operator is readily available. We thus propose
a unifying framework that can handle almost all linear matrix equations via the notion of generalized normal
equations. Though it is not advisable to solve a classical system of linear equations by its normal equation, as
more direct methods such as matrix factorization are more efficient, forming the generalized normal equation
for a matrix equation has the advantages of being straightforward, being uniform, working directly with the
original sizes without Kronecker product or vectorization, avoiding inversion or factorization, and being easy
to analyze the convergence behavior. This paper outlines the theory, exemplifies a collection of applications,
suggests a few numerical procedures, and reports some numerical evidences.
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