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Abstract. Many natural phenomena can be modeled by a second-order dynamical system M ÿ+Cẏ+Ky = f(t),
where y(t) stands for an appropriate state variable and M , C, K are time-invariant, real and symmetric matrices.
In contrast to the classical inverse vibration problem where a model is to be determined from natural frequencies
corresponding to various boundary conditions, the inverse mode problem concerns the reconstruction of the coefficient
matrices (M, C, K) from a prescribed or observed subset of natural modes. This paper set forth a mathematical
framework for the inverse mode problem and resolves some open questions raised in the literature. In particular, it
shows that, given merely the desirable structure of the spectrum, namely, given the cardinalities of real or complex
eigenvalues but not the actual eigenvalues, the set of eigenvectors can be completed via solving an under-determined
nonlinear system of equations. This completion suffices to construct symmetric coefficient matrices (M, C, K) whereas
the underlying system can have arbitrary eigenvalues. Generic conditions under which the real symmetric quadratic
inverse mode problem is solvable are discussed. Applications to important tasks such as updating models without
spill-over or constructing models with positive semi-definite coefficient matrices are discussed.
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1. Introduction. It is well known that the dynamical behavior of the differential system

M ÿ + Cẏ + Ky = f(t), (1.1)

arising from many important applications, is directly related to the eigenpairs (λ,u) associated with
the quadratic eigenvalue problem (QEP)

Q(λ)u = 0, (1.2)

where Q(λ) denotes the quadratic matrix polynomial

Q(λ) := Q(λ;M, C, K) = λ2M + λC + K. (1.3)

The process of retrieving and analyzing the spectral information (λ,u) has received considerable
attention because of its significant consequences in various disciplines of sciences and engineering
including electrical oscillation, applied mechanics, vibro-acoustics, fluid mechanics, and signal pro-
cessing [36]. Typically, the dynamical behavior of a physical system depends on a prior known
physical parameters which are embedded in the coefficient matrices M , C and K. Solving the QEP
is considered as a forward problem. On the other hand, there are situations where we wish to con-
firm, decide, or validate the parameters of the system through its expected or observed behavior.
This way of determining physical parameters from complete or partial eigeninformation constitutes
the notion of quadratic inverse eigenvalue problems (QIEP). This paper is concerned with a special
class of QIEPs.
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There are various ways to characterize the specifics of QIEPs. To set forth the discussion in the
sequel, we define a general QIEP as follows:

(QIEP) Construct a nontrivial quadratic matrix polynomial Q(λ) = λ2M + λC + K so
that its matrix coefficients (M,C, K) are of a specified structure and Q(λ) has a prescribed
subset of either eigenvalues or eigenvectors, or both, as part of its spectral data.

The two key ingredients in formulating a QIEP are the partially available eigeninformation and
the desirable structure of the matrix coefficients. The former is due to the fact that it is impossible
to retrieve the whole and reliable spectral information for a large or complicated physical system.
For example, quantities associated with high frequency terms are generally inclined to measurement
errors owing to the finite bandwidth of measuring devices [1, 12, 13, 14, 25]. The latter is due to
the reality that the underlying physical systems often impose inherent structures such as the inner-
connectivity among elements within the physical configuration or the mandatory nonnegativity of
physical parameters.

Research interest in the inverse eigenvalue problems (IEP) has been quite extensive in recent
years, with applications ranging from theoretical Sturm-Liouville problems to applied mechanics and
discourses from mathematical abstraction to engineering implementation. Some general discussions
on IEPs can be found in the review treatises [4, 5, 14, 19]. Most of the studies in the literature thus
far are geared toward linear problems, even though the quadratic problems are perhaps the most
important in practice and challenging in theory. A partial list illustrating the kaleidoscopic research
activities for QIEPs include the work by Ram and Elhay [32] where a damped oscillatory system with
symmetric tridiagonal coefficient matrices is determined from two sets of prescribed eigenvalues, by
Starek and Inman [35] for nonproportional underdamped systems, by Lancaster and Prells [29] for a
solution with positive definite M (denoted henceforth by M Â 0), positive semi-definite C (denoted
by C º 0), and K Â 0 from complete spectral information about eigenvalues and eigenvectors, by
Lancaster [27] where all eigenvalues and only partial eigenvectors corresponding to real eigenvalues
are given, by Chu, Kuo and Lin [6] for a special solution with M Â 0 and K º 0 from partially
prescribed eigenpairs, and by Kuo, Lin and Xu [26] for general solutions M Â 0. See also [9, 10, 31]
from the feedback control aspect to reassign the eigenstructure. Despite the numerous endeavors,
many QIEP questions remain open [6].

Our main thrust in this paper is the inverse mode problem (IMP), that is, under the mild
structural constraint that all coefficient matrices (M,C, K) be real-valued and symmetric, solve
the QIEP with a prescribed subset of eigenvectors. Although the formulation under our current
consideration appears admittedly at the low end of difficulty and in the simpler discrete form, the
notion of an IMP perhaps can be best exemplified by this counter-analogy — In the famous paper
entitled “Can one hear the shape of a drum?” [24], the question was, “If one has perfect pitch (to
hear the natural frequencies), could one find the shape of a drum?” — The IMP asks, “Can one see
the sound of a string?”, that is, “If one has perfect vision (to see the natural modes), could one tell
the tone of the string?”

The IMP is yet another special type of QIEPs. First considered by Gladwell [17] for the finite
difference model of a vibrating rod, it was shown that, apart from a scale factor, the discrete system
could be constructed uniquely from two eigenvalues and corresponding eigenvectors. Other related
works on IMPs include the reconstruction of the unique, up to a scale factor, cross-sectional area
of an axially vibrating non-uniform rod by Ram and Elishakoff [33] from one eigenvector, a general
discussion of a simple chain-like finite element models by Gladwell [18], which naturally involves
tridiagonal structure, and a numerical procedure by Ram and Gladwell [34] from a single eigenvalue,
two eigenvectors and the total mass of the rod. This paper offers a mathematical framework for the
general IMPs subject to the mild constraint of coefficients being merely real and symmetric.

Of particular interest in our results is that, given simply the desirable cardinalities of real or
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complex eigenvalues but not the actual eigenvalues, we solve the IMP by first completing the set of
eigenvectors via resolving a certain under-determined nonlinear system of equations. The completion
of eigenvectors alone, which could be accomplished by numerical optimization, suffices to affirm the
existence of real and symmetric coefficient matrices (M,C, K) for the IMP whereas the unspecified
eigenvalues can be arbitrary. As an application, the challenging yet important task of updating an
existent quadratic model without spill-over can easily be addressed effectually by our theory.

Only if additional structures are imposed upon (M, C,K), the information of eigenvalues be-
comes essential. For example, if it is further desirable that M,K Â 0 and C º 0, then the eigenvalues
must play a critical role in determining whether the completed set of eigenvectors is feasible at all.
We have numerical evidence showing that the eigenvectors for the IMP with symmetric and positive
definite coefficient matrices cannot be arbitrary.

It is important to point out that our approach in this paper differs from those proposed in the
literature in two aspects. First, we exploit the fact that eigenvectors alone are sufficient to address
the solvability of real and symmetric IMPs. In this way, the role of eigenvectors is separated from
that of eigenvalues in the analysis of QIEPs. Secondly, we exploit the importance of a special block
diagonal matrix H whose structure depends only upon the numbers of real and complex eigenvalues.
Had all eigenvectors been known, then columns in the adjoint of the eigenvector matrix would be H-
orthogonal1 to themselves (see (2.5)). In this case, this H matrix may be normalized to a canonical
form [8, 21]. In an IMP, however, only partial eigenvectors are known, implying that the “rows”
of the eigenvector matrix are short of their full length. To remedy this shortage, we insist that
part of H must be treated as unknown. We employ the homogeneous nonlinear relationship of
H-orthogonality to complete the unprescribed eigenvectors. This approach not only simplifies the
numerical procedure for solving a symmetric QIEP [2, 26], but also more importantly manifests
the entire eigenstructure. This way of thinking to “relax” some designated entries of the matrix
H as free variables unifies different approaches in the literature and resolves some difficult issues
encountered in [8] and [27].

This paper is organized as follows. We begin in Section 2 with some background information.
Two critical facts relating (M,C, K) to the notion of standard pair [21] in a way analogous to the
spectral decomposition [8] serve as the foundation of our theory. For QIEP applications, we cannot
alter the prescribed eigeninformation. Our focus therefore turns to the special standard pair part
of which is composed directly of the given eigenvalues and eigenvectors. In Section 3 we study the
structure of the matrix H mentioned above. The key point in our approach is that, unlike (and
not allowed to make) the typical assumption for convenience in the literature that H is a constant
matrix in its canonical form, the entries of H are part of the unknowns in the IMP formulation.
In this setting, we show a solvability condition in terms of only eigenvectors. In Section 4, we
exploit a homogeneous, under-determined, nonlinear system of equations which provides the basis
of eigenvector completion. An algorithm based on the nonlinear least squares technique is proposed
in Section 5 as a numerical means to accomplish eigenvector completion. An application of our
theory to the model updating problem with no spill-over phenomenon is discussed in Section 6.
This application alone should be of significance by itself. For IMPs, very little information about
eigenvalues is needed, except for the cardinalities of their being real or complex numbers. We
demonstrate the role of eigenvalues for the case when (M, C, K) are required further to be positive
semi-definite in Section 7.

2. Background. In this section, we briefly review a fundamental relationship between the real
symmetric coefficient matrices (M, C,K) and the spectral data of the associated quadratic matrix
polynomial Q(λ). We want to bring forth the fact that such a relationship depends on a specially
formulated matrix H characterized by the corresponding spectral data.

1A column vector x is H-orthogonal to a column vector y if and only if x∗Hy = 0.
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In order to facilitate the distinction among matrices with different attributes, we adopt the
following notation system in the subsequent discussion.

• Roman capital letters such as M or H denote real-valued matrices of general sizes.
• German capital letters such as X or J denote complex-values matrices of general sizes.
• Script capital letters such as B or H denote some specially defined 2n× 2n matrices.
• Calligraphic capital letters such as X or J denote those matrices associated specifically to

the Jordan canonical decomposition of C .
Given a quadratic matrix polynomial Q(λ) with nonsingular leading coefficient matrix M , let

B and C in R2n×2n be defined by

B :=
[

C M
M 0

]
, C :=

[
0 I

−M−1K −M−1C

]
. (2.1)

The notion of a standard pair introduced in the GLR theory [20, 21] is an elegant way to encapsulate
the general eigenstructure of Q(λ).

Definition 2.1. A pair of matrices (X, J) ∈ Cn×2n × C2n×2n is called a standard pair for the
quadratic matrix polynomial Q(λ) if and only if the pair (X, J) satisfies the equation

MXJ2 + CXJ + KX = 0 (2.2)

and the square matrix
[

X
XJ

]
∈ C2n×2n is nonsingular.

Associated with a standard pair (X, J) for a given real symmetric quadratic matrix polynomial
Q(λ), define

H (X, J) :=
[

X
XJ

]∗
B

[
X
XJ

]
. (2.3)

This matrix H (X, J) ∈ C2n×2n plays a central role in our analysis from two complementary aspects.
First, the matrix coefficients (M, C, K) of the quadratic pencil Q(λ) enjoys a spectral decomposition
in the following sense [8, 20].

Theorem 2.2. Suppose (X, J) is a standard pair for the quadratic matrix polynomial Q(λ) and
H = H (X, J). Then





M = (XJH −1X∗)−1,

C = −MXJ2H −1X∗M,

K = −MXJ3H −1X∗M + CM−1C.

(2.4)

Secondly, the existence of a matrix H ∈ C2n×2n qualifies a pair of matrices (X, J) as a standard
pair for some real symmetric quadratic matrix polynomial if the following criteria are met [8].

Theorem 2.3. Let (X, J) ∈ Cn×2n × C2n×2n be some given matrices. If there exists a nonsin-
gular matrix H ∈ C2n×2n such that XJH −1X∗ is nonsingular and H satisfies the three equalities





XH −1X∗ = 0,
H J = (H J)∗,
H = H ∗,

(2.5)

then (X, J) is a standard pair for the real symmetric quadratic matrix polynomial Q(λ) whose matrix
coefficients (M,C, K) are defined according to (2.4). Moreover, the relationship

C

[
X
XJ

]
=

[
X
XJ

]
J. (2.6)
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holds and the nonsingular matrix H is identical to the matrix H (X, J) defined via (2.3).
The relationship (2.6) strongly suggests one special standard pair which, by its explicit reference

to eigenvalues and eigenvectors, is particularly useful for studying the inverse problem. Let the
Jordan canonical decomposition of C be denoted by

C = QJQ−1, (2.7)

where J ∈ C2n×2n stands for the a block diagonal matrix consisting of Jordan blocks associated
with eigenvalues of C and columns of Q ∈ C2n×2n are comprised of the corresponding generalized
eigenvectors. Evenly partition the matrix Q across rows into two blocks of size n× 2n,

Q :=
[ X
Z

]
.

Rewriting (2.7) as
[

0 I

−M−1K −M−1C

] [ X
Z

]
=

[ X
Z

]
J , (2.8)

we find the two relationships

Z = XJ , (2.9)
MXJ 2 + CXJ + KX = 0, (2.10)

justifying that the pair (X ,J ) is a standard pair for the quadratic matrix polynomial Q(λ). It
follows that the corresponding

H := H (X ,J ) = Q∗BQ (2.11)

must satisfy the relationships XJH−1X ∗ = M−1, XH−1X ∗ = 0, H = H∗, and HJ = (HJ )∗, from
which the structure of H can be characterized.

3. Structure of H matrix. For simplicity, we shall assume henceforth that all eigenvalues of
Q(λ) are simple. The congruence relationship

[
In − 1

2CM−1

0 In

]
B

[
In − 1

2CM−1

0 In

]T

=
[

0 M
M 0

]
(3.1)

asserts that the matrix B must have equal numbers of positive and negative eigenvalues. Likewise,
the matrix H (X, J) in general and H in particular should also have equal number of positive and
negative eigenvalues. Suppose that the Jordan matrix J along with the corresponding matrix X of
eigenvectors are expressed as

{
J = diag{λ1, λ1, λ2, λ2, . . . , λt, λt, λ2t+1, . . . , λ2n},
X = [x1,x1,x2,x2, . . . ,xt,xt,x2t+1, . . . ,x2n],

(3.2)

where t is the number of distinct complex-conjugate pairs of eigenvalues. Rearranging the ordering
of real eigenvalues in J if necessary, from the facts that H = H∗ and HJ = J ∗H, we see that H
must be a block diagonal of the form [15, Chapter VIII, Theorem 1]

H = diag
{[

0 h1

h1 0

]
, . . . ,

[
0 ht

ht 0

]
, h2t+1, . . . h2t+r,−h2t+r+1, . . . ,−h2n

}
(3.3)

5



where r := n − t; for j = 1, . . . , t, hj is a complex number; and for j = 2t + 1, . . . , 2n, hj is a
positive real number. The values of hi’s depend on the pair (X ,J ). Those real eigenvalues in J
whose corresponding diagonal entries in H are positive (or negative) are said to have a positive (or
negative) sign characteristic2.

We can convert the standard pair (X ,J ) into a real-valued standard pair (X, J) by defining
{

J := RJR∗ = diag{λ[2]
1 , . . . , λ

[2]
t , λ2t+1, . . . , λ2n} ∈ R2n×2n,

X := XR∗ = [
√

2x1R,
√

2x1I , . . . ,
√

2xtR,
√

2xtI ,x2t+1, . . . ,x2n] ∈ Rn×2n,
(3.4)

with

R := diag





1√
2

[
1 1
i −i

]
, . . . ,

1√
2

[
1 1
i −i

]

︸ ︷︷ ︸
t copies

, I2r





, (3.5)

where i =
√−1 and for j = 1, . . . , t,





λ
[2]
j =

[
αj βj

−βj αj

]
∈ R2×2, if λj = αj + iβj ,

xj = xjR + ixjI .

The corresponding H = H (X, J) should have a similar block structure as in H,

H = RHR∗ = diag
{[

a1 b1

b1 −a1

]
, . . . ,

[
at bt

bt −at

]
, h2t+1, . . . h2t+r,−h2t+r+1, . . . ,−h2n

}
(3.6)

with aj , bj ∈ R.
In the forward problem, with appropriate scaling and rotations of the eigenvectors, the following

canonical form is true even for the case of semi-simple eigenvalues [8, Corollary 3.5].
Theorem 3.1. Suppose that all eigenvalues of a given real symmetric quadratic pencil Q(λ) are

semi-simple but not necessarily distinct. Then there exists a real standard pair (X, J) such that




[
X
XJ

]> [
C M
M 0

] [
X
XJ

]
= Γ := diag

{[
1 0
0 −1

]
, . . . ,

[
1 0
0 −1

]}
,

[
X
XJ

]> [ −K 0
0 M

] [
X
XJ

]
= ΓJ.

(3.7)

The matrix Γ is precisely the so called sip (standard involutory permutation) matrix repeatedly
referred by Lancaster [27, 29]. In the IMPs, however, we only have a partial list of eigenvectors in
hand. There is not enough information to know how these given eigenvectors should be scaled or
rotated. We have to use the eigenvector information as is given, which may not give rise to the
sip form as in (3.7). The corresponding blocks in H should be considered as part of the unknowns
to be determined. This thinking is fundamentally different from those approaches considered in
[27, 29] where the sip form is assumed and thus significantly delimits the solvability because some
rank conditions may not be satisfied.

2More details about the concept of sign characteristics can be found in the book [21] and their usages for QIEPs
in the two recent articles [27, 29]. We only need the fact that real eigenvalues of J are divided into two mutually
exclusive groups in our discussion.
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4. Eigenvector completion. Theorem 2.2 provides a basis of solving a QIEP in terms of a
standard pair (X, J). Nonetheless, we do not know (X,J) in its entirety. Theorem 2.3 gives us
a clue that maybe the partial eigeninformation can be extended into a standard pair, so long as
a nonsingular matrix H satisfying (2.5) can be found. To solve an IMP, our strategy is to first
determine the structure of H = H (X, J) from the (guessed or assigned) structure, but not values,
of J . This would automatically satisfy the last conditions in (2.5). We then use the equation

XH−1XT = 0. (4.1)

to build H and to complete X simultaneously. The values of J , which can be assigned almost
arbitrarily, are needed only to ensure the invertibility of the matrix XJH−1X>.

Suppose that a prescribed subset of k eigenpairs, closed under complex conjugation, has been
given. To fix the idea, suppose that the desirable number t of complex conjugate pairs of eigenvalues
or, equivalently, the desirable number r = n − t of real eigenvalues with positive (or negative) sign
characteristic in the constructed quadratic pencil is also given3. For convenience, we partition the
columns of X as

X = [ C0, C1︸ ︷︷ ︸
2t columns

, P0, P1︸ ︷︷ ︸
r columns

, N0, N1︸ ︷︷ ︸
r columns

] (4.2)

where [C0, P0, N0] is a submatrix of size n×k whose columns represent the k prescribed eigenvectors.
Assume further that the matrices C0, P0, and N0 are of sizes n×2kC , n×kP , and n×kN , respectively,
with k = 2kC + kP + kN . That is, among the prescribed eigeninformation there are 2kC complex
eigenvalues closed under conjugation, kP real eigenpairs with positive characteristics, and another
kN real eigenpairs with negative characteristics4. Columns of [C1, P1, N1] denote the unknown
eigenvectors that are to be completed.

It is easy to see that H−1 has exactly the same structure as H. We might be as well working
on H−1 directly. Partition the inverse of the matrix H in (3.6) into blocks of sizes compatible with
those in (4.2),

H−1 = diag
{
HC

0 ,HC
1 ,HP

0 ,HP
1 ,−HN

0 ,−HN
1

}
, (4.3)

where each block has its own structure, e.g., HC
0 is a kC × kC block diagonal matrix consisting of

2×2 submatrices, HP
0 and HN

0 respectively are kP ×kP and kN×kN diagonal matrices with positive
diagonal entries, and so on. We rewrite (4.1) as

C0H
C
0 C>0 + P0H

P
0 P>0 −N0H

N
0 N>

0 = N1H
N
1 N>

1 − P1H
P
1 P>1 − C1H

C
1 C>1 . (4.4)

Taking into account the fact that HP
1 and HN

1 are diagonal matrices with positive entries and
P1 and N1 are indeterminate, we can rename the products P1(HP

1 )1/2 and N1(HN
1 )1/2 as the new

variables P1 and N1, respectively. Likewise, by the identity
[

a b
b −a

]
= U

[
1 0
0 −1

]
U>,

with

U :=

[
a +

√
a2 + b2 −b

b a +
√

a2 + b2

] 


1√
b2+(a+

√
a2+b2)2

0

0 1√
b2+(a+

√
a2+b2)2




︸ ︷︷ ︸
orthogonal

4
√

a2 + b2

︸ ︷︷ ︸
scaling

,

3This pair of nonnegative integers (t, r) is what we refer to as the structure of J .
4In practice, it appears that the choice of kP and kN is immaterial for IMPs so long as kP + kN = k − 2kC . See

the discussion in Section 5.
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we can properly rotate and scale the columns of C1 in (4.4) and, after renaming the new variable
the same as C1, reduce the system (4.4) to

Ω := C0H
C
0 C>0 + P0H

P
0 P>0 −N0H

N
0 N>

0 + C1ΥC>1 + P1P
>
1 −N1N

>
1 = 0, (4.5)

where, for convenience, we have denoted the constant matrix

Υ := diag





»
1 0
0 −1

–
, . . . ,

»
1 0
0 −1

–

︸ ︷︷ ︸
t− kC copies





.

It is important to note that this reduction process cannot take place at the left hand side of (4.4)
because [C0, P0, N0] are fixed matrices which cannot assimilate the unknown scalings or rotations.
The eigenvector completion problem amounts to finding a real matrix [C1, P1, N1] of size n×(2n−k),
2kC real numbers for the block diagonal matrix HC

0 , and kP + kN positive numbers for the diagonal
matrices HP

0 and HN
0 so that the equation (4.5) is satisfied. Totally there are n(2n−k)+k unknowns

in n(n+1)
2 equations. If

k <
n(3n− 1)
2(n− 1)

, (4.6)

then the system (4.5) is under-determined. Generically, the algebraic solutions to (4.5) form a
nontrivial smooth manifold [23], but for our IMPs we also need positive HP

0 and HN
0 from this

solution manifold. The following result can easily verified rom (4.6).
Theorem 4.1. The maximal allowable number of prescribed eigenvectors so that the system

(4.5) is generically solvable is given by

kmax =

{
3` + 1, if n = 2`,

3` + 2, if n = 2` + 1.
(4.7)

It is interesting to note that exactly the same condition (4.7) has been proved in [3, Theorem 3.5]
by using an entirely different approach. That is, suppose we are given k eigenpairs {(σj ,yj)}k

j=1

which are closed under complex conjugation. Convert this eigenpair information into real-valued
matrices (Σ, Y ) in the same way as we did in (3.4). Then the coefficient matrices (M, C,K) for the
QIEP with eigenpair (Σ, Y ) are solutions to the linear system

[M, C, K]




ΣY 2

ΣY
Σ


 = 0, (4.8)

which is nontrivial if k ≤ kmax. The collection of all possible solutions (M, C,K) to the QIEP forms a
linear subspace, but no information about the remaining eigenstructure in the reconstructed matrix
polynomial is known. In contrast, our current approach tackles the QIEP by first assigning the
eigenvalues structure in J and then solving the nonlinear system (4.5) for the remaining eigenvectors
[C1, P1, N1]. Once the partial eigenvectors Y is fully extended to a complete set X of eigenvectors, the
remaining eigenvalues can be almost arbitrarily assigned and the coefficient matrices (M,C, K) are
obtainable from the formula (2.4). Observe that the collection of all possible remaining eigenvectors
to the QIEP form a nonlinear algebraic variety characterized by the polynomial system (4.5).

An example might be more informative to demonstrate our point.
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Example 1. Consider the simple case when n = 2 and k = 2kC = 2. Suppose

C0 =

[
0 − 1√

2
1√
2

0

]

is given. There are only two ways to complete the eigenstructure. Assuming first that the remaining

two eigenvectors are real, that is, r = 1, then we need to determine HC
0 =

[
a1 b1

b1 −a1

]
, P1 =

[p1, p2]> and N1 = [n1, n2]> from the equation

C0H
C
0 C>0 + P1P

>
1 −N1N

>
1 =

[
− 1

2a1 + p2
1 − n2

1 − 1
2b1 + p1p2 − n1n2

− 1
2b1 + p1p2 − n1n2

1
2a1 + p2

2 − n2
2

]
=

[
0 0
0 0

]
.

This amounts to the under-determined system of three equations in six variables




p2
1 − n2

1 = 1
2a1,

p2
2 − n2

2 = − 1
2a1,

p1p2 − n1n2 = 1
2b1,

whose solution can be expressed as

P1 =




√
(n1+n2)2+b1±

√
(n1−n2)2−b1

2

√
(n1+n2)2+b1∓

√
(n1−n2)2−b1

2


 or




−
√

(n1+n2)2+b1±
√

(n1−n2)2−b1
2

−
√

(n1+n2)2+b1∓
√

(n1−n2)2−b1
2


 ,

with n1, n2 and b1 6= 0 as free variables. Similarly, assuming the remaining two eigenvectors are

complex, that is, r = 0, then we need to determine HC
0 =

[
a1 b1

b1 −a1

]
and C1 =

[
c11 c12

c21 c22

]

from the equation

C0H
C
0 C>0 + C1

[
1 0
0 −1

]
C>1 =

[
− 1

2a1 + c2
11 − c2

12 − 1
2b1 + c11c21 − c12c22

− 1
2b1 + c11c21 − c12n2

1
2a1 + c2

21 − c2
22

]
=

[
0 0
0 0

]
,

or, equivalently,




c2
11 − c2

12 = 1
2a1,

c2
21 − c2

22 = − 1
2a1,

c11c21 − c12c22 = 1
2b1.

The solution can be expressed as

C1 =




√
(c12+c22)2+b1±

√
(c12−c22)2−b1

2 c12

√
(c12+c22)2+b1∓

√
(c12−c22)2−b1

2 c22


 or




−
√

(c12+c22)2+b1±
√

(c12−c22)2−b1
2 c12

−
√

(c12+c22)2+b1∓
√

(c12−c22)2−b1
2 c22


 ,

with c12, c22, and b1 6= 0 arbitrary. These two scenarios are essentially the same.
We conclude this section with two special cases of our theory. The first result bypasses the

peculiar rank condition for the QIEP considered in [27] because we reckon HP
0 and HN

0 as additional
variables which are more general than the sip matrix. The second result answers an open question
raised in the same paper by bringing in HC

0 as an additional variable. In both cases, we offer more
flexibility than just using the sip matrix as in [27].
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Theorem 4.2. Suppose that all eigenvalues are simple. Let n = t + r.
1. Suppose that all real eigenpairs are given, that is, only P0 ∈ Rn×r and N0 ∈ Rn×r are

specified. Then, a necessary condition for the IMP to be solvable is that the system

P0H
P
0 P>0 −N0H

N
0 N>

0 + C1ΥC>1 = 0. (4.9)

has a nontrivial solution for nonnegative diagonal matrices HP
0 , HN

0 ∈ Rr×r and C1 ∈
Rn×2t. The maximal allowable number r of columns for each P0 and N0 is bounded by

r <
n(3n− 1)
4(n− 1)

. (4.10)

2. Suppose that all the complex eigenpairs are given, that is, only C0 ∈ Rn×2t is specified.
Then, a necessary condition for the IMP to be solvable is that the system

C0H
C
0 C>0 = N1N

>
1 − P1P

>
1 . (4.11)

has a nontrivial solution for a block diagonal matrix HC
0 ∈ R2t×2t with 2×2 symmetric blocks

and P1, N1 ∈ Rn×r. The maximal allowable number t of complex conjugate eigenvectors in
C0 is bounded by

t <
n(3n− 1)
4(n− 1)

. (4.12)

5. Numerical method. In our theory, the unspecified eigenvalues can be arbitrary. To carry
out a specific eigenvector completion for an IMP of size n, we will assume that there are t pairs of
complex conjugate eigenvalues and r (= n − t) pairs of real eigenvalues with opposite sign charac-
teristics in the constructed quadratic matrix polynomial. Out of the k prescribed eigenvectors, it
is easy to identify the 2kC complex conjugate eigenvectors. Obviously, it is necessary that kC ≤ t.
Among the remaining k − 2kC prescribed real eigenvectors, however, we generally do not know a
priori the associated sign characteristics of their corresponding eigenvalues. The splitting of k−2kC

as the sum kP + kN and, hence, the assignment of sign characteristics to the corresponding real
eigenvalues therefore are again at random. It is intriguing to study whether the IMP is solvable for
arbitrary splitting n = t + r and distribution k = 2kC + kP + kN ≤ kmax. In this discussion, we
assume that (t, r) and (kC , kP , kN ) are given.

Our theory asserts the algebraic solvability of (4.5) so long as k ≤ kmax. However, we must take
into account that the diagonal matrices HP

0 and HN
0 should be positive. One possible approach is

to consider the constrained nonlinear least squares optimization problem
{

Minimize f(HC
0 ,HP

0 , HN
0 , C1, P1, N1),

Subject to HP
0 ≥ 1 and HN

0 ≥ 1,
(5.1)

where

f(HC
0 ,HP

0 , HN
0 , C1, P1, N1) :=

1
2
〈Ω, Ω〉, (5.2)

with Ω being defined in (4.5), 〈·, ·〉 denoting the Frobenius inner product, and to avoid the trivial
solution, we have scaled “upward” the positivity of HP

0 and HN
0 . Ideally, we would like to see a zero

objective value at an optimal solution.
Of particular advantage in our formulation is that the derivatives of f are readily available in

closed form, which would help to enhance the efficiency in the optimization process. For example,
10



by identifying the objective functional as a quadruple map f : R2kC × RkP × RkN × Rn(2t−2kC) ×
Rn(r−kP ) × Rn(r−kN ) → R, the first-order partial derivatives of f with respect to each group of
variables are given below.

Lemma 5.1. Let ∂f
∂Φ denote the partial gradient of f in (5.2) with respect to Φ where the symbol

Φ stands for any of the six variables (HC
0 ,HP

0 ,HN
0 , C1, P1, N1). Then

∂f

∂HC
0

= [γ1,1 − γ2,2, 2γ21, . . . , γ2kC−1,2kC−1 − γ2kC ,2kC
, 2γ2kC ,2kC−1]>, (5.3)

with γi,j denoting the (i, j) entry of the matrix C>0 ΩC0,




∂f
∂HP

0
= diag(P>0 ΩP0),

∂f
∂HN

0
= −diag(N>

0 ΩN0),
(5.4)

with diag(A) denoting the column vector of the diagonal of the matrix A, and




∂f
∂C1

= vec(2ΩC1Υ),
∂f
∂P1

= vec(2ΩP1),
∂f

∂N1
= −vec(2ΩN1),

(5.5)

with vec(B) denoting the vectorization of the matrix B by stacking the columns of B into a single
column vector.

There are readily available software packages to solve (5.1). For example, the MATLAB routine
fmincon that implements a subspace trust-region approach based on the interior-reflective Newton
method and the preconditioned conjugate gradients method seems capable of finding a solution to
(4.5) with high precision. We also have experimented with other optimization packages such as
SNOPT [16] with similar success.

6. Model updating with no spill-over. One challenge of practical importance in engineering
applications is to update an existent model while keeping vibration parameters not related to the
newly measured parameters invariant. The model updating problem can be described as follows;

(MUP) Given a real symmetric quadratic model with coefficient matrices (M̃, C̃, K̃) and
a few of its associated eigenpairs {(λj ,xj)}k

j=1 with k < n, assume that new eigenpairs
{(σj ,yj)}k

j=1 have been measured. Update matrices (M̃, C̃, K̃) to a new real symmetric
quadratic model (M,C, K) such that

(i) The newly measured {(σj ,yj)}k
j=1 form k eigenpairs of the new model (M, C, K).

(ii) The remaining 2n − k eigenpairs of (M, C, K) are kept the same as those of the
original (M̃, C̃, K̃).

The second condition above is known as the no spill-over phenomenon. Model updating with
no spill-over has been studied extensively. See, for example, [3, 7, 8, 14, 28]. It is most desirable to
construct the update (M,C, K) without the knowledge of the remaining 2n − k eigeninformation.
Our IMP approach can help to resolve the MUP.

The following formulation appears to be a slight modification of the previous result for the
eigenvalue embedding problems (EEP) where all eigenvectors are kept invariant [8]. But the analogy
is really due to our recent discovery about a necessary condition that the updated eigenvectors {y}k

j=1

must satisfy [7, Theorem 4.1]. The easy generalization from EEPs to MUPs therefore is significant
because the EEPs are usually regarded as “locum tenentes” in the literature for the much harder
MUPs, and now we have almost identical recipes for the solutions.
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Assume as before that all eigenvalues of the original model (M̃, C̃, K̃) are simple. Let the 2n
eigenpairs {(λj ,xj)}k

j=1 and{(λi,xi)}2n
i=k+1 of the original model be denoted in real-valued form by





Λ1 := diag
{[

α1 β1

−β1 α1

]
, . . . ,

[
α`1 β`1

−β`1 α`1

]
, λ2`1+1, . . . , λk

}
,

X1 := [x1R,x1I , . . . ,x`1R,x`1I ,x2`1+1, . . . ,xk]
(6.1)

and




Λ2 := diag
{ [

αk+1 βk+1

−βk+1 αk+1

]
, . . . ,

[
αk+`2 βk+`2

−βk+`2 αk+`2

]
, λk+2`2+1, . . . , λ2n

}
,

X2 := [x(k+1)R,x(k+1)I , . . . ,x(k+`2)R,x(k+`2)I ,xk+2`2+1, . . . ,x2n],
(6.2)

respectively. Since X1 is to be updated, we may regard X2 = [C0, P0, N0] in reference to (4.2).
Recall that the corresponding H̃ = H ([X1, X2], diag{Λ1,Λ2}) is block diagonal (See (3.6)). The
two submatrices





H̃1 :=

[
X1

X1Λ1

]> [
C̃ M̃

M̃ 0

][
X1

X1Λ1

]
,

H̃2 :=

[
X2

X2Λ2

]> [
C̃ M̃

M̃ 0

][
X2

X2Λ2

]
,

are also block diagonal and satisfy

X1H̃
−1
1 X>

1 + X2H̃
−1
2 X>

2 = 0. (6.3)

By Theorem 2.2, we know that




M̃−1 = X1Λ1H̃
−1
1 X>

1 + X2Λ2H̃
−1
2 X>

2 ,

C̃ = −M̃
(
X1Λ2

1H̃
−1
1 X>

1 + X2Λ2
2H̃

−1
2 X>

2

)
M̃,

K̃ = −M̃
(
X1Λ3

1H̃
−1
1 X>

1 + X2Λ3
2H̃

−1
2 X>

2

)
M̃ + C̃M̃−1C̃.

Assume that the structure of the newly measured eigeninformation {(σj ,yj)}k
j=1 is confor-

mal to that of {(λj ,xj)}k
j=1. Let (Σ, Y1) denote the corresponding real-valued representation of

{(σj ,yj)}k
j=1. One one hand, it is known that for the MUP to be solvable we must have

Y1 = X1T. (6.4)

for some nonsingular matrix T ∈ Rk×k [7, Theorem 4.1]. On the other hand, to avoid spill-over in
the model updating, our theory demands a nonsingular matrix Ĥ = diag{Ĥ1, Ĥ2}, with Ĥ1 and Ĥ2

having the same block structures respectively as those of H̃1 and H̃2, such that

Y1Ĥ
−1
1 Y >

1 + X2Ĥ
−1
2 X>

2 = 0, (6.5)

even before the eigenvalues are updated. Upon substituting (6.4) into (6.5) and comparing with
(6.3), we find an obvious solution Ĥ for (4.1) by choosing

{
Ĥ1 := T>H̃1T

Ĥ2 := H̃2.
(6.6)
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By Theorem 2.3, we only need to make sure that T is such that
{

T>H̃1TΣ is symmetric,

X1TΣT−1H̃−1
1 X>

1 + X2Λ2H̃
−1
2 X>

2 in nonsingular,
(6.7)

then the MUP is solvable. In this case, the recipe in Theorem 2.2 gives rise to one particular solution
to the MUP by





M−1 = X1TΣT−1H̃−1
1 X>

1 + X2Λ2H̃
−1
2 X>

2 ,

C = −M
(
X1TΣ2T−1H̃−1

1 X>
1 + X2Λ2

2H̃
−1
2 X>

2

)
M,

K = −M
(
X1TΣ3T−1H̃−1

1 X>
1 + X2Λ3

2H̃
−1
2 X>

2

)
M + CM−1C.

Combining (6.4) with (6.8), we see that the update takes place in the following way:




M−1 = M̃−1 + X1(TΣT−1 − Λ1)H̃−1
1 X>

1 ,

C = M
[
M̃−1C̃M̃−1 −X1(TΣ2T−1 − Λ2

1)H̃
−1
1 X>

1

]
M,

K = M
[
M̃−1(K̃ − C̃M̃−1C̃)M̃−1 −X1(TΣ3T−1 − Λ3

1)H̃
−1
1 X>

1

]
M + CM−1C,

(6.8)

whereas it is critically essential in formula (6.8) that the update from (M̃, C̃, K̃) to (M, C, K) does
not involve any information about (Λ2, X2) at all.

7. Role of eigenvalues. Thus far, we have shown that eigenvalues play a very small role in
the real symmetric IMPs. Only the structure (t, r) of eigenvalues in J is needed for the eigenvector
completion process. The reconstructed (M, C, K) literally can have arbitrary eigenvalues. In other
words, one cannot “see” the sound of a string5! What happens is that the structural constraint of
(M,C, K) being merely real and symmetric is too loose. Only if additional constraints are imposed
upon (M, C, K), the information of eigenvalues might become essential.

The subject of structured QIEPs is too complicated to be covered in a single study. In this
section we illustrate the role of eigenvalues by considering only the case when M and K are required
to be positive definite and C positive semi-definite. An IMP with this kind of structure becomes a
much harder problem.

Assume that zero is not an eigenvalue of the desirable quadratic matrix polynomial. Define the
moments Γj , j = −1, 0, 1, 2, by

Γj := XJjH−1X>. (7.1)

By the fact that HJ = (HJ)>, all moments Γj are symmetric. We have already seen in Theorem 2.2
that 




Γ0 = 0,
Γ1 = M−1,
Γ2 = −M−1CM−1.

(7.2)

Post-multiplying both sides of (2.10) by J−1H−1X and using (7.2), we obtain the relationship

Γ−1 = −K−1. (7.3)

The following theorem characterizes the positive semi-definiteness for (M, C, K) in terms of moments
which, in turn, relate to the eigenvalue matrix J [27, 37].

Theorem 7.1. Given (X, J), let (M,C, K) be the symmetric coefficient matrices constructed
from (2.4). Then

5Likewise, twenty-six years after [24], it was answered that one cannot hear the shape of a drum [22].
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1. If M Â 0, K Â 0, and C º 0, then all eigenvalues of J have non-positive real part, Γ1, Γ−1

are nonsingular, and Γ2 ¹ 0.
2. If all eigenvalues of J have negative real part, Γ1, Γ−1 are nonsingular, and Γ2 ¹ 0, then

M Â 0, K Â 0, and C º 0.
Solving the IMP with real, symmetric, and positive semi-definite (M, C,K) therefore means

that the eigenvalues of J , including those already prescribed and those to be completed, must be
such that the matrix XJ2H−1X> is negative semi-definite. Completing both the eigenvectors and
the eigenvalues simultaneously for structured IMPs is rather challenging task. To our knowledge,
this area is still open for further research. Some numerical experiments using truncated QR and
semi-definite programming techniques are reported in [11, 30]. We only illustrate below that the
completed eigenpair (X, J) must work together in order that an IMP has positive semi-definite
coefficient matrices (M, C,K).

Example 2. Consider the scenarios described in Example 1 where the complex eigenvectors
are prescribed through the matrix C0. Assume the prescribed eigenvalues are given by JC

0 =[ −2 6
−6 −2

]
. Consider the first case r = 1 where HC

0 and the two real eigenvectors P1 and N1 are

to be constructed. Taking advantage of the free parameters already established in Example 1, we
assume n1 = 2, n2 = −1 and b1 = 4 so that the completed eigenvectors are given by

X =
1
2

[
0 −√2 2

√
5 4√

2 0 0 −2

]
.

Let the eigenvalues corresponding to P1 and N1 be noted as λ3 and λ4, respectively. Certainly, λ3

and λ4 must be real and negative. Additionally, in order that XJ2H−1X> be negative semi-definite,
its principal minors must alternate signs, leading to the inequalities

80 + 5λ2
3 − 4λ2

4 ≤ 0,

−8000 + 80λ2
4 − 400λ2

3 − 5λ2
3λ

2
4 ≥ 0.

The curves where these minors vanish are sketched in Figure 7.1. It can be checked that all points
(λ3, λ4) below the solid curve satisfy the inequalities and, therefore, can be used to complete the
spectrum J .

l3
K16 K14 K12 K10 K8 K6 K4 K2 0

l4

K20

K15

K10

K5

Fig. 7.1. Curves where the principle minors of XJ2H−1X> vanish.
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On the other hand, if we change to n2 = −3 while keeping other parameters the same, the
corresponding matrix

X =
1
2

[
0 −√2

√
5 +

√
21 4√

2 0
√

5−√21 −6

]
.

remains to be a solution to (4.5), but the determinant of XJ2H−1X> is given by

−58400− 4000
√

105− (1648 + 224
√

105)λ2
3 − (688− 64

√
105)λ2

4 −
1
2
(5
√

105 + 73)λ2
3λ

2
4,

which obviously is always negative, implying that the spectrum J can never be completed with this
choice of P1 and N1 to make XJ2H−1X> negative semi-definite.

8. Conclusion. By exploiting a special block diagonal matrix H whose structure is pre-
determined by the desirable numbers (t, r) of complex and real eigenvalues, but not by the actual
eigenvalues, we have proposed a general framework to solve the real symmetric IMPs. We reduce
the IMP to a problem of solving an under-determined homogeneous equation (4.5).

Our approach has the advantages that any possible splitting n = t + r and distribution k =
2kc + kp + kn ≤ kmax, where kmax is given in (4.7), kc ≤ t, kp, kn ≤ r, of complex and real
eigenpairs with sign characteristic are allowable. We find that eigenvectors alone are sufficient to
determine a solution whereas eigenvalues literally can be arbitrary. Eigenvalues come into play in the
inverse problem only when (M, C, K) are required to have additional structures. As an important
application of our framework, the difficult task of updating an existent model without spill-over can
now easily be accomplished.
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