SOLVING AN INVERSE EIGENVALUE PROBLEM WITH TRIPLE CONSTRAI  NTS ON
EIGENVALUES, SINGULAR VALUES, AND DIAGONAL ELEMENTS

SHENG-JHIH WU AND MOODY T. CHUY

Abstract. An inverse eigenvalue problem usually entails two constsaione conditioned upon the spectrum and the other on the
structure. This paper investigates the problem whereetigpinstraints of eigenvalues, singular values, and didgamees are imposed
simultaneously. An approach combining an eclectic mix dfsskom differential geometry, optimization theory, aadalytic gradient flow
is employed to prove the solvability of such a problem. Tiseitegeneralizes the classical Mirsky, Sing-Thompson \&agl-Horn theorems
concerning the respective majorization relationshipg/bet any two of the arrays of main diagonal entries, eigergaland singular values.
The existence theory fills a gap in the classical matrix thedhe problem might find applications in wireless commutiicaand quantum
information science. The technique employed can be impiésdeas a first-step numerical method for constructing thieixndVith slight
modification, the approach might be used to explore simyiaes of inverse problems where the prescribed entries genatal locations.
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1. Introduction. The focus of this paper is on the existence of a solution toatyyge of inverse eigenvalue
problem (IEP) where triple constraints of eigenvaluesgusiar values, and diagonal entries must be satisfied
simultaneously. Before we present our results and explmreegpossible applications of this particular type of
IEP, it might be fitting to give a brief recount on the genecale of IEPs and why they are interesting, important,
and challenging.

The basic goal of a general IEP is to reconstruct the parasefta certain physical system from the knowl-
edge or desire of its dynamical behavior. Since a dynamitend$ characterized by the underlying natural
frequencies and/or normal modes, a fundamental ingrettidatming an IEP is the spectral constraints. Since
the model should further be subject to a certain inherensigh/feasibility such as the nonnegativity of param-
eters, the specific triangulation of a finite element gridthar preconceived inter-connection in a mass-spring
system, it often becomes necessary to impose additionatstal constraints on the construction. Depending on
the application, the structural constraints appear irediffit forms and, thus, lead to different challenges in IEPs.

Inverse Sturm-Liouville Problem. The general concepts mentioned above for both continualidiaorete
IEPs might be illustrated by considering the classical lagiturm-Liouville problem:

2 (P02 + o) = ute), a <z <, -

wherep(z) andq(x) are piecewise continuous ¢ b] and appropriate boundary conditions are imposed. As a
direct problem, it is known that eigenvalues of the systerh)(are real, simple, countable, and tend to infinity.
As an inverse problem, the question is to determine the iatdnnctiong(x) from eigenvalues. This inverse
problem, closely tied to the one-dimensional inverse saafiroblem and served as a building block for scores of
other important applications, has generated many inteieshe field, notably the celebrated work by Gahd
and Levitan [23]. Without repeating the details, we mentiwat the main idea is to employ a transformation
operator to build a linear integral equation, now known as @elfand-Levitan equation, which the kernel
associated with the transformation operator must safigdiys, the inverse problem is reduced to the solution to
this linear integral equation. Once the kernel is solvedhftbe equation, the potential can be obtained. In this
way, the necessary and sufficient conditions for the solitgloif the inverse problem are completely resolved.
Simply put, the fundamental result that "two" data sequsrafeeigenvalues corresponding to two different
boundary conditions are required to uniquely determinetari@l. A quick introduction to this subject can be
found in [6, Chapter 3]. A more thoroughgoing discussion d@se in the translated book [37]. The more recent
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monograph [21] uses the Sturm-Liouville operator as a mamldescribe the main ideas and methods for the
general theory of inverse spectral problems and contaihsapter of specific applications.

On the other hand, discretization is probably the only agjparwe have in hand when tackling the Sturm-
Liouville problems numerically [3, 49, 51, 63]. To demomgé such an approach, consider the simple Sturm-
Liouville operator whem(z) = 1, and|a, b] = [0, 1]. Suppose that the central difference scheme with mesh size

h= #1 is applied. The differential equation (1.1) is reduced ®rifatrix eigenvalue problem

1
(‘ﬁjo + X) u=\u, (1.2)

where.J, is the fixed tridiagonal matrix whose diagonal entries ar2’abnd the super- and the sub-diagonals are
all -1's, andX is the diagonal matrix representing the evaluation of themal functiong(x) at the grid points.
The analogue to the inverse Sturm-Liouville problem is ttedmine a diagonal matriX so that the matrix
—#Jo + X possesses a (finitely many) prescribed spectrum. See this {8&] on discrete Sturm-Liouville
problems and the article [48] on the comparison betweendh#ruous and discrete problems. Note how nature
the structural constraint of the problem comes to place .i®) (@hen discretizing (1.1) by the central difference
scheme. A finite element discretization for partial diffetial equations such as the Helmholtz equation will
result in other types of structured IEPs. In a different eatitsee also [17, 43] for correlation matrix structure,
[36] for upper triangular structure, and [31] for the sturetof prescribed entries at arbitrary locations.

Matrix inverse eigenvalue problems.Just like the IEPs for differential equations, the IEPs fatrices have
been studied extensively with applications to system amdrobtheory, geophysics, molecular spectroscopy,
particle physics, structure analysis, numerical analysisl many other disciplines. One common assumption
in the application of inverse problems is that the undedyphysical system is somehow representable in terms
of matrices [35]. Studying IEPs for matrices is thereforealy important as for differential systems. Our
book [14] identifies 21 major distinct characteristics ie P formulation, each with several variations, and
describes many applications together with a list of over Af@rences. The survey article [19] contains a
more impressive list of 774 references on direct, semirse@nd inverse eigenvalue problems for structures
described by differential equations. The newly expandedrs& book [25] contains works and references in the
engineering literature.

The singular values decomposition (SVD) and its inhereaperties contain innate critical information of
the data that a matrix represents. A wide range of applicatsuch as image compression, dimension reduc-
tion, noise removal, and principal component analysisa@tgfeatures of the SVD [55]. A natural outgrowth
of the inverse eigenvalue problems is the generalizatianwerse singular value problems (ISVP) for model
reconstruction [8, 42, 58, 60, 61]. The ISVP can be categdras specially structured IEP [13].

IEP with three constraints. This paper considers a new type of IEP, demanding all threstcnts,
i.e., eigenvalues, singular values, and diagonals, bsfigaticoncurrently. To our knowledge, such an inverse
problem has never been considered before and imposes imtmadiallenges to conventional methods. We
propose an approach utilizing an eclectic mix of skills frarmalytic gradient dynamics and optimization theory
to successfully tackle this new and challenging problemr @imary goal is to establish the existence theory,
but the proof itself can be employed as a numerical methodedls Whe technique, innovative in itself, might
be useful for exploring other types of existence questidits.example, the prescribed entries in this paper are
limited to the diagonal only. With little modification of tHow to be described below, we have experimented
numerically the same technique with problems where thecpitessd entries are given at locations other than the
diagonal, which thus far has no known theory of existence$etas to stay focus on the technique, we shall not
pursue this direction in this paper, but can furnish the eicgdireport upon request. Some related discussions on
IEPs with prescribed eigenvalues and arbitrarily presdriéntries, can be found in [31, 41], but these problems
do not involve prescribed singular values.

Although the results remain valid over the complex field, inetlour discussion to the real field for the ease
of conveying the idea. With appropriate modifications, ,euging unitary similarity transformations instead of
orthogonal similarity transformations, our technique barcarried over to the general complex case. We shall
leave the generalization to interested readers, but dedéen to [10, Section 5] for a worked-out case on how such
an extension can be accomplished.



2. Preliminaries. We point out immediately that not all prescribed sets of galare feasible as sets of
singular values, eigenvalues, and diagonal entries simediusly. There are limitations upon these constraints.

Letd € R™ denote the vector whose entries are the desirable diagiena¢ats and are arranged in the order
|d1| > ... > |dn|, o € R™ the nonnegative vector of desirable singular values in therer; > ... > o, > 0,
and\ € C” the complex vector of desirable eigenvalues that are claselér complex conjugation and are
ordered ash| > ... > |\,|.

2.1. Necessary conditionsinherent to all matrices is a universal property that diajefements, eigenval-
ues, and singular values are necessarily related in peeudia Each relationship is characterized by a specific
sequence of inequalities. Satisfying these inequaliiesprerequisite before we can proceed for construction.
So that the paper is self-contained, we state these redijos in this section — pairs af, A\, ando must
comply with the following classical results in matrix thggd4].

The inequality relationship between the singular valmemd the eigenvaluesis usually referred to as that
A is log majorized by from above.

THEOREM 2.1. (Weyl-Horn Theorem [29, 59]) There exists a real matdixc R"*"™ with singular values
o and eigenvaluea if and only if

k k
[Tx <]]eiw k=12....n-1, (2.1)
=1 =1

and
[Tl =] (2.2)
=1 =1

The relationship between the singular valdeand the main diagonal entriekis a combination of weak
majorization and an additional inequality.

THEOREM 2.2. (Sing-Thompson Theorem [54, 56]) There exists a real matrig R™*"™ with singular
valueso and main diagonal entried, possibly in different order, if and only if

k k
Zldi|§20i, k=1,2,...,n, (23)
=1 =1
and
n—1 n—1
> di| = ldn] <> 00 — o (2.4)
=1 =1

With regard to the relationship between the diagonal esittiand the eigenvalues, we have two separate
results. The first result holds for general matrices and issimost common form.

THEOREM 2.3. (Mirsky Theorem [45]) There exists a real matrixe R™*™ with eigenvalued\ and main
diagonal entriesd, possibly in different order, if and only if

znjxi = zn:di. (2.5)
=1 =1

Obviously the condition (2.5) is too general to be usefultas applicable to all matrices. When a matrix
is structured, a more restrictive condition than (2.5) $ttdwld. For Hermitian matrices, the following set of
inequalities sometimes is referred to as a majorizatiod tf A from above.
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FIGURE 2.1.EXxisting results concerning majorization.

THEOREM 2.4. (Schur-Horn Theorem [5]) Suppose that entriesdofe R™ are arranged in the order
A1 > ... > )\, and entries od € R" in the orderd; > ... > d,,. There exists a Hermitian matrid with
eigenvalues\ and diagonal entriesl, possibly in different order, if and only if

k k
Z)\nfz?kl < Zdnfi+17 k= 1,2,...,7?,—1, (26)
=1 =1

and
Z A—it1 = Z dp—it1- (2.7)
i=1 i=1

It is intriguing that merely being a matrix, the structurera induces these intrinsic inequalities, which we
collectively refer to as majorization properties. For duieference, we represent the mutual relationships by the
three sides, denoted as 3, and~, respectively, of the triangle depicted in Figure 2.1.

2.2. Sufficient conditions. What makes the above results significant is that the comdispecified in each
of the four theorems are both necessary and sufficient. Giwat of data satisfying amne sideof the triangle,

a matrix satisfying the prescribed characteristics doés.e& constructive proof of such a sufficient condition,
an IEP, often can be converted into a numerical method, whéshbeen extensively studied in the literature
[7, 15, 11, 12, 18, 36, 62].

One common feature associated with these inverse probgetingtithe solution is not unique. An algorithm
therefore may fail to single out a specific matrix. For ins@nstarting with a given matrid € R"*", we
can calculate its eigenvaludsand singular values which necessarily satisfy the inequalities (2.1) and (2.2)
Applying the divide-and-conquer algorithm proposed in ftbZhe set of data andeo, we can construct a matrix
B which has the very same eigenvalweand singular values. However, it is mostly the case that the newly
constructed matribB is entirely different from the original matrid. Such discretion can easily be explained
— There are more degrees of freedom in the matrix to be cartsttuhan the prescribed data can characterize.
Generally speaking, the inverse problem has multiple oigtand more conditions can be imposed.

Referring to Figure 2.1, we are curious to ask whether a matn satisfy anywo sidesof the triangle
simultaneously. Clearly, satisfying any two of the thregariaation conditions will automatically satisfy the
third condition. Thus, this problem is equivalent to whethematrix can be constructed to satisfy prescribed
diagonal entries, eigenvalues, and singular values costily. Because such a matrix will satisfy the three sets
of inequalities in Theorems 2.2, 2.1, and 2.3 all together,siall refer to this structure as the Mirsky-Weyl-
Horn-Sing-Thompson (MWHST) condition.

Note that we do not include the Schur-Horn condition whicfoisHermitian matrices. In the event that
symmetry is part of the desirable structure, singular \&hre the absolute values of eigenvalues and are auto-
matically fixed. In this case, it suffices to consider the iseeproblem of satisfying the Schur-Horn condition
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alone, which is already solved in [7, 15, 62]. The MWHST caiodi constitutes a new and harder problem
because the matrix under construction has no symmetrictste.

3. Possible applications.The notion of majorization arises in a wide range of appia®t including statis-
tics [2, 44], information theory [30, 33], system identifice [4], wireless communication [34], quantum com-
puting [47], and quantum mechanics [46, 53], to mentiondufeiw. To review the complex theory in any of the
applications is obviously beyond our capacity. At the rigloeersimplifying, we find that it often is the case
that a certain majorization relationship is used as a atefor determining the condition of a certain physical
state in nature. We mention the criteria for checking thélidibility of a bipartite quantum state [28] and the
transformability between two pure entangled states [3@jvasuch instances. If the majorization relationship is
also sufficient, then a solution to the corresponding irv@reblem amounts to constructing the state under the
desirable condition.

As to our specific inverse problem subject to the MWHST caadjtwe briefly outline two possible appli-
cations. There are far more details beyond the scope of &isrpso we only sketch the ideas.

Optimal signature matrix construction. One of the two major wireless communication standards in the
industry is the code-division multiple access (CDMA) teglugy [52]. In the simplest setting, the base station
receives a superposed signal

N
s(t) = Y () wr(t)sk(t) + v(t)

k=1

at timet from N users, where the unit vectsf, stands for theith user’s unique signature vectar; is the
received power levely is the additive noise, and the message is encoded in the eempimberb,.. The task
for the base station is to extract &JI's from s. In practice,s(¢) is transmitted at fixed time intervals, s¢t)

is sampled as a time series, also known as a bitstream. Sdluoesessagéy(t) sent by thekth user. It can
be shown that the chip-sampled, matched-filter outputsigeosufficient statistics for deciphering the signal.
For the system to effectively extract the messages for eamtiidual user, the signature vectors should be well
separated from each other. This leads to the problem of anistg optimal weighted signature matrix

X(t) = [w1 (t)Sl (t), e, W1 (t)SN (t)]

under white noise, where the optimization (of separatisrgauged against different structural constraints. In
the context of CDMA, for example, the ideal case without ¢aist is thatX is row-orthogonal with specified
column norms which are the singular valuesft). Under constraints, constructing the minimally corredate
vectors can be formulated as an inverse singular value@ml6, 57]. Note thaX (¢) evolves dynamically in.

As time moves on, we may need to address the stabili§f @§. This can be done by embeddiAy¢) in a square
matrix, say, by padding with zeros, and control the growthesiilting eigenvalues. In this way, we are solving
an inverse problem with prescribed singular values, eiglei®s, and prescribed entries at specified locations. We
have complete theory when the specified entries are at tgemt, but the gradient flow approach developed in
this paper for prescribed diagonal entries is readily gaizable to prescribed values at arbitrary locations. Thus
far, no known theory exists for the general problem, but weeltnducted considerable numerical experiments.
Our software package for the general problem is availabt@mupquest.

Observable preserving nearest separable system approxirtian. One of the most fundamental chal-
lenges in quantum information science is the entanglenfentlisystems. The simplest setting to see the entan-
glement is the bipartite system which corresponds to temsmtuct of two matrices. We use real-valued general
matrices in this note to simply convey the idea. The basictipmreis whether a given matriA € R™"*™" can
be written in the form

k
A=Y Xi®Y,
i=1
whereX; € R™*™ Y; € R"*", and® stands for the Kronecker product. If yes, we say thas separable;
otherwise, it is tangled [30]. This problem is closely rethto so called tensor decompositiondifis regarded
5



as an order-4 tensor. In that rega’d, andY; are required to be rank-1 matrices and the minimal value of
is called the tensor rank of. In the context of quantum states, there are additionaltcaings — all matrices
involved should be density matrices, i.e., Hermitian, fressidefinite matrices with unit trace. As if itis a natural
phenomenon, most quantum systems are tangled. It is tmerieteresting to find its nearest separable system.
Eigenvalues, singular values, and diagonal entries arerit@pt quantities known as the observables. For the
approximation to be meaningful, we would like to see thatdabmposition of the subsystems preserves these
observables as much as possible. Consider the/casel. Then it is known that eigenvalues df are \; 11,

if {\;} and{u,} are the spectra ak; andY7, respectively. Likewise, singular values and diagonaliesiof

A can be expressed algebraically in terms of thos& pfand Y7, respectively. We thus want the subsystems
to satisfy these algebraic relationships between eigaasakingular values, and diagonal entries. Untangling
these scalars (observables) #fsubject to the MWHST condition is equivalent to an ineqyadibnstrained
optimization problem. The task is not trivial, but certgimd easier than untangling itself while preserving
the approximate observables. Once the approximated sepacd the observables is achieved, we expect the
subsystemsX; andY; to respect this essential information in a matrix. That &feasible candidatesy;
andY; should have prescribed eigenvalues, singular values, mgobrial entries. Fok > 1, the separation

of the observables for sum of matrices must satisfy additiorequality conditions [22, 38] which we will not
elaborate here. After the approximate observables arénglotave assign them to eadh andY; and solve the
corresponding inverse problems, respectively.

4. Our contributions. In regard to our particular inverse problem subject to the WSV condition, our
first motivation is by mathematical curiosity. It is of inést to ask whether the three sets of conditions (2.1)
to (2.5) can ever be coordinated together as one sufficierditon for the existence of a common matrix with
diagonal elementd, eigenvalued\, and singular values. How to construct such a matrix, if it exists, is another
interesting question. This paper addresses these twogp®st

Our contributions are twofold. First, our main theoretioegult is summarized as follows. Second, the
technique we employ along the way to prove this result is digra dynamical system which can be implemented
as a numerical method. Although we have not studied its effaj in this paper, the flow approach might be the
first tool of its kind in the literature to tackle this threerstraint inverse problem.

THEOREM4.1. Given three sets of datd, = [d;] € R", o = [0;] € R", andX = [\;] € C", suppose that
the entries can be arranged inthe ordéi| > ... > |d,|,01 > ... > 0, > 0, |A1] > ... > |\,], and closed
under complex conjugation. Suppose that 3. Then the MWHST condition is sufficient for the existence of
a real-value matrix withd as its diagonal, possibly in a different order, as its singular values, and as its
eigenvalues.

The seemingly trivial problem for the casemf= 2 is very different from the general case. We analyze in
Section 5 that the MWHST condition itself is not enough torgméee the existence oRax 2 matrix. We specify
what other conditions must be satisfied for the existencetiféocase: > 3, we argue in Section 6 by means of
optimization that generically there does exist a matriisggahg the MWHST condition. The proof starts with
the assumption that the inverse problem associated witk\ilyd-Horn theorem is already solved and follows
a gradient flow to its equilibrium point which is a solutionloBal convergence is guaranteed and, hence, the
above theorem is proved.

5. The case of x 2 is special. In searching for a matrix satisfying the MWHST condition, fivet consider
the2 x 2 case. As will be seen below, this seemingly simple problemctsially quite complicated. There
are mutually exclusive situations to be considered andtiaddl conditions must be imposed to guarantee the
existence. It might be even more astounding that such aultfficloes not occur when dealing with higher
dimensional cases, which will be shown in the next section.

To fix the idea, let

denote the x 2 real matrix to be constructed. The Frobenius normlafecessarily implies the equality
a>+ 0+ d? =0l o2
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! b2 +c? =0} 403 —a®— d?
FIGURE 5.1.Existence ofd € R?*? satisfying the MWHST condition.

Assuming that the main diagonal entries are already fixedgoal is to determine the off-diagonal entrieand
c to meet the prescribed eigenvalues and singular valueshwi@inslates to the system

{ be = ad—)\l)\g,

(5.1)
¥+ = of+o03—a®—d%.

The existence of 2x 2 matrix A satisfying the MWHST condition therefore boils down to fimglthe intersection

of a hyperbola and a circle as is indicated in Figure 5.1. @lmsly, the system (5.1) is solvable for the off-

diagonal entrie$ andc only if the vertex of the hyperbola lies within the disk, thgtwhen

2|lad — A1 A2 §crf—|—a§—a2—d2. (5.2)

In this case, there are generically four solutions per givek, ando .
On the other hand, the MWHST condition requires that theofalhg three sets of inequalities be held
simultaneously:

A+ X =a+d; (Mirsky) (5.3)
Ml = [,
01 Z 02, _
| < on, (Weyl — Horn) (5.4)
AMl[A2| = o109;
la| = d],
la| +1]d] < o014 02, (Sing — Thompson) (5.5)
|a|—|d| S g1 — 02.

We now examine how these inequalities play out to ensurg, (mtch guarantees a solution.

Given singular values and eigenvalued, summarized in Figure 5.2 are various regiongafd) € R?
over which the inequality (5.2) holds. Since a significanbamt of information is contained in the drawing, we
briefly explain its interpretation in the following theoreifhe analysis is tedious but straightforward.

THEOREM5.1. Given three sets of daid, A\, ando satisfying the MWHST condition, ther2ax 2 matrix
A exists with prescribed diagonal entriels eigenvalues\, and singular value if and only if the following
(additional) conditions onl hold.

1. Giveno, the shape of “kissing fish" in Figure 5.2 represents the ifdagegion of the diagonala, d)
in order to satisfy the Sing-Thompson condition (5.5) aldBee [11] for details.)
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d
hyperbolaud = —0109 o1 +02  hyperbolaud = o102

) when\i Ay = o109
lined+a=09— 01

| (01,02)

lined —a=o01 — o9 when\i Ay = —0109

FIGURE5.2.Domain of feasible diagonal entrigs, d), given{o1, 02} and{A1, A2}.

2. The Weyl-Horn condition (5.4) defines two mutually exectisases — eithex; Ao = o109 Or AjAg =
—0109.
3. When eigenvalues and . are either complex conjugate or real valued with the same,gtgen
(a) The only feasible diagonal entries must be further fetd to the union of the red, cyan, and
green regions in Figure 5.2.
(b) Wherud > o104, the(a, d) must come from the red region.
4. When eigenvalueg and ). are of opposite sign,
(&) The only feasible diagonal entries must be further retd to the union of the blue, purple, and
green regions in Figure 5.2.
(b) Wherud < —o09, the(a, d) must come from the blue region.
5. The green region is when baih+ d| < o1 — 09 and|a — d| < o1 — 03.

The above elaboration on tRex 2 case is illuminating. It manifests that satisfying the MWH&ndition
alone by the prescribed diagonal entries, eigenvaluessiagdlar values isot sufficient to guarantee the exis-
tence of & x 2 matrix. Indeed, depending on other factors such as the fign)o = +o;0-, the location of
the diagonal entrief:, d) also comes to play in the solvability of the inverse problemtifie2 x 2 case. Such a
simple fact is of interest in its own right. For instance, tbikowing corollary is a special case of Theorem 5.1.

COROLLARY 5.2. Suppose that the MWHST condition holds for three given $elatad, A, ando. If, in
addition,|a + d| < 01 — 02 and|a — d| < o1 — 029, then there exists 2 x 2 real matrix with diagonal entries
d, eigenvalues\, and singular values-.

The understanding of tHex 2 case seems to suggest that the pursuit for a matrix satisffiinequalities
simultaneously in the MWHST condition should have come t@ad. It is not so. The x 2 case discussed
above is only an exception. In the next section, we arguettieainverse problem of constructing a real-valued
matrix satisfying the MWHST condition is generically sdewhenn > 3.

6. Existence in general caseA rough count of the dimensionality might give clue to thevadiility, though
in reality the MWHST condition consists of inequalities whimake the dimensionality analysis not so straight-
forward. In the cases = 2, the task was to determine the two off-diagonal entbi@ndc so as to result in
having two prescribed eigenvalues and two prescribed Engalues. At first glance, this might seem to be an
over-determined system. However, the Mirsky conditio®)and the last equality in the Weyl-Horn condition
(5.4) imply that actually there are only one eigenvalue @iomland one singular value condition to be satisfied.
Thus, the reconstruction problem amounts to solving twa#quas in two unknowns, such as that of (5.1). In or-
der to ensure that this nonlinear problem has a solutiore@ddfour solutions generically, if it is ever solvable),
we have concluded in the preceding section that some additomnstraints are required. For the case 3, it
is difficult to use a geometric argument directly. Instead prove the existence by an entirely different strategy.
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6.1. Variational formulation. We begin with the assumption that arx n real-valued matrix4 satisfying
the Weyl-Horn condition is already in hand. The existenceuafh a matrix with prescribed singular values
and eigenvalueX is guaranteed in theory and is obtainable numerically.

Referring to the diagram in Figure 2.1, we assume thaptsale (Weyl-Horn condition) of the triangular
relationship is already satisfied by If we can establish tha side (Mirsky condition) in the diagram, then the
~ side follows automatically. In other words, given the dedimain diagonal elementk satisfying both the
Mirsky condition and the Sing-Thompson condition, our goal is to somehow transform the matrixso that
the resulting diagonal elements agree with elements of tescpbedd. A critical question is what kinds of
transformations are allowed.

Foremost, we want to preserve the spectrum of the giyea as not to upset the Weyl-Horn condition. So we
have to employ similarity transformations. Likewise, tegerve the singular values we must perform orthogonal
equivalence transformations. To keep both the eigenvandshe singular values invariant, therefore, the only
option is to apply orthogonal similarity transformationghe matrixA.

Let O(n) C R™ "™ denote the group of x n real orthogonal matrices. Also, léiag()) denote the
diagonal matrix whose main diagonal is the same as that eh#tex M anddiag(v) the diagonal matrix whose
main diagonal entries are formed from the veatotsing the same notatiatiag for both A andv will prove
convenient in the discussion. Any ambiguity can be clarifiech the context. Our idea of driving the diagonal
of Q" AQ to that of the specified vectais to formulate the minimization problem

Jmin F(Q) = 5diag(Q7 AQ) — ding(d)]- (6.1)
where|| - || 7 stands for the Frobenius matrix norm. Sintés already specifically ordered as we have premised
in Section 2.1, included in the formulation (6.1) is an inojtlisorting that, if convergence ever occurs, the
orthogonal matrixQ should aligndiag(Q T AQ) to conform to that ordering.

Since the matrix4 is real,diag(Q " AQ) = diag(Q " AT Q). Therefore,

A+ AT

ding(QT AQ)) = diag(QT =

Q). (6.2)

Define the matrix

-
g At4 6.3)
2
It is more convenient to work on the (symmetrized) optinmaaproblent
. R ST T T 2

oln | F(Q) = 5|l diag(Q " 5Q) — diag(d)]|- (6.4)

The optimizerQ of problem (6.1) is the same as that of problem (6.4), andwécsa.

Denote

1(Q) = diag(Q T SQ) — diag(d). (6.5)

If we can find an orthogonal matri¢ € O(n) such that)(Q) = 0, then the very sam€ will make the main
diagonal entries, the eigenvalues, and the singular vaitigse matrix@Q " AQ satisfy the MWHST condition
simultaneously. In the remainder of this paper, we focusromipg the following claim.

THEOREM 6.1. Given three sets of datd, o, and A satisfying the MWHST condition as in Theorem 4.1.
Assume tha#! is a matrix with prescribed singular valuesand eigenvalued and thatS defined in (6.3) is not
identically zero. Then there exists an optimigee O(n) for the problem (6.4) such thdt(Q) = 0.

10bviously, if A happens to be a skew-symmetric matrix, thér= 0 and F(Q) is a constant. In this case, we cannot do anything
with (6.4). However, the skew-symmetry is just another lkifidymmetry and is easier to exploit than the general nonasgtry. Indeed,
if A is skew-symmetric, then the discussion in this paper cambally applied to (6.1) with appropriate changes of sign ttuthe fact
that AT = —A. To save space, we shall not analyze this case in this abiiiause it is merely a repetition of most of the argument®to b
developed. We shall assume that generically the matrbonstructed to satisfy the Weyl-Horn condition is not skmwametric.
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6.2. Projected gradient flow. We shall deal with the optimization problem (6.4) by apptythe conven-
tional optimization techniques to the matrices. Of sigaffice is that we are able calculate the projected gradient
and the projected Hessian analytically without resortmthe Lagrange multiplier theory [10].

Given two matrices\/ = [m;;] andN = [n;;] of the same size, denote their Frobenius inner product by

<J\/[, N> = Zmijnij.
2

The Fréchet derivative” (Q) of F atQ is a linear operator mappirig®*" to R"*". Specifically, its action on
an arbitrary matrixd € R™*" is given by

F'(Q).H = (n(Q),n'(Q)-H) =2 (n(Q), diag(Q " SH)) = 2(n(Q),Q" SH) = 2(SQn(Q), H) . (6.6)

In (6.6), the second equality follows from the linearity b&toperatorliag; the third equality results from the
factn(Q) is a diagonal matrix; and the fourth equality is due to thesdjproperty. By the Riesz representation
theorem, the gradient F’ at @ can be represented as

VF(Q) =25Qn(Q). (6.7)

Because of the constraint thgtmust be inO(n), we next calculate the projected gradig(®) of VF(Q)
onto the tangent spacg, O(n) of O(n). Toward this end, we first recognize that the tangent spac¥ofj at
@ can be identified as the left translation of the subspaceafsfymmetric matrices, that is,

ToO(n) = {QK | K is skew-symmetrig. (6.8)

The projection operator onto the tangent spac® @f) can be obtained via the following formula [10].
LEMMA 6.2. Let@ € O(n) be a fixed orthogonal matrix. The projection of any given irakf € R™*"
onto the tangent spack,O(n) is given by

Praowm(X) = 3@{QTX ~X7Q}. (6.9)

In particular, the projected gradientQ) := P, 0, (VF(Q)) of VF(Q) ontoO(n) is given explicitly by

9(Q) = 30 (@TYF(Q) - VFQ)TQ) =@ [QT5Q.(@)] (6.10)
where, for convenience, we adopt the Lie bracket notation
[M,N]=MN — NM.
Define the dynamical system

Q=—9Q) =QnQ),QTSQ]. Q()=1I (6.11)

By construction, the solution flo#(t) to the differential system (6.11) stays on the manif@lg:) and moves
in the steepest descent direction for the objective fundii¢Q).
In the next three subsections, we argue to make three points.
1. The asymptotically stable equilibria of this projecteddjent flow are geometrically isolated.
2. The projected Hessian at an equilibrium point is expjiciomputable.
3. Any equilibrium point of the projected gradient providies orthogonal matrix) at whichn(Q) = 0.
In this way, we establish the existence of a matrix satigfyire MWHST condition.
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6.3. Geometric isolation of equilibrium points. Consider the gradient fliv
X = —VF(x) (6.12)
of the objective functiorF'(x). LetC denote the set of stationary points
C:={xeR"|VF(x)=0}. (6.13)

We are interested in the limiting behavior of the fla). In particular, leto(x(0)) denote the set of accumula-
tion points of the flonx(¢) starting fromx(0)

w(x(0)) := {x* € R"|x(t,) — x* for some infinite sequenadg — oo} . (6.14)

We are interested in knowing the topologywafx(0)). It is well known that ifx(t) is a bounded semi-orbit of
(6.12) and ifF is differentiable, themw(x(0)) is a non-empty, compact, and connected subsét &f general,

it is possible thats(x(0)) can form a periodic orbit [1]. The-limit set of a analytic gradient flow, nonetheless,
enjoys a special convergence property.

THEOREM 6.3. ([1, 50]) Suppose that’ : U — R is real analytic in an open séf C R". Then for any
bounded semi-orbit(¢) of (6.12), there exists a poist* € w(x(0)) such thatx(t) — x* ast — oco.

What has happened is that the semi-orbit of any analyticignadow is necessarily of finite arc length.
Equivalently, the set(x(0)) of any analytic gradient flow(¢) is necessarily a singleton. The reason of finite
arc length for an analytic gradient flow is a consequencesf thiasiewicz inequality.

THEOREM6.4. (Lojasiewicz Inequality [9, 39, 40]) Suppose thiat U — R is real analytic in an open set
U c R™. Then for any poinp € U, there exists a neighborhod@l of p, constant® < [%, 1) ande > 0 such
that

IF(x) — F(p)||° < ¢|VF(x)|| forallx e W. (6.15)

For a proof of Theorem 6.3 using this inequality, see [1, TBrp2.2] and the notes [50]. In our case, note
that vector field in (6.11) is a polynomial system which olusly is analytic inQ). We thus have obtained the
first property of the orbi€)(¢).

COROLLARY 6.5. The projected gradient flo@(¢) defined by (6.11) converges to a single point.

6.4. Projected Hessian.The optimization problem (6.4) may have many stationary{soi A stationary
point in the seC may be a local minimizer, a local maximizer, or a saddle poirg fully classify the local
behavior of its stationary points, we need to rely on the sdarder optimality condition — the definiteness of
the projected Hessian @f(Q) over the tangent space at the stationary point [20, 24]. Fgemeral constrained
optimization problem, computing the projected Hessiameotetically desirable but practically difficult. For
problem (6.4), nonetheless, we can compute the projectedigteexplicitly by the technique developed in our
earlier work [10].

The procedure goes as follows. First, we formally extendptiogected gradierg(Q) defined in (6.11) for
Q € O(n) to the functionG : R™*™ — R™*" for generalZ via the definition

G(Z)=2[2"SZn(Z)]. (6.16)

Note thatG(Z) is only a mechanical generalizationgf). Second, we calculate action of the Fréchet derivative
of GatZ € R"*" on an arbitraryd € R"*" as

G(Z)H=H[Z"SZn(Z)|+Z[H " SZ+Z"SHn(Z)|+Z[Z2"SZ,diag(H'SZ+ Z"SH)]. (6.17)

2Wwithout causing ambiguity, we use the same notafitior a general objective function which eventually referthi®potential function
whose gradient is our projected gradigif) in (6.11). An analytic expression of the potential functismbtainable, but not needed in our
subsequent analysis.
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Third, we restrict the action of (6.17) to the case wh@re O(n) is a stationary pointanf € 7oO(n), which
gives out the information of the projected Hessian.

Specifically, we know tha) is a stationary point of (6.4) if and only ifQ " SQ,n(Q)] = 0 by (6.10).
We know also thati € ToO(n) if and only if H is of the formH = QK for some skew-symmetric matrix
K € R™*™, So, upon substitution and simplification, the projecteddiEnG’ (Q) acting onQ K is given by

(QK,G'(Q).QK) = (QK,Q[[QTSQ,K] ,n(Q)] + Q [Q7SQ,diag [Q"5Q, K]])
=(K,[[Q"SQ,K],n(Q)] + [QTSQ,diag [QTSQ, K]])
={([QTSQ,K],[K,n(Q)] + diag [Q T SQ, K]). (6.18)

With the projected Hessian (6.18) in hand, the followingptteen is simply the standard second-order optimality
condition from classical optimization [20, 24] applied torgroblem.

LEMMA 6.6. Suppose tha) € O(n) is a stationary point for (6.4). Then a necessary conditmn( to
be a local minimizer is that

(QK,G'(Q).QK) > 0 for all skew-symmetric matricess . (6.19)

If the strict inequality in (6.19) holds &P, then( is guaranteed to be a local minimizer.

6.5. Asymptotically stable equilibrium. We now apply the above theory to establish the existence of a
matrix satisfying the MWHST condition. As explained earlige need to find an orthogonal matrixsuch that
n(Q) = 0. We argue by contradiction, namely,7ifQ) # 0 for a stationary poing), then there is a direction
along which the value of the objective functidhcan be further reduced. As such, our gradient f@) will
bypas$ this stationary point and continue to descend until a lodalmizer at whichn(Q) = 0 is found.

We first make the following simple claim.

LEMMA 6.7. Suppose that the three given sets of dhta, ando satisfy the MWHST condition. Suppose
also that a matrixA4 satisfying the Weyl-Horn condition is already found andas skew-symmetric. Lef be
the symmetric matrix defined in (6.3). Then for &y O(n), n(Q) cannot be a constant diagonal unless it is
identically zero.

Proof. Suppose that(Q) = diag(Q"SQ) — diag(d) = cI for some constant. Summing over the
diagonal entries, by the Mirsky condition, we havece(n(Q)) = trace(diag(Q T AQ)—>"1 , d;) = > | \i—
Yoi1di = 0 = nec. Itfollows thatc = 0.0

For simplicity, we assume the generic situation that alesiglues ofS are distinct. The analysis for the
case of equal eigenvalues is more involdalit the asymptotic behavior should be similar. By usingfitaslient
flow, we now prove our major result on the solvability.

THEOREM 6.8. Suppose that the symmetric matfxhas distinct eigenvalues. L& € O(n) denote a
stationary point for the problem (6.4). #(Q) # 0, then there exists a skew-symmetric mafkixsuch that
(QK,G'(Q)QK) <.

Proof. Suppose thaj(Q) # 0. For the simplicity of describing the structure ofilywve may assume without
loss of generality thag(@) is of the form

n(Q) = diag{mILn,, -, mIn, }, (6.20)

wherel,,, is then; x n; identity matrix fori = 1,--- ,k, andn; > --- > n. Itis important to note that > 1
because, by Lemma 6.7(@) must have more than one diagonal block.

3UnlessQ(t) happens to stay on a heteroclinic orbit, which is numesiaatilikely due to the ubiquitous floating-point arithmetitaes.

4In this case, we still havelT, V] = 0 as in the proof of Theorem 6.8. T has repeated entries, th&his block diagonal, but still
orthogonally similar to the diagonal matriX@). From this point on, the same idea in the proof carries thiowith a little bit manipulation
of block forms. See our numerical example in Section 7.

51t is easier to describe the structure in block form. The pisatill valid without the block form, except that we needtéde extra
efforts to describe the rows and columns correspondingetsdme,; for eachi = 1, ..., k.
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At such a stationary poin®, write Y := Q" SQ for abbreviation. By (6.10), we have the commutativity
[Y,7n(Q)] = 0. It follows thatY must be of block diagonal form

Y = diag{Yu, s ,Ykk}, (621)

whereY;;, i = 1,--- , k, is ann; x n; symmetric matrix.

Let the spectral decomposition of the symmetric masfige denoted bys = U "TIU. By rearranging the
columns of orthonormal eigenvectorsiin’ if necessary, we may write the diagonal matrix of eigenvalae
IT = diag{my, ..., m, } with

T > ... > Ty (6.22)

Define the matrix

V= (UQnQ)UQ)". (6.23)

Then[II, V] = 0.

On one hand, since the diagonal matfihas distinct diagonal entrie®; must also be a diagonal matrix,
implying that (6.23) is a spectra decomposition¢€)) with columns of(UQ) " as the eigenvectors af(Q).
Write V' = diag{v1,--- ,v,}. Because)(Q) is itself a diagonal matrix, the s¢vy,--- ,v,} is composed of
exactly the diagonal entries ¢fQ).

On the other hand, because of the block structure specifi¢gl20), the orthogonal matri/Q) ™ must
also be block structured accordingly with sizes . .., nx, respectively. In each block the diagonal entries of
n(Q) is constant. The similarity transformation by within that block therefore has no effect to (6.23). It

follows thatV = n(Q). In particular{vy, ..., v, } must be in the ordering as
V] =...=V1 >V =...=Vgy > ... >V =...V. (624)
ny times ko times ny times

Let K € R™*" denote an arbitrary skew-symmetric matrix. Cleatiyg [Q " SQ, K| = 0. With respect to
this matrix K and at the stationary poif, the projected Hessian (6.18) becomes

(QK,G(Q).QK) = ([QTSQ, K],[K,n(Q)]) = — <Vf( ~KV,IIK — f(H>
= -2 (m —m)(vi — vk}, (6.25)

i<j

whereK = {IQU} = (UQ)K(UQ)T remains to be skew-symmetric sinCe) is orthogonal. It is obvious from

(6.22) and (6.24) that we may choose appropriate valugs; aluch tha{ Q K, G'(Q).QK) < 0.[

COROLLARY 6.9. Under the assumption of Theorem 6.8Yifs a stationary point witlm(Q) # 0, then@
is not a local minimizer for the objective functidhin (6.4).

Indeed, such a point is an unstable equilibrium for the gnaiddynamics. There exists at least one tan-
gent direction, i.e., a matrig) K with a certain skew-symmetric matrix’, along whichF(Q) can be further
decreased. Therefore, the flow must continue until an isdlmit point at whichy(Q) = 0 is found. Based on
this understanding, we conclude that the convergencgofto an asymptotically stable equilibrium poi@tat
whichn(Q) = 0 is guaranteed.

COROLLARY 6.10.A local minimum for the objective functidnin (6.4) is a global minimum.

When this limit pointQ is achieved, we use thi9 to form the corresponding matrig " AQ which now
maintain the prescribed diagonal entries, eigenvaluassengular values. The existence of a matrix satisfying
the MWHST condition is hereby established.
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7. Numerical example. The proof used to derive the theoretical existence can lyhmimplemented as
a numerical scheme, albeit it might require additional effo tune its efficiency. [26, 32]. For the time being,
our numerical example is meant only to demonstrate woritlof the differential system (6.11), which is the
basis of our existence proof. To demonstrate the robustifdéle approach, we even challenge ourselves with a
case where multiple eigenvalues, near eigenvalues, ahdlhapnditioning are all presented.

For convenience, we choose to use the standard rootie5s from MATLAB as our integrator. The local
error tolerance is set &bsTol = RelTol = 10719, Consider th& x 8 Rosser matrixz with integer elements

611 196 —192 407 -8 —52 —49 29

196 899 113 —192 —71 —43 -8 —44

—192 113 899 196 61 49 8 52

R = 407  —192 196 611 8 44 59 —23
- -8 —-71 61 8 411 —=599 208 208
—52 —43 49 44 —599 411 208 208

—49 -8 8 59 208 208 99 —911

29 —44 52 —-23 208 208 —911 99

The matrixR is known for its difficulty in that it has a double eigenvaltleee nearly equal eigenvalues, a zero
eigenvalue, two dominant eigenvalues of opposite sign asih@l nonzero eigenvalue. We use its diagonal
entriesd and thecomputeceigenvalues and singular values

—1.020049018429997e+03
1.020049018429997e403
1.020000000000000e+03
1.019901951359278e+03
1.000000000000001e+03
9.999999999999998e+02
9.804864072152601e—02
4.851119506099622e¢—13

1.020049018429997e403
1.020049018429996e403
1.020000000000000e+03
1.019901951359279e+03
1.000000000000000e+03
9.999999999999998e+02
9.804864072162672¢—02
1.054603342667098e—14

as the test data, so the MWHST condition is automaticallgfsadt®. This example also serves to demonstrate
the case that even though the matsixn Theorem 6.8 does have multiple eigenvalues, the graflemmtstill
works.

Using the recursive algorithm proposed in [12] for the abAwndo, we obtain first the following matrix
A needed in Section 6.1:

1.0200e+03 0 0 0 0 00

0 —1.0200e+03 0 0 0 00

0 0 1.0200e+03 0 0 0 00

A= 0 0 0 1.0199e+03 0 0 1.4668e—09 0

- 0 0 0 0 1.0000e+03 0 00 ’

0 0 0 0 0 1.0000e+03 00

0 0 0 —1.5257e—-05 0 0 9.8049e¢—-02 0

0 0 0 0 0 0 1.4045e—07 O

where for the convenience of running text we display all narstin only 5 digits. Note thad is not symmetric.
Defining S according to (6.3) and integrating our differential eqo@ai{6.11) numerically, we are able to find this
matrix

611.0000 —184.6972 93.4026 —177.9840 50.0103 —66.4451 —364.8367 —230.1007

—184.6972  899.0000 84.6701 —18.4713 86.7552 —70.4723 —143.9197 —161.0699

93.4026 84.6701  899.0000 —136.2380 —152.2550 106.6705 —2.4645 191.7090

B= —177.9840 —18.4713 —136.2380 611.0000 —282.3676 196.8994 —260.5891 85.8062
- 50.0103 86.7552 —152.2550 —282.3676 411.0000 592.8768  367.9171 —228.2314
—66.4451 —70.4723 106.6705 196.8994 592.8768 411.0000 —481.0590  348.2056
—364.8367 —143.9197 —2.4645 —260.5891  367.9171 —481.0590 99.0000  459.5032
—230.1007 —161.0699  191.7090 85.8062 —228.2314  348.2056  459.5032 99.0000

It can been seen that the diagonal entrie®adre almost identical to those &f. Indeed, the total difference is
within a 2-norm of2 x 10~ in absolute error. Likewise, we can check that the eigemgdund singular values
of B agree withA ando within the tolerancd 0~°. However, note that the off-diagonal entries®fare very
different from those of the originat, indicating that the inverse problem has multiple solution

Bstrictly speaking, the MWHST condition is satisfied only @pthe machine precision. See, for example, the smallest atadp
eigenvalue is not exactly zero.
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8. Conclusion. We studied the theoretical problem of whether a matrix witespribed main diagonal
entries, eigenvalues, and singular values exists wher tth&s satisfy the equalities and inequalities entailed
by the Mirsky, Weyl-Horn, and Sing-Thompson theorems stemdously. We employ an argument involving
an array of tools to establish the existence of such a matnenw > 3. Extra conditions are needed for the
casen = 2. The existence theory is new in the field. The dynamical systpproach might be the first tool for
constructing such a matrix.
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