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Abstract. An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the
structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed
simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, andanalytic gradient flow
is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, andWeyl-Horn theorems
concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values.
The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum
information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight
modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are atgeneral locations.
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1. Introduction. The focus of this paper is on the existence of a solution to a new type of inverse eigenvalue
problem (IEP) where triple constraints of eigenvalues, singular values, and diagonal entries must be satisfied
simultaneously. Before we present our results and explore some possible applications of this particular type of
IEP, it might be fitting to give a brief recount on the general scope of IEPs and why they are interesting, important,
and challenging.

The basic goal of a general IEP is to reconstruct the parameters of a certain physical system from the knowl-
edge or desire of its dynamical behavior. Since a dynamics often is characterized by the underlying natural
frequencies and/or normal modes, a fundamental ingredientin forming an IEP is the spectral constraints. Since
the model should further be subject to a certain inherent physical feasibility such as the nonnegativity of param-
eters, the specific triangulation of a finite element grid, orthe preconceived inter-connection in a mass-spring
system, it often becomes necessary to impose additional structural constraints on the construction. Depending on
the application, the structural constraints appear in different forms and, thus, lead to different challenges in IEPs.

Inverse Sturm-Liouville Problem. The general concepts mentioned above for both continuous and discrete
IEPs might be illustrated by considering the classical regular Sturm-Liouville problem:

− d

dx

(

p(x)
du(x)

dx

)

+ q(x)u(x) = λu(x), a < x < b, (1.1)

wherep(x) andq(x) are piecewise continuous on[a, b] and appropriate boundary conditions are imposed. As a
direct problem, it is known that eigenvalues of the system (1.1) are real, simple, countable, and tend to infinity.
As an inverse problem, the question is to determine the potential functionq(x) from eigenvalues. This inverse
problem, closely tied to the one-dimensional inverse scatting problem and served as a building block for scores of
other important applications, has generated many interests in the field, notably the celebrated work by Gel′fand
and Levitan [23]. Without repeating the details, we mentionthat the main idea is to employ a transformation
operator to build a linear integral equation, now known as the Gel′fand-Levitan equation, which the kernel
associated with the transformation operator must satisfy.Thus, the inverse problem is reduced to the solution to
this linear integral equation. Once the kernel is solved from the equation, the potential can be obtained. In this
way, the necessary and sufficient conditions for the solvability of the inverse problem are completely resolved.
Simply put, the fundamental result that "two" data sequences of eigenvalues corresponding to two different
boundary conditions are required to uniquely determine a potential. A quick introduction to this subject can be
found in [6, Chapter 3]. A more thoroughgoing discussion wasdone in the translated book [37]. The more recent
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monograph [21] uses the Sturm-Liouville operator as a modelto describe the main ideas and methods for the
general theory of inverse spectral problems and contains a chapter of specific applications.

On the other hand, discretization is probably the only apparatus we have in hand when tackling the Sturm-
Liouville problems numerically [3, 49, 51, 63]. To demonstrate such an approach, consider the simple Sturm-
Liouville operator whenp(x) ≡ 1, and[a, b] = [0, 1]. Suppose that the central difference scheme with mesh size
h = 1

n+1 is applied. The differential equation (1.1) is reduced to the matrix eigenvalue problem
(

− 1

h2
J0 +X

)

u = λu, (1.2)

whereJ0 is the fixed tridiagonal matrix whose diagonal entries are all 2’s and the super- and the sub-diagonals are
all -1’s, andX is the diagonal matrix representing the evaluation of the potential functionq(x) at the grid points.
The analogue to the inverse Sturm-Liouville problem is to determine a diagonal matrixX so that the matrix
− 1

h2J0 + X possesses a (finitely many) prescribed spectrum. See the thesis [27] on discrete Sturm-Liouville
problems and the article [48] on the comparison between the continuous and discrete problems. Note how nature
the structural constraint of the problem comes to place in (1.2) when discretizing (1.1) by the central difference
scheme. A finite element discretization for partial differential equations such as the Helmholtz equation will
result in other types of structured IEPs. In a different context, see also [17, 43] for correlation matrix structure,
[36] for upper triangular structure, and [31] for the structure of prescribed entries at arbitrary locations.

Matrix inverse eigenvalue problems.Just like the IEPs for differential equations, the IEPs for matrices have
been studied extensively with applications to system and control theory, geophysics, molecular spectroscopy,
particle physics, structure analysis, numerical analysis, and many other disciplines. One common assumption
in the application of inverse problems is that the underlying physical system is somehow representable in terms
of matrices [35]. Studying IEPs for matrices is therefore equally important as for differential systems. Our
book [14] identifies 21 major distinct characteristics in the IEP formulation, each with several variations, and
describes many applications together with a list of over 430references. The survey article [19] contains a
more impressive list of 774 references on direct, semi-inverse and inverse eigenvalue problems for structures
described by differential equations. The newly expanded seminal book [25] contains works and references in the
engineering literature.

The singular values decomposition (SVD) and its inherent properties contain innate critical information of
the data that a matrix represents. A wide range of applications such as image compression, dimension reduc-
tion, noise removal, and principal component analysis exploits features of the SVD [55]. A natural outgrowth
of the inverse eigenvalue problems is the generalization toinverse singular value problems (ISVP) for model
reconstruction [8, 42, 58, 60, 61]. The ISVP can be categorized as specially structured IEP [13].

IEP with three constraints. This paper considers a new type of IEP, demanding all three constraints,
i.e., eigenvalues, singular values, and diagonals, be satisfied concurrently. To our knowledge, such an inverse
problem has never been considered before and imposes immediate challenges to conventional methods. We
propose an approach utilizing an eclectic mix of skills fromanalytic gradient dynamics and optimization theory
to successfully tackle this new and challenging problem. Our primary goal is to establish the existence theory,
but the proof itself can be employed as a numerical method as well. The technique, innovative in itself, might
be useful for exploring other types of existence questions.For example, the prescribed entries in this paper are
limited to the diagonal only. With little modification of theflow to be described below, we have experimented
numerically the same technique with problems where the prescribed entries are given at locations other than the
diagonal, which thus far has no known theory of existence yet. So as to stay focus on the technique, we shall not
pursue this direction in this paper, but can furnish the empirical report upon request. Some related discussions on
IEPs with prescribed eigenvalues and arbitrarily prescribed entries, can be found in [31, 41], but these problems
do not involve prescribed singular values.

Although the results remain valid over the complex field, we limit our discussion to the real field for the ease
of conveying the idea. With appropriate modifications, e.g., using unitary similarity transformations instead of
orthogonal similarity transformations, our technique canbe carried over to the general complex case. We shall
leave the generalization to interested readers, but refer them to [10, Section 5] for a worked-out case on how such
an extension can be accomplished.
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2. Preliminaries. We point out immediately that not all prescribed sets of values are feasible as sets of
singular values, eigenvalues, and diagonal entries simultaneously. There are limitations upon these constraints.

Letd ∈ Rn denote the vector whose entries are the desirable diagonal elements and are arranged in the order
|d1| ≥ . . . ≥ |dn|, σ ∈ Rn the nonnegative vector of desirable singular values in the orderσ1 ≥ . . . ≥ σn ≥ 0,
andλ ∈ Cn the complex vector of desirable eigenvalues that are closedunder complex conjugation and are
ordered as|λ1| ≥ . . . ≥ |λn|.

2.1. Necessary conditions.Inherent to all matrices is a universal property that diagonal elements, eigenval-
ues, and singular values are necessarily related in peculiar way. Each relationship is characterized by a specific
sequence of inequalities. Satisfying these inequalities is a prerequisite before we can proceed for construction.
So that the paper is self-contained, we state these relationships in this section — pairs ofd, λ, andσ must
comply with the following classical results in matrix theory [44].

The inequality relationship between the singular valuesσ and the eigenvaluesλ is usually referred to as that
λ is log majorized byσ from above.

THEOREM 2.1. (Weyl-Horn Theorem [29, 59]) There exists a real matrixA ∈ R
n×n with singular values

σ and eigenvaluesλ if and only if

k∏

i=1

|λi| ≤
k∏

i=1

σi, k = 1, 2, . . . , n− 1, (2.1)

and

n∏

i=1

|λi| =
n∏

i=1

σi. (2.2)

The relationship between the singular valuesσ and the main diagonal entriesd is a combination of weak
majorization and an additional inequality.

THEOREM 2.2. (Sing-Thompson Theorem [54, 56]) There exists a real matrixA ∈ Rn×n with singular
valuesσ and main diagonal entriesd, possibly in different order, if and only if

k∑

i=1

|di| ≤
k∑

i=1

σi, k = 1, 2, . . . , n, (2.3)

and

n−1∑

i=1

|di| − |dn| ≤
n−1∑

i=1

σi − σn. (2.4)

With regard to the relationship between the diagonal entriesd and the eigenvaluesλ, we have two separate
results. The first result holds for general matrices and is inits most common form.

THEOREM 2.3. (Mirsky Theorem [45]) There exists a real matrixA ∈ Rn×n with eigenvaluesλ and main
diagonal entriesd, possibly in different order, if and only if

n∑

i=1

λi =

n∑

i=1

di. (2.5)

Obviously the condition (2.5) is too general to be useful as it is applicable to all matrices. When a matrix
is structured, a more restrictive condition than (2.5) should hold. For Hermitian matrices, the following set of
inequalities sometimes is referred to as a majorization ofd toλ from above.
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FIGURE 2.1.Existing results concerning majorization.

THEOREM 2.4. (Schur-Horn Theorem [5]) Suppose that entries ofλ ∈ Rn are arranged in the order
λ1 ≥ . . . ≥ λn and entries ofd ∈ Rn in the orderd1 ≥ . . . ≥ dn. There exists a Hermitian matrixH with
eigenvaluesλ and diagonal entriesd, possibly in different order, if and only if

k∑

i=1

λn−i+1 ≤
k∑

i=1

dn−i+1, k = 1, 2, . . . , n− 1, (2.6)

and
n∑

i=1

λn−i+1 =
n∑

i=1

dn−i+1. (2.7)

It is intriguing that merely being a matrix, the structure alone induces these intrinsic inequalities, which we
collectively refer to as majorization properties. For quick reference, we represent the mutual relationships by the
three sides, denoted asα, β, andγ, respectively, of the triangle depicted in Figure 2.1.

2.2. Sufficient conditions.What makes the above results significant is that the conditions specified in each
of the four theorems are both necessary and sufficient. Givena set of data satisfying anyone sideof the triangle,
a matrix satisfying the prescribed characteristics does exist. A constructive proof of such a sufficient condition,
an IEP, often can be converted into a numerical method, whichhas been extensively studied in the literature
[7, 15, 11, 12, 18, 36, 62].

One common feature associated with these inverse problems is that the solution is not unique. An algorithm
therefore may fail to single out a specific matrix. For instance, starting with a given matrixA ∈ R

n×n, we
can calculate its eigenvaluesλ and singular valuesσ which necessarily satisfy the inequalities (2.1) and (2.2).
Applying the divide-and-conquer algorithm proposed in [12] to the set of dataλ andσ, we can construct a matrix
B which has the very same eigenvaluesλ and singular valuesσ. However, it is mostly the case that the newly
constructed matrixB is entirely different from the original matrixA. Such discretion can easily be explained
— There are more degrees of freedom in the matrix to be constructed than the prescribed data can characterize.
Generally speaking, the inverse problem has multiple solutions and more conditions can be imposed.

Referring to Figure 2.1, we are curious to ask whether a matrix can satisfy anytwo sidesof the triangle
simultaneously. Clearly, satisfying any two of the three majorization conditions will automatically satisfy the
third condition. Thus, this problem is equivalent to whether a matrix can be constructed to satisfy prescribed
diagonal entries, eigenvalues, and singular values concurrently. Because such a matrix will satisfy the three sets
of inequalities in Theorems 2.2, 2.1, and 2.3 all together, we shall refer to this structure as the Mirsky-Weyl-
Horn-Sing-Thompson (MWHST) condition.

Note that we do not include the Schur-Horn condition which isfor Hermitian matrices. In the event that
symmetry is part of the desirable structure, singular values are the absolute values of eigenvalues and are auto-
matically fixed. In this case, it suffices to consider the inverse problem of satisfying the Schur-Horn condition
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alone, which is already solved in [7, 15, 62]. The MWHST condition constitutes a new and harder problem
because the matrix under construction has no symmetric structure.

3. Possible applications.The notion of majorization arises in a wide range of applications including statis-
tics [2, 44], information theory [30, 33], system identification [4], wireless communication [34], quantum com-
puting [47], and quantum mechanics [46, 53], to mention justa few. To review the complex theory in any of the
applications is obviously beyond our capacity. At the risk of oversimplifying, we find that it often is the case
that a certain majorization relationship is used as a criterium for determining the condition of a certain physical
state in nature. We mention the criteria for checking the distillability of a bipartite quantum state [28] and the
transformability between two pure entangled states [30] astwo such instances. If the majorization relationship is
also sufficient, then a solution to the corresponding inverse problem amounts to constructing the state under the
desirable condition.

As to our specific inverse problem subject to the MWHST condition, we briefly outline two possible appli-
cations. There are far more details beyond the scope of this paper, so we only sketch the ideas.

Optimal signature matrix construction. One of the two major wireless communication standards in the
industry is the code-division multiple access (CDMA) technology [52]. In the simplest setting, the base station
receives a superposed signal

s(t) =

N∑

k=1

bk(t)
√

ωk(t)sk(t) + v(t)

at time t from N users, where the unit vectorsk stands for thekth user’s unique signature vector,ωk is the
received power level,v is the additive noise, and the message is encoded in the complex numberbk. The task
for the base station is to extract allbk ’s from s. In practice,s(t) is transmitted at fixed time intervals, sos(t)
is sampled as a time series, also known as a bitstream. So doesthe messagebk(t) sent by thekth user. It can
be shown that the chip-sampled, matched-filter outputs provide sufficient statistics for deciphering the signal.
For the system to effectively extract the messages for each individual user, the signature vectors should be well
separated from each other. This leads to the problem of constructing optimal weighted signature matrix

X(t) = [ω1(t)s1(t), . . . , ω1(t)sN (t)]

under white noise, where the optimization (of separation) is gauged against different structural constraints. In
the context of CDMA, for example, the ideal case without constraint is thatX is row-orthogonal with specified
column norms which are the singular values ofX(t). Under constraints, constructing the minimally correlated
vectors can be formulated as an inverse singular value problem [16, 57]. Note thatX(t) evolves dynamically int.
As time moves on, we may need to address the stability ofX(t). This can be done by embeddingX(t) in a square
matrix, say, by padding with zeros, and control the growth ofresulting eigenvalues. In this way, we are solving
an inverse problem with prescribed singular values, eigenvalues, and prescribed entries at specified locations. We
have complete theory when the specified entries are at the diagonal, but the gradient flow approach developed in
this paper for prescribed diagonal entries is readily generalizable to prescribed values at arbitrary locations. Thus
far, no known theory exists for the general problem, but we have conducted considerable numerical experiments.
Our software package for the general problem is available upon request.

Observable preserving nearest separable system approximation. One of the most fundamental chal-
lenges in quantum information science is the entanglement of subsystems. The simplest setting to see the entan-
glement is the bipartite system which corresponds to tensorproduct of two matrices. We use real-valued general
matrices in this note to simply convey the idea. The basic question is whether a given matrixA ∈ Rmn×mn can
be written in the form

A =
k∑

i=1

Xi ⊗ Yi,

whereXi ∈ Rm×m, Yi ∈ Rn×n, and⊗ stands for the Kronecker product. If yes, we say thatA is separable;
otherwise, it is tangled [30]. This problem is closely related to so called tensor decomposition, ifA is regarded
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as an order-4 tensor. In that regard,Xi andYi are required to be rank-1 matrices and the minimal value ofk

is called the tensor rank ofA. In the context of quantum states, there are additional constraints — all matrices
involved should be density matrices, i.e., Hermitian, positive-definite matrices with unit trace. As if it is a natural
phenomenon, most quantum systems are tangled. It is therefore interesting to find its nearest separable system.
Eigenvalues, singular values, and diagonal entries are important quantities known as the observables. For the
approximation to be meaningful, we would like to see that thecomposition of the subsystems preserves these
observables as much as possible. Consider the casek = 1. Then it is known that eigenvalues ofA areλiµj ,
if {λi} and{µj} are the spectra ofX1 andY1, respectively. Likewise, singular values and diagonal entries of
A can be expressed algebraically in terms of those ofX1 andY1, respectively. We thus want the subsystems
to satisfy these algebraic relationships between eigenvalues, singular values, and diagonal entries. Untangling
these scalars (observables) ofA subject to the MWHST condition is equivalent to an inequality constrained
optimization problem. The task is not trivial, but certainly is easier than untanglingA itself while preserving
the approximate observables. Once the approximated separation of the observables is achieved, we expect the
subsystemsX1 andY1 to respect this essential information in a matrix. That is, as feasible candidates,X1

andY1 should have prescribed eigenvalues, singular values, and diagonal entries. Fork > 1, the separation
of the observables for sum of matrices must satisfy additional inequality conditions [22, 38] which we will not
elaborate here. After the approximate observables are obtained, we assign them to eachXi andYi and solve the
corresponding inverse problems, respectively.

4. Our contributions. In regard to our particular inverse problem subject to the MWHST condition, our
first motivation is by mathematical curiosity. It is of interest to ask whether the three sets of conditions (2.1)
to (2.5) can ever be coordinated together as one sufficient condition for the existence of a common matrix with
diagonal elementsd, eigenvaluesλ, and singular valuesσ. How to construct such a matrix, if it exists, is another
interesting question. This paper addresses these two questions.

Our contributions are twofold. First, our main theoreticalresult is summarized as follows. Second, the
technique we employ along the way to prove this result is a gradient dynamical system which can be implemented
as a numerical method. Although we have not studied its efficiency in this paper, the flow approach might be the
first tool of its kind in the literature to tackle this three-constraint inverse problem.

THEOREM 4.1. Given three sets of data,d = [di] ∈ Rn,σ = [σi] ∈ Rn, andλ = [λi] ∈ Cn, suppose that
the entries can be arranged in the order|d1| ≥ . . . ≥ |dn|, σ1 ≥ . . . ≥ σn ≥ 0, |λ1| ≥ . . . ≥ |λn|, and closed
under complex conjugation. Suppose thatn ≥ 3. Then the MWHST condition is sufficient for the existence of
a real-value matrix withd as its diagonal, possibly in a different order,σ as its singular values, andλ as its
eigenvalues.

The seemingly trivial problem for the case ofn = 2 is very different from the general case. We analyze in
Section 5 that the MWHST condition itself is not enough to guarantee the existence of a2×2 matrix. We specify
what other conditions must be satisfied for the existence. For the casen ≥ 3, we argue in Section 6 by means of
optimization that generically there does exist a matrix satisfying the MWHST condition. The proof starts with
the assumption that the inverse problem associated with theWeyl-Horn theorem is already solved and follows
a gradient flow to its equilibrium point which is a solution. Global convergence is guaranteed and, hence, the
above theorem is proved.

5. The case of2×2 is special. In searching for a matrix satisfying the MWHST condition, wefirst consider
the 2 × 2 case. As will be seen below, this seemingly simple problem isactually quite complicated. There
are mutually exclusive situations to be considered and additional conditions must be imposed to guarantee the
existence. It might be even more astounding that such a difficulty does not occur when dealing with higher
dimensional cases, which will be shown in the next section.

To fix the idea, let

A =

[
a b

c d

]

denote the2× 2 real matrix to be constructed. The Frobenius norm ofA necessarily implies the equality

a2 + b2 + c2 + d2 = σ2
1 + σ2

2 .

6



b√
γ

c
bc = γ > 0

b2 + c2 = σ2
1 + σ2

2 − a2 − d2

FIGURE 5.1.Existence ofA ∈ R2×2 satisfying the MWHST condition.

Assuming that the main diagonal entries are already fixed, our goal is to determine the off-diagonal entriesb and
c to meet the prescribed eigenvalues and singular values, which translates to the system

{
bc = ad− λ1λ2,

b2 + c2 = σ2
1 + σ2

2 − a2 − d2.
(5.1)

The existence of a2×2 matrixA satisfying the MWHST condition therefore boils down to finding the intersection
of a hyperbola and a circle as is indicated in Figure 5.1. Obviously, the system (5.1) is solvable for the off-
diagonal entriesb andc only if the vertex of the hyperbola lies within the disk, thatis, when

2|ad− λ1λ2| ≤ σ2
1 + σ2

2 − a2 − d2. (5.2)

In this case, there are generically four solutions per givend, λ, andσ.
On the other hand, the MWHST condition requires that the following three sets of inequalities be held

simultaneously:

λ1 + λ2 = a+ d; (Mirsky) (5.3)






|λ1| ≥ |λ2|,
σ1 ≥ σ2,

|λ1| ≤ σ1,

|λ1||λ2| = σ1σ2;

(Weyl−Horn) (5.4)







|a| ≥ |d|,
|a|+ |d| ≤ σ1 + σ2,

|a| − |d| ≤ σ1 − σ2.

(Sing − Thompson) (5.5)

We now examine how these inequalities play out to ensure (5.2), which guarantees a solution.
Given singular valuesσ and eigenvaluesλ, summarized in Figure 5.2 are various regions of(a, d) ∈ R2

over which the inequality (5.2) holds. Since a significant amount of information is contained in the drawing, we
briefly explain its interpretation in the following theorem. The analysis is tedious but straightforward.

THEOREM 5.1. Given three sets of datad, λ, andσ satisfying the MWHST condition, then a2 × 2 matrix
A exists with prescribed diagonal entriesd, eigenvaluesλ, and singular valuesσ if and only if the following
(additional) conditions ond hold.

1. Givenσ, the shape of “kissing fish" in Figure 5.2 represents the feasible region of the diagonal(a, d)
in order to satisfy the Sing-Thompson condition (5.5) alone. (See [11] for details.)

7



a

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx

d

hyperbolaad = σ1σ2hyperbolaad = −σ1σ2

line d− a = σ1 − σ2

line d+ a = σ2 − σ1

whenλ1λ2 = σ1σ2

whenλ1λ2 = −σ1σ2

σ1

σ1 + σ2

(σ1, σ2)

FIGURE 5.2.Domain of feasible diagonal entries(a, d), given{σ1, σ2} and{λ1, λ2}.

2. The Weyl-Horn condition (5.4) defines two mutually exclusive cases — eitherλ1λ2 = σ1σ2 or λ1λ2 =
−σ1σ2.

3. When eigenvaluesλ1 andλ2 are either complex conjugate or real valued with the same sign, then
(a) The only feasible diagonal entries must be further restricted to the union of the red, cyan, and

green regions in Figure 5.2.
(b) Whenad ≥ σ1σ2, the(a, d) must come from the red region.

4. When eigenvaluesλ1 andλ2 are of opposite sign,
(a) The only feasible diagonal entries must be further restricted to the union of the blue, purple, and

green regions in Figure 5.2.
(b) Whenad ≤ −σ1σ2, the(a, d) must come from the blue region.

5. The green region is when both|a+ d| ≤ σ1 − σ2 and|a− d| ≤ σ1 − σ2.
The above elaboration on the2 × 2 case is illuminating. It manifests that satisfying the MWHST condition

alone by the prescribed diagonal entries, eigenvalues, andsingular values isnot sufficient to guarantee the exis-
tence of a2 × 2 matrix. Indeed, depending on other factors such as the sign of λ1λ2 = ±σ1σ2, the location of
the diagonal entries(a, d) also comes to play in the solvability of the inverse problem for the2× 2 case. Such a
simple fact is of interest in its own right. For instance, thefollowing corollary is a special case of Theorem 5.1.

COROLLARY 5.2. Suppose that the MWHST condition holds for three given sets of datad, λ, andσ. If, in
addition,|a + d| ≤ σ1 − σ2 and |a − d| ≤ σ1 − σ2, then there exists a2 × 2 real matrix with diagonal entries
d, eigenvaluesλ, and singular valuesσ.

The understanding of the2× 2 case seems to suggest that the pursuit for a matrix satisfying all inequalities
simultaneously in the MWHST condition should have come to anend. It is not so. The2 × 2 case discussed
above is only an exception. In the next section, we argue thatthe inverse problem of constructing a real-valued
matrix satisfying the MWHST condition is generically solvable whenn ≥ 3.

6. Existence in general case.A rough count of the dimensionality might give clue to the solvability, though
in reality the MWHST condition consists of inequalities which make the dimensionality analysis not so straight-
forward. In the casen = 2, the task was to determine the two off-diagonal entriesb andc so as to result in
having two prescribed eigenvalues and two prescribed singular values. At first glance, this might seem to be an
over-determined system. However, the Mirsky condition (5.3) and the last equality in the Weyl-Horn condition
(5.4) imply that actually there are only one eigenvalue condition and one singular value condition to be satisfied.
Thus, the reconstruction problem amounts to solving two equations in two unknowns, such as that of (5.1). In or-
der to ensure that this nonlinear problem has a solution (indeed, four solutions generically, if it is ever solvable),
we have concluded in the preceding section that some additional constraints are required. For the casen ≥ 3, it
is difficult to use a geometric argument directly. Instead, we prove the existence by an entirely different strategy.
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6.1. Variational formulation. We begin with the assumption that ann×n real-valued matrixA satisfying
the Weyl-Horn condition is already in hand. The existence ofsuch a matrix with prescribed singular valuesσ

and eigenvaluesλ is guaranteed in theory and is obtainable numerically.
Referring to the diagram in Figure 2.1, we assume that theβ side (Weyl-Horn condition) of the triangular

relationship is already satisfied byA. If we can establish theα side (Mirsky condition) in the diagram, then the
γ side follows automatically. In other words, given the desired main diagonal elementsd satisfying both the
Mirsky condition and the Sing-Thompson condition, our goalnow is to somehow transform the matrixA so that
the resulting diagonal elements agree with elements of the prescribedd. A critical question is what kinds of
transformations are allowed.

Foremost, we want to preserve the spectrum of the givenA so as not to upset the Weyl-Horn condition. So we
have to employ similarity transformations. Likewise, to preserve the singular values we must perform orthogonal
equivalence transformations. To keep both the eigenvaluesand the singular values invariant, therefore, the only
option is to apply orthogonal similarity transformations to the matrixA.

Let O(n) ⊂ Rn×n denote the group ofn × n real orthogonal matrices. Also, letdiag(M) denote the
diagonal matrix whose main diagonal is the same as that of thematrixM anddiag(v) the diagonal matrix whose
main diagonal entries are formed from the vectorv. Using the same notationdiag for bothM andv will prove
convenient in the discussion. Any ambiguity can be clarifiedfrom the context. Our idea of driving the diagonal
of Q⊤AQ to that of the specified vectord is to formulate the minimization problem

min
Q∈O(n)

F (Q) :=
1

2
‖diag(Q⊤AQ)− diag(d)‖2F , (6.1)

where‖ · ‖F stands for the Frobenius matrix norm. Sinced is already specifically ordered as we have premised
in Section 2.1, included in the formulation (6.1) is an implicit sorting that, if convergence ever occurs, the
orthogonal matrixQ should aligndiag(Q⊤AQ) to conform to that ordering.

Since the matrixA is real,diag(Q⊤AQ) = diag(Q⊤A⊤Q). Therefore,

diag(Q⊤AQ)) = diag(Q⊤A+A⊤

2
Q). (6.2)

Define the matrix

S :=
A+A⊤

2
. (6.3)

It is more convenient to work on the (symmetrized) optimization problem1

min
Q∈O(n)

F (Q) :=
1

2
‖diag(Q⊤SQ)− diag(d)‖2F . (6.4)

The optimizerQ of problem (6.1) is the same as that of problem (6.4), and viceversa.
Denote

η(Q) := diag(Q⊤SQ)− diag(d). (6.5)

If we can find an orthogonal matrixQ ∈ O(n) such thatη(Q) = 0, then the very sameQ will make the main
diagonal entries, the eigenvalues, and the singular valuesof the matrixQ⊤AQ satisfy the MWHST condition
simultaneously. In the remainder of this paper, we focus on proving the following claim.

THEOREM 6.1. Given three sets of data,d, σ, andλ satisfying the MWHST condition as in Theorem 4.1.
Assume thatA is a matrix with prescribed singular valuesσ and eigenvaluesλ and thatS defined in (6.3) is not
identically zero. Then there exists an optimizerQ ∈ O(n) for the problem (6.4) such thatF (Q) = 0.

1Obviously, ifA happens to be a skew-symmetric matrix, thenS = 0 andF (Q) is a constant. In this case, we cannot do anything
with (6.4). However, the skew-symmetry is just another kindof symmetry and is easier to exploit than the general non-symmetry. Indeed,
if A is skew-symmetric, then the discussion in this paper can be equally applied to (6.1) with appropriate changes of sign dueto the fact
thatA⊤ = −A. To save space, we shall not analyze this case in this articlebecause it is merely a repetition of most of the arguments to be
developed. We shall assume that generically the matrixA constructed to satisfy the Weyl-Horn condition is not skew-symmetric.
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6.2. Projected gradient flow. We shall deal with the optimization problem (6.4) by applying the conven-
tional optimization techniques to the matrices. Of significance is that we are able calculate the projected gradient
and the projected Hessian analytically without resorting to the Lagrange multiplier theory [10].

Given two matricesM = [mij ] andN = [nij ] of the same size, denote their Frobenius inner product by

〈M,N〉 :=
∑

i,j

mijnij .

The Fréchet derivativeF ′(Q) of F atQ is a linear operator mappingRn×n to R
n×n. Specifically, its action on

an arbitrary matrixH ∈ Rn×n is given by

F ′(Q).H = 〈η(Q), η′(Q).H〉 = 2
〈
η(Q), diag(Q⊤SH)

〉
= 2

〈
η(Q), Q⊤SH

〉
= 2 〈SQη(Q), H〉 . (6.6)

In (6.6), the second equality follows from the linearity of the operatordiag; the third equality results from the
factη(Q) is a diagonal matrix; and the fourth equality is due to the adjoint property. By the Riesz representation
theorem, the gradient∇F atQ can be represented as

∇F (Q) = 2SQη(Q). (6.7)

Because of the constraint thatQ must be inO(n), we next calculate the projected gradientg(Q) of ∇F (Q)
onto the tangent spaceTQO(n) of O(n). Toward this end, we first recognize that the tangent space ofO(n) at
Q can be identified as the left translation of the subspace of skew-symmetric matrices, that is,

TQO(n) = {QK |K is skew-symmetric} . (6.8)

The projection operator onto the tangent space ofO(n) can be obtained via the following formula [10].
LEMMA 6.2. LetQ ∈ O(n) be a fixed orthogonal matrix. The projection of any given matrix X ∈ Rn×n

onto the tangent spaceTQO(n) is given by

PTQO(n)(X) =
1

2
Q
{
Q⊤X −X⊤Q

}
. (6.9)

In particular, the projected gradientg(Q) := PTQO(n)(∇F (Q)) of ∇F (Q) ontoO(n) is given explicitly by

g(Q) =
1

2
Q
(
Q⊤∇F (Q)−∇F (Q)⊤Q

)
= Q

[
Q⊤SQ, η(Q)

]
, (6.10)

where, for convenience, we adopt the Lie bracket notation

[M,N ] = MN −NM.

Define the dynamical system

Q̇ = −g(Q) = Q
[
η(Q), Q⊤SQ

]
, Q(0) = I. (6.11)

By construction, the solution flowQ(t) to the differential system (6.11) stays on the manifoldO(n) and moves
in the steepest descent direction for the objective functionF (Q).

In the next three subsections, we argue to make three points.
1. The asymptotically stable equilibria of this projected gradient flow are geometrically isolated.
2. The projected Hessian at an equilibrium point is explicitly computable.
3. Any equilibrium point of the projected gradient providesthe orthogonal matrixQ at whichη(Q) = 0.

In this way, we establish the existence of a matrix satisfying the MWHST condition.
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6.3. Geometric isolation of equilibrium points. Consider the gradient flow2

ẋ = −∇F (x) (6.12)

of the objective functionF (x). LetC denote the set of stationary points

C := {x ∈ R
n | ∇F (x) = 0} . (6.13)

We are interested in the limiting behavior of the flowx(t). In particular, letω(x(0)) denote the set of accumula-
tion points of the flowx(t) starting fromx(0)

ω(x(0)) := {x∗ ∈ R
n |x(tν) → x∗ for some infinite sequencetν → ∞} . (6.14)

We are interested in knowing the topology ofω(x(0)). It is well known that ifx(t) is a bounded semi-orbit of
(6.12) and ifF is differentiable, thenω(x(0)) is a non-empty, compact, and connected subset ofC. In general,
it is possible thatω(x(0)) can form a periodic orbit [1]. Theω-limit set of a analytic gradient flow, nonetheless,
enjoys a special convergence property.

THEOREM 6.3. ([1, 50]) Suppose thatF : U → R is real analytic in an open setU ⊂ Rn. Then for any
bounded semi-orbitx(t) of (6.12), there exists a pointx∗ ∈ ω(x(0)) such thatx(t) → x∗ ast → ∞.

What has happened is that the semi-orbit of any analytic gradient flow is necessarily of finite arc length.
Equivalently, the setω(x(0)) of any analytic gradient flowx(t) is necessarily a singleton. The reason of finite
arc length for an analytic gradient flow is a consequence of the Łojasiewicz inequality.

THEOREM 6.4. (Łojasiewicz Inequality [9, 39, 40]) Suppose thatF : U → R is real analytic in an open set
U ⊂ Rn. Then for any pointp ∈ U , there exists a neighborhoodW of p, constantsθ ∈ [ 12 , 1) andc > 0 such
that

‖F (x)− F (p)‖θ ≤ c‖∇F (x)‖ for all x ∈ W . (6.15)

For a proof of Theorem 6.3 using this inequality, see [1, Theorem 2.2] and the notes [50]. In our case, note
that vector field in (6.11) is a polynomial system which obviously is analytic inQ. We thus have obtained the
first property of the orbitQ(t).

COROLLARY 6.5. The projected gradient flowQ(t) defined by (6.11) converges to a single point.

6.4. Projected Hessian.The optimization problem (6.4) may have many stationary points. A stationary
point in the setC may be a local minimizer, a local maximizer, or a saddle point. To fully classify the local
behavior of its stationary points, we need to rely on the second order optimality condition — the definiteness of
the projected Hessian ofF (Q) over the tangent space at the stationary point [20, 24]. For ageneral constrained
optimization problem, computing the projected Hessian is theoretically desirable but practically difficult. For
problem (6.4), nonetheless, we can compute the projected Hessian explicitly by the technique developed in our
earlier work [10].

The procedure goes as follows. First, we formally extend theprojected gradientg(Q) defined in (6.11) for
Q ∈ O(n) to the functionG : Rn×n → Rn×n for generalZ via the definition

G(Z) := Z
[
Z⊤SZ, η(Z)

]
. (6.16)

Note thatG(Z) is only a mechanical generalization ofg(Q). Second, we calculate action of the Fréchet derivative
of G atZ ∈ R

n×n on an arbitraryH ∈ R
n×n as

G′(Z).H = H
[
Z⊤SZ, η(Z)

]
+Z

[
H⊤SZ + Z⊤SH, η(Z)

]
+Z

[
Z⊤SZ, diag(H⊤SZ + Z⊤SH)

]
. (6.17)

2Without causing ambiguity, we use the same notationF for a general objective function which eventually refers tothe potential function
whose gradient is our projected gradientg(Q) in (6.11). An analytic expression of the potential functionis obtainable, but not needed in our
subsequent analysis.

11



Third, we restrict the action of (6.17) to the case whereQ ∈ O(n) is a stationary point andH ∈ TQO(n), which
gives out the information of the projected Hessian.

Specifically, we know thatQ is a stationary point of (6.4) if and only if
[
Q⊤SQ, η(Q)

]
= 0 by (6.10).

We know also thatH ∈ TQO(n) if and only if H is of the formH = QK for some skew-symmetric matrix
K ∈ Rn×n. So, upon substitution and simplification, the projected HessianG′(Q) acting onQK is given by

〈QK,G′(Q).QK〉 =
〈
QK,Q

[[
Q⊤SQ,K

]
, η(Q)

]
+Q

[
Q⊤SQ, diag

[
Q⊤SQ,K

]]〉

=
〈
K,

[[
Q⊤SQ,K

]
, η(Q)

]
+
[
Q⊤SQ, diag

[
Q⊤SQ,K

]]〉

=
〈[
Q⊤SQ,K

]
, [K, η(Q)] + diag

[
Q⊤SQ,K

]〉
. (6.18)

With the projected Hessian (6.18) in hand, the following theorem is simply the standard second-order optimality
condition from classical optimization [20, 24] applied to our problem.

LEMMA 6.6. Suppose thatQ ∈ O(n) is a stationary point for (6.4). Then a necessary condition for Q to
be a local minimizer is that

〈QK,G′(Q).QK〉 ≥ 0 for all skew-symmetric matricesK. (6.19)

If the strict inequality in (6.19) holds atQ, thenQ is guaranteed to be a local minimizer.

6.5. Asymptotically stable equilibrium. We now apply the above theory to establish the existence of a
matrix satisfying the MWHST condition. As explained earlier, we need to find an orthogonal matrixQ such that
η(Q) = 0. We argue by contradiction, namely, ifη(Q) 6= 0 for a stationary pointQ, then there is a direction
along which the value of the objective functionF can be further reduced. As such, our gradient flowQ(t) will
bypass3 this stationary point and continue to descend until a local minimizer at whichη(Q) = 0 is found.

We first make the following simple claim.
LEMMA 6.7. Suppose that the three given sets of datad, λ, andσ satisfy the MWHST condition. Suppose

also that a matrixA satisfying the Weyl-Horn condition is already found and is not skew-symmetric. LetS be
the symmetric matrix defined in (6.3). Then for anyQ ∈ O(n), η(Q) cannot be a constant diagonal unless it is
identically zero.

Proof. Suppose thatη(Q) = diag(Q⊤SQ) − diag(d) = cI for some constantc. Summing over the
diagonal entries, by the Mirsky condition, we havetrace(η(Q)) = trace(diag(Q⊤AQ)−

∑n

i=1 di) =
∑n

i=1 λi−∑n

i=1 di = 0 = nc. It follows thatc = 0.
For simplicity, we assume the generic situation that all eigenvalues ofS are distinct. The analysis for the

case of equal eigenvalues is more involved4, but the asymptotic behavior should be similar. By using thegradient
flow, we now prove our major result on the solvability.

THEOREM 6.8. Suppose that the symmetric matrixS has distinct eigenvalues. LetQ ∈ O(n) denote a
stationary point for the problem (6.4). Ifη(Q) 6= 0, then there exists a skew-symmetric matrixK such that
〈QK,G′(Q)QK〉 < 0.

Proof. Suppose thatη(Q) 6= 0. For the simplicity of describing the structure only5, we may assume without
loss of generality thatη(Q) is of the form

η(Q) = diag{η1In1
, · · · , ηkInk

}, (6.20)

whereIni
is theni × ni identity matrix fori = 1, · · · , k, andη1 > · · · > ηk. It is important to note thatk > 1

because, by Lemma 6.7,η(Q) must have more than one diagonal block.

3UnlessQ(t) happens to stay on a heteroclinic orbit, which is numerically unlikely due to the ubiquitous floating-point arithmetic errors.
4In this case, we still have[Π, V ] = 0 as in the proof of Theorem 6.8. IfΠ has repeated entries, thenV is block diagonal, but still

orthogonally similar to the diagonal matrixη(Q). From this point on, the same idea in the proof carries through with a little bit manipulation
of block forms. See our numerical example in Section 7.

5It is easier to describe the structure in block form. The proof is still valid without the block form, except that we need totake extra
efforts to describe the rows and columns corresponding to the sameηi for eachi = 1, . . . , k.
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At such a stationary pointQ, write Y := Q⊤SQ for abbreviation. By (6.10), we have the commutativity
[Y, η(Q)] = 0. It follows thatY must be of block diagonal form

Y = diag{Y11, · · · , Ykk}, (6.21)

whereYii, i = 1, · · · , k, is anni × ni symmetric matrix.
Let the spectral decomposition of the symmetric matrixS be denoted byS = U⊤ΠU . By rearranging the

columns of orthonormal eigenvectors inU⊤ if necessary, we may write the diagonal matrix of eigenvalues as
Π = diag{π1, . . . , πn} with

π1 > . . . > πn. (6.22)

Define the matrix

V := (UQ)η(Q)(UQ)⊤. (6.23)

Then[Π, V ] = 0.
On one hand, since the diagonal matrixΠ has distinct diagonal entries,V must also be a diagonal matrix,

implying that (6.23) is a spectra decomposition ofη(Q) with columns of(UQ)⊤ as the eigenvectors ofη(Q).
Write V = diag{v1, · · · , vn}. Becauseη(Q) is itself a diagonal matrix, the set{v1, · · · , vn} is composed of
exactly the diagonal entries ofη(Q).

On the other hand, because of the block structure specified in(6.20), the orthogonal matrix(UQ)⊤ must
also be block structured accordingly with sizesn1, . . . , nk, respectively. In each block the diagonal entries of
η(Q) is constant. The similarity transformation byUQ within that block therefore has no effect to (6.23). It
follows thatV = η(Q). In particular,{v1, . . . , vn} must be in the ordering as

v1 = . . . = v1
︸ ︷︷ ︸

n1 times

> v2 = . . . = v2
︸ ︷︷ ︸

k2 times

> . . . > vk = . . . vk
︸ ︷︷ ︸

nk times

. (6.24)

LetK ∈ Rn×n denote an arbitrary skew-symmetric matrix. Clearly,diag
[
Q⊤SQ,K

]
= 0. With respect to

this matrixK and at the stationary pointQ, the projected Hessian (6.18) becomes

〈QK,G′(Q).QK〉 =
〈[
Q⊤SQ,K

]
, [K, η(Q)]

〉
= −

〈

V K̃ − K̃V,ΠK̃ − K̃Π
〉

= −2
∑

i<j

(πi − πj)(vi − vj)k̃
2
ij , (6.25)

whereK̃ =
[

k̃ij

]

:= (UQ)K(UQ)⊤ remains to be skew-symmetric sinceUQ is orthogonal. It is obvious from

(6.22) and (6.24) that we may choose appropriate values ofk̃ij such that〈QK,G′(Q).QK〉 < 0.
COROLLARY 6.9. Under the assumption of Theorem 6.8, ifQ is a stationary point withη(Q) 6= 0, thenQ

is not a local minimizer for the objective functionF in (6.4).
Indeed, such a point is an unstable equilibrium for the gradient dynamics. There exists at least one tan-

gent direction, i.e., a matrixQK with a certain skew-symmetric matrixK, along whichF (Q) can be further
decreased. Therefore, the flow must continue until an isolated limit point at whichη(Q) = 0 is found. Based on
this understanding, we conclude that the convergence ofQ(t) to an asymptotically stable equilibrium pointQ at
whichη(Q) = 0 is guaranteed.

COROLLARY 6.10.A local minimum for the objective functionF in (6.4) is a global minimum.
When this limit pointQ is achieved, we use thisQ to form the corresponding matrixQ⊤AQ which now

maintain the prescribed diagonal entries, eigenvalues, and singular values. The existence of a matrix satisfying
the MWHST condition is hereby established.
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7. Numerical example. The proof used to derive the theoretical existence can actually be implemented as
a numerical scheme, albeit it might require additional effort to tune its efficiency. [26, 32]. For the time being,
our numerical example is meant only to demonstrate workability of the differential system (6.11), which is the
basis of our existence proof. To demonstrate the robustnessof the approach, we even challenge ourselves with a
case where multiple eigenvalues, near eigenvalues, and high ill-conditioning are all presented.

For convenience, we choose to use the standard routineode15s from MATLAB as our integrator. The local
error tolerance is set atAbsTol = RelTol = 10−10. Consider the8× 8 Rosser matrixR with integer elements

R =









611 196 −192 407 −8 −52 −49 29
196 899 113 −192 −71 −43 −8 −44

−192 113 899 196 61 49 8 52
407 −192 196 611 8 44 59 −23
−8 −71 61 8 411 −599 208 208

−52 −43 49 44 −599 411 208 208
−49 −8 8 59 208 208 99 −911
29 −44 52 −23 208 208 −911 99









.

The matrixR is known for its difficulty in that it has a double eigenvalue,three nearly equal eigenvalues, a zero
eigenvalue, two dominant eigenvalues of opposite sign and asmall nonzero eigenvalue. We use its diagonal
entriesd and thecomputedeigenvalues and singular values

λ=























−1.020049018429997e+03
1.020049018429997e+03
1.020000000000000e+03
1.019901951359278e+03
1.000000000000001e+03
9.999999999999998e+02
9.804864072152601e−02
4.851119506099622e−13























,σ=























1.020049018429997e+03
1.020049018429996e+03
1.020000000000000e+03
1.019901951359279e+03
1.000000000000000e+03
9.999999999999998e+02
9.804864072162672e−02
1.054603342667098e−14























as the test data, so the MWHST condition is automatically satisfied6. This example also serves to demonstrate
the case that even though the matrixS in Theorem 6.8 does have multiple eigenvalues, the gradientflow still
works.

Using the recursive algorithm proposed in [12] for the aboveλ andσ, we obtain first the following matrix
A needed in Section 6.1:

A =









1.0200e+03 0 0 0 0 0 0 0
0 −1.0200e+03 0 0 0 0 0 0
0 0 1.0200e+03 0 0 0 0 0
0 0 0 1.0199e+03 0 0 1.4668e−09 0
0 0 0 0 1.0000e+03 0 0 0
0 0 0 0 0 1.0000e+03 0 0
0 0 0 −1.5257e−05 0 0 9.8049e−02 0
0 0 0 0 0 0 1.4045e−07 0









,

where for the convenience of running text we display all numbers in only 5 digits. Note thatA is not symmetric.
DefiningS according to (6.3) and integrating our differential equation (6.11) numerically, we are able to find this
matrix

B =









611.0000 −184.6972 93.4026 −177.9840 50.0103 −66.4451 −364.8367 −230.1007
−184.6972 899.0000 84.6701 −18.4713 86.7552 −70.4723 −143.9197 −161.0699

93.4026 84.6701 899.0000 −136.2380 −152.2550 106.6705 −2.4645 191.7090
−177.9840 −18.4713 −136.2380 611.0000 −282.3676 196.8994 −260.5891 85.8062

50.0103 86.7552 −152.2550 −282.3676 411.0000 592.8768 367.9171 −228.2314
−66.4451 −70.4723 106.6705 196.8994 592.8768 411.0000 −481.0590 348.2056

−364.8367 −143.9197 −2.4645 −260.5891 367.9171 −481.0590 99.0000 459.5032
−230.1007 −161.0699 191.7090 85.8062 −228.2314 348.2056 459.5032 99.0000









.

It can been seen that the diagonal entries ofB are almost identical to those ofR. Indeed, the total difference is
within a 2-norm of2 × 10−9 in absolute error. Likewise, we can check that the eigenvalues and singular values
of B agree withλ andσ within the tolerance10−9. However, note that the off-diagonal entries ofB are very
different from those of the originalR, indicating that the inverse problem has multiple solutions.

6Strictly speaking, the MWHST condition is satisfied only up to the machine precision. See, for example, the smallest computed
eigenvalue is not exactly zero.
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8. Conclusion. We studied the theoretical problem of whether a matrix with prescribed main diagonal
entries, eigenvalues, and singular values exists when these data satisfy the equalities and inequalities entailed
by the Mirsky, Weyl-Horn, and Sing-Thompson theorems simultaneously. We employ an argument involving
an array of tools to establish the existence of such a matrix whenn ≥ 3. Extra conditions are needed for the
casen = 2. The existence theory is new in the field. The dynamical system approach might be the first tool for
constructing such a matrix.

REFERENCES

[1] P.-A. ABSIL, R. MAHONY, AND B. ANDREWS, Convergence of the iterates of descent methods for analyticcost functions, SIAM J.
Optim., 16 (2005), pp. 531–547.

[2] T. A NDO, Majorization, doubly stochastic matrices, and comparisonof eigenvalues, Linear Algebra Appl., 118 (1989), pp. 163–248.
[3] A. L. A NDREW, Some recent developments in inverse eigenvalue problems, Computational Techniques and Applications: CTAC93,

ed. D. Stewart, H. Gardner and D. Singleton, (1994), pp. 94–102.
[4] R. W. BROCKETT, Using feedback to improve system identification, in Control of uncertain systems: modelling, approximation, and

design, vol. 329 of Lect. Notes Control Inf. Sci., Springer,Berlin, 2006, pp. 45–65.
[5] E. A. CARLEN AND E. H. LIEB, Short proofs of theorems of Mirsky and Horn on diagonals and eigenvalues of matrices, Electron. J.

Linear Algebra, 18 (2009), pp. 438–441.
[6] K. CHADAN , D. COLTON, L. PÄIVÄRINTA , AND W. RUNDELL, An introduction to inverse scattering and inverse spectralproblems,

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.
[7] N. N. CHAN AND K. H. L I, Diagonal elements and eigenvalues of a real symmetric matrix, J. Math. Anal. Appl., 91 (1983), pp. 562–

566. See alsoAlgorithm 115: A FORTRAN subroutine for finding a real symmetric matrix with prescribed diagonal elements
and eigenvaluesin Algorithms Supplement, The Computer Journal (1983) 26(2): 184-186.

[8] R. H. CHAN , Z.-J. BAI , AND B. MORINI, On the convergence rate of a Newton-like method for inverse eigenvalue and inverse
singular value problems, Int. J. Appl. Math., 13 (2003), pp. 59–69. OR and models (Hong Kong, 2003).

[9] R. CHILL , On the Łojasiewicz-Simon gradient inequality, J. Funct. Anal., 201 (2003), pp. 572–601.
[10] M. T. CHU, Solving additive inverse eigenvalue problems for symmetric matrices by the homotopy method, IMA J. Numer. Anal., 10

(1990), pp. 331–342.
[11] , On constructing matrices with prescribed singular values and diagonal elements, Linear Algebra Appl., 288 (1999), pp. 11–

22.
[12] , A fast recursive algorithm for constructing matrices with prescribed eigenvalues and singular values, SIAM J. Numer. Anal.,

37 (2000), pp. 1004–1020 (electronic).
[13] M. T. CHU AND M. A. ERBRECHT, Symmetric Toeplitz matrices with two prescribed eigenpairs, SIAM J. Matrix Anal. Appl., 15

(1994), pp. 623–635.
[14] M. T. CHU AND G. H. GOLUB, Inverse eigenvalue problems: theory, algorithms, and applications, Numerical Mathematics and

Scientific Computation, Oxford University Press, New York,2005.
[15] M. T. CHU AND J. W. WRIGHT, The education testing problem revisited, IMA J. Numer. Anal., 15 (1995), pp. 141–160.
[16] P. COTAE AND M. AGUIRRE, On the construction of the unit tight frames in code divisionmultiple access systems under total squared

correlation criterion, {AEU} - International Journal of Electronics and Communications, 60 (2006), pp. 724 – 734.
[17] P. I. DAVIES AND N. J. HIGHAM , Numerically stable generation of correlation matrices andtheir factors, BIT, 40 (2000), pp. 640–

651.
[18] I. S. DHILLON , R. W. HEATH, JR., M. A. SUSTIK, AND J. A. TROPP, Generalized finite algorithms for constructing Hermitian

matrices with prescribed diagonal and spectrum, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 61–71 (electronic).
[19] I. ELISHAKOFF, A selective review of direct, semi-inverse and inverse eigenvalue problems for structures described by differential

equations with variable coefficients, Arch. Comput. Methods Engrg., 7 (2000), pp. 451–526.
[20] R. FLETCHER, Practical methods of optimization, Wiley-Interscience [John Wiley & Sons], New York, second ed., 2001.
[21] G. FREILING AND V. Y URKO, Inverse Sturm-Liouville problems and their applications, Nova Science Publishers, Inc., Huntington,

NY, 2001.
[22] W. FULTON, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. (N.S.), 37 (2000),

pp. 209–249.
[23] I. M. GEL′FAND AND B. M. LEVITAN , On the determination of a differential equation from its spectral function, Amer. Math. Soc.

Transl. (2), 1 (1955), pp. 253–304.
[24] P. E. GILL , W. MURRAY, AND M. H. WRIGHT,Practical optimization, Academic Press Inc. [Harcourt Brace Jovanovich Publishers],

London, 1981.
[25] G. M. L. GLADWELL , Inverse problems in vibration, vol. 119 of Solid Mechanics and its Applications, Kluwer Academic Publishers,

Dordrecht, second ed., 2004.
[26] E. HAIRER, C. LUBICH, AND G. WANNER, Geometric numerical integration, vol. 31 of Springer Series in Computational Math-

ematics, Springer, Heidelberg, 2010. Structure-preserving algorithms for ordinary differential equations, Reprint of the second
(2006) edition.

[27] O. H. HALD , On discrete and numerical inverse Sturm-Liouville problems, PhD thesis, New York University, 1972.
[28] T. HIROSHIMA, Majorization criterion for distillability of a bipartite quantum state, Phys. Rev. Lett., 91 (2003), p. 057902.
[29] A. HORN, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math., 76 (1954), pp. 620–630.

15



[30] R. HORODECKI, P. HORODECKI, M. HORODECKI, AND K. HORODECKI, Quantum entanglement, Rev. Mod. Phys., 81 (2009),
pp. 865–942.

[31] K. D. IKRAMOV AND V. N. CHUGUNOV, Inverse matrix eigenvalue problems, J. Math. Sci. (New York), 98 (2000), pp. 51–136.
Algebra, 9.

[32] A. I SERLES, H. Z. MUNTHE-KAAS, S. P. NØRSETT, AND A. ZANNA , Lie-group methods, in Acta numerica, 2000, vol. 9 of Acta
Numer., Cambridge Univ. Press, Cambridge, 2000, pp. 215–365.

[33] M. JABBOUR, Majorization relations in quantum information theory, master’s thesis, Ecole Polytechnique de Bruxelles, 2013.
[34] E. JORSWIECK AND H. BOCHE, Majorization and Matrix-monotone Functions in Wireless Communications, Found. Trends Com-

mun. Inf. Theory, Now Publishers Inc., 2007.
[35] S. I. KABANIKHIN , Inverse and ill-posed problems, vol. 55 of Inverse and Ill-posed Problems Series, Walter deGruyter GmbH & Co.

KG, Berlin, 2012. Theory and applications.
[36] P. KOSOWSKI AND A. SMOKTUNOWICZ, On constructing unit triangular matrices with prescribed singular values, Computing, 64

(2000), pp. 279–285.
[37] B. M. LEVITAN , Inverse Sturm-Liouville problems, VSP, Zeist, 1987. Translated from the Russian by O. Efimov.
[38] C.-K. LI AND Y.-T. POON, Sum of Hermitian matrices with given eigenvalues: inertia,rank, and multiple eigenvalues, Canad. J.

Math., 62 (2010), pp. 109–132.
[39] S. ŁOJASIEWICZ, Une propriété topologique des sous-ensembles analytiquesréels, in Les Équations aux Dérivées Partielles (Paris,

1962), Éditions du Centre National de la Recherche Scientifique, Paris, 1963, pp. 87–89.
[40] S. ŁOJASIEWICZ AND M.-A. ZURRO, On the gradient inequality, Bull. Polish Acad. Sci. Math., 47 (1999), pp. 143–145.
[41] D. LONDON AND H. M INC, Eigenvalues of matrices with prescribed entries, Proc. Amer. Math. Soc., 34 (1972), pp. 8–14.
[42] W. MA AND Z.-J. BAI , A regularized directional derivative-based Newton methodfor inverse singular value problems, Inverse

Problems, 28 (2012), pp. 125001, 24.
[43] G. MARSAGLIA AND I. OLKIN , Generating correlation matrices, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 470–475.
[44] A. W. MARSHALL AND I. OLKIN , Inequalities: theory of majorization and its applications, vol. 143 of Mathematics in Science and

Engineering, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1979.
[45] L. M IRSKY, Matrices with prescribed characteristic roots and diagonal elements, J. London Math. Soc., 33 (1958), pp. 14–21.
[46] M. A. N IELSEN, An introduction to majorization and its applications to quantum mechanics. Lecture notes, 2002. available at

http://michaelnielsen.org/blog/talks/2002/maj/book.ps.
[47] M. A. N IELSEN AND I. L. CHUANG, Quantum computation and quantum information, Cambridge University Press, Cambridge,

2000.
[48] M. R. OSBORNE, On the inverse eigenvalue problem for matrices and related problems for difference and differential equations, in

Conference on Applications of Numerical Analysis (Univ. Dundee, Dundee, 1971), Springer, Berlin, 1971, pp. 155–168. Lecture
Notes in Math., Vol. 228.

[49] J. PAINE, A numerical method for the inverse Sturm-Liouville problem, SIAM J. Sci. Stat. Comput., 5 (1984), pp. 149–156.
[50] M. PIERRE, Quelques applications de l’inégalit´e de Lojasiewicz à desdiscrétisations d’EDP. SMAI, 2011. available athttp:

//smai.emath.fr/smai2011/slides/mpierre/Slides.pdf.
[51] J. D. PRYCE, Numerical solution of Sturm-Liouville problems, Monographs on Numerical Analysis, The Clarendon Press, Oxford

University Press, New York, 1993. Oxford Science Publications.
[52] R. RAO AND S. DIANAT , Basics of code division multiple access (CDMA), Bellingham, Wash.: SPIE Press, 2005.
[53] V. RUSSO, Majorization criterion for undistillable quantum states. Lecture notes, 2013. available athttps://cs.uwaterloo.

ca/~vrusso/projects/Majorization_Notes.pdf.
[54] F. Y. SING, Some results on matrices with prescribed diagonal elementsand singular values, Canad. Math. Bull., 19 (1976), pp. 89–

92.
[55] G. W. STEWART, On the early history of the singular value decomposition, SIAM Rev., 35 (1993), pp. 551–566.
[56] R. C. THOMPSON, Singular values, diagonal elements, and convexity, SIAM J. Appl. Math., 32 (1977), pp. 39–63.
[57] J. A. TROPP, I. S. DHILLON , AND R. W. HEATH, Finite-step algorithms for constructing optimal cdma signature sequences, IEEE

Transactions on Information Theory, 50 (2004), pp. 2916–2921.
[58] S.-W. VONG, Z.-J. BAI , AND X.-Q. JIN, An Ulm-like method for inverse singular value problems, SIAM J. Matrix Anal. Appl., 32

(2011), pp. 412–429.
[59] H. WEYL, Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. U. S. A., 35 (1949),

pp. 408–411.
[60] S.-J. WU AND M. M. L IN, Numerical methods for solving nonnegative inverse singular value problems with prescribed structure,

Inverse Problems, 30 (2014), pp. 055008, 14.
[61] S. YUAN , A. L IAO , AND G. YAO, Parameterized inverse singular value problem for anti-bisymmetric matrices, Numer. Algorithms,

60 (2012), pp. 501–522.
[62] H. ZHA AND Z. ZHANG, A note on constructing a symmetric matrix with specified diagonal entries and eigenvalues, BIT, 35 (1995),

pp. 448–452.
[63] L. A. ZHORNITSKAYA AND V. S. SEROV, Inverse eigenvalue problems for a singular Sturm-Liouville operator on[0, 1], Inverse

Problems, 10 (1994), pp. 975–987.

16


