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Abstract Singular spectrum analysis has recently become an attractive tool in a broad range
of applications. Its main mechanism of alternating between rank reduction and Hankel pro-
jection to produce an approximation to a particular component of the original time series,
however, deserves further mathematical justification. One paramount question to ask is how
good an approximation that such a straightforward apparatus can provide when comparing
to the absolute optimal solution. This paper reexamines this issue by exploiting a natural
parametrization of a general Hankel matrix via its Vandermonde factorization. Such a for-
mulation makes it possible to recast the notion of singular spectrum analysis as a semi-linear
least squares problem over a compact feasible set, whence global optimization techniques can
be employed to find the absolute best approximation. This framework might not be imme-
diately suitable for practical application because global optimization is expectedly more
expensive, but it does provide a theoretical baseline for comparison. As such, our empirical
results indicate that the simpler SSA algorithm usually is amazingly sufficient as a handy
tool for constructing exploratory model. The more complicated global methods could be used
as an alternative of rigorous affirmative procedure for verifying or assessing the quality of
approximation.
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1 Introduction

Singular spectrum analysis (SSA) has been attracting considerable interest in recent years
as a useful technique for extracting critical information from general time series. This novel
method, based on principles of multivariate statistics, accounts for dynamically improving
the covariance structure of the underlying time series [29]. But what makes its wide applica-
bility is the non-parametric and model-free nature that enables practitioners to deploy it
without a prior knowledge of any underlying structure [20,58]. Its utilization is more as a
handy exploratory model-building tool than an affirmative procedure. The development of
the SSA is usually attributed to Broomhead and King [8] whose original intention was to
identify qualitative information in the analysis of dynamical systems. Actually, similar ideas
also came to surface independently at about the same time in other disciplines, such as that in
[13] for the dimensional analysis of weather and climate attractors. Over years, the method-
ologies and applications of the SSA have been refined and broadened significantly in the
literature. A quick Google search for the term “singular spectrum analysis” shows up a wide
range of applications. Far from being complete, we mention a few representative applications
including smoothing, filtration [57], noise reduction [55], trend and modulated harmonics
extraction [10,39], change-point detection [41], signal parameter estimation, climatic and
meteorological forecasting [2,16,54], economic and financial applications [24,28,29,46],
causality discovery [46], phase reconstruction [4,17,21,53]. For an elementary introduc-
tion to this subject we suggest the two monographs [11,19]. For a synopsis of more recent
advances in this field, we suggest the brief treatise [20]. The goal of this paper is to propose a
mathematical framework allowing us to assess the effectiveness of the SSA from a theoretical
point of view.

So that this paper is self-contained, we briefly review the basic SSA as follows. There are
quite a few variations of the basic SSA nowadays, including the multivariate SSA [21,25,46]
and the minimum-variance based SSA [19,23], but we will focus on the basic scheme to
convey the idea. Given a finite time series z = (z0, . . . , zn) of length n + 1,1 the basic SSA
consists of four basic parts [19]:

1.1 Embedding

Choose an integer 1 ≤ p < n, referred to as the embedding dimension or window length, and
let q = n − p + 2. Define p-lagged vectors z0, . . . , zq−1 by zi := [zi , . . . , zi+p−1]� ∈ C

p

and the associated trajectory matrix Z by

Z := [z0, . . . , zq−1] =

⎡
⎢⎢⎢⎣

z0 z1 . . . zq−1

z1 z2 . . . zq
...

...
. . .

...

z p−1 z p . . . zn

⎤
⎥⎥⎥⎦. (1)

Note that Z is a p × q Hankel matrix. This process of embedding z into Z , fundamental in
time series analysis, creates a handle for manipulating rank reduction.

1 For the sake of characterizing the Vandemonde parameters more easily for the Hankel operator, which will
be discussed subsequently, we begin the index with 0.
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The choice of p affects the quality of the approximation. See discussions in [11,19]. A more
recent work [26,27] shows that the optimal value of p is related to the separability between
signal and noise components in the original series. It is recommended both theoretically and
empirically that the threshold should be somewhere between n

4 and n
2 .

1.2 Rank reduction

Suppose that

Z = U�V ∗ =
r∑

i=1

σi ui v∗
i (2)

is the singular value decomposition (SVD) of the trajectory matrix Z , where nonzero singular
values are arranged in descending orderσ1 ≥ σ2 ≥ . . . ≥ σr and r = rank(Z). A fundamental
mechanism used for rank reduction is the truncated singular value decomposition. A truncated
SVD of Z is a partial sum of the form

Z̃ :=
d∑

i=1

σi ui v∗
i , (3)

where d ≤ r is a preselected positive integer serving as the target rank for the analysis.
There is a statistical meaning of the truncated singular value decomposition. With regard to

the lag-covariance matrix Z� Z when columns of Z have been centered, it can be argued that
Z̃ represents the best, unbiased, linear, minimum-variance estimate of Z among all possible
d-dimensional sample subspaces in C

p . Because of this, if d is properly chosen, then those
components of Z corresponding to “small” singular values are considered as less significant
and often are disregarded.

1.3 Group selection

In order to identify possibly disparate physical behaviors of the time series, the above
process can further be refined. Without being specific, we simply mention that different rank-
one matrices from the SVD of Z can be chosen and collected together, and be processed
separately, with the hope that properly partitioned groups would reflect different dynam-
ical components of the original time series. See [19,40] for some practical concerns and
applications.

1.4 Signal recovery

It is almost always true that the truncated SVD of a structured matrix cannot preserve the
original structure [9,45]. As such, Z̃ generally is not a Hankel matrix. The nearest Hankel
matrix to Z̃ can be obtained by diagonally averaging entries of Z̃ along the anti-diagonals.
In doing so, however, the rank of the resulting Hankel matrix approximation is no longer
d . So the above four steps have to be repeated with the hope that a limit point which is a
Hankel matrix of rank d is finally determined. This procedure is similar in spirit to the general
lift-and-project algorithm developed for structured low rank approximation [9].

In short, the basic idea of the SSA is to decompose the original time series into the sum
of a number of interpretable components, each of which should be easily identified as part
of a certain modulated signals or, in reciprocity, the random noises. The workings of the
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SSA are by repeatedly sifting the time series through the truncated SVD of the embedded
trajectory matrix with the hope that a cleaner, more representative time series showing critical
traits, such as low-frequency trends, high-frequency variability, cyclic components, or other
structures of the original series, can be extracted.

The notion of the SSA is attractive because of its simplicity in implementation and its
broadness in applications. The main mechanism whereby the scheme alternates between
the rank reduction and the Hankel projection, however, deserves further understanding. We
can think of at least three reasons for this investigation. Firstly, since the method is within
the general frame of lift-and-project, at best the linear rate of convergence is expected [9].
How would the strength of noise or the inherent intricacy of the original signal affects the
convergence? Secondly, the iteration may not achieve a Hankel approximation of rank d
because the alternating projection gets stagnant at a local minimizer of the distance between
the manifold of matrices of rank d and the subspace of Hankel matrices. What does the
limit point of the SSA really represent? Thirdly, there might be multiple local minimizers.
How does this local solution affect the interpretation of physical properties being investi-
gated? The purpose of this paper is to study, by means of global optimization techniques
on parameters of the Vandermonde factorization, what the absolutely best and low rank
Hankel approximation can be achieved for a general time series. In return, we are inter-
ested in using this information as a reference point for assessing the quality of the SSA
solutions.

This paper is organized as follows. In Sect. 2 we explain the cause and effect of the notion of
the “low rank Hankel structure”. The SSA usually applies only to finite series which actually
is no more than a segment of a long term behavior. So as to take into account all possible
intrinsic characteristics, we describe a natural linkage between the low rank Hankel structure
and a sinusoidal signal which, in turns, leads to an infinite series whose trajectory matrix
is necessarily semi-infinite. We raise the question of how much information is contained
in a segment or submatrix of the infinite case. In Sect. 3 we derive the fact that any finite
rank Hankel operator, of finite dimension or not, always enjoys a Vandermonde factorization.
Related to Sect. 2, this argument also shows that, in a broad sense, all infinite series with finite
rank trajectory matrix can be cast as a sinusoidal signal. Equipped with the Vandermonde
parameters, we formulate the SSA as a least squares minimization problem over a compact
set in Sect. 4.

2 Sinusoidal signal

To motivate the connection of a time series to its trajectory matrix, we first consider a noise-
free time-domain signal comprising d components of exponentially decaying sinusoids

s(t) =
d∑
�=1

a�e
−α�t eı(2πν�t+φ�), (4)

where a�, α�, ν�, and φ� are real numbers denoting the magnitude, the decay rate, the
frequency, and the phase angle, respectively. Starting with t0 = 0 and sampling this sig-
nal at uniformly spaced nodes t0, t1, . . . with fixed interval length Δt (so 1/Δt is the so
called sampling rate), we obtain an infinite sequence

s(tk) =
d∑
�=1

a�e
−α�kΔt eı(2πν�kΔt+φ�) =

d∑
�=1

a�e
ıφ�

(
e(−α�+ı2πν�)Δt

)k
.
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For simplicity, denote sk := s(tk) and define

β� := a�e
ıφ� , (5)

λ� := e(−α�+ı2πν�)Δt . (6)

Then the time series {s0, s1, . . .} enjoys the relationship

sk =
d∑
�=1

β�λ
k
�. (7)

We can rewrite the corresponding trajectory matrix S of the series {s0, s1, . . .} as

S =
d∑
�=1

β�

⎡
⎢⎢⎢⎢⎢⎣

λ0
� λ1

� λ2
� . . .

λ1
� λ2

�

λ2
�
...

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

λ0
1 λ0

2 . . . λ0
d

λ1
1 λ1

2 λ1
d

λ2
1

...
...

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

β1 0 . . . 0

0 β2

...
. . .

0 βd

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

λ0
1 λ1

1 λ2
1 . . .

λ0
2 λ1

2

...

λ0
d λ1

d . . .

⎤
⎥⎥⎥⎥⎥⎥⎦
, (8)

which easily shows that the matrix S is of rank d .
For strictly decaying signals, we should expect that α� > 0 and, hence, |λ�| < 1, implying

that S is a bounded operator. The decomposition in the last equation of (8) is known as the
Vandermonde factorization of S. Note that the trajectory matrix S is naturally a semi-infinite
matrix. If we take only finitely many samples, resulting a finite time series as is typically
assumed in the application of the SSA, then it means only a leading principal submatrix of
size p×q extracted from S. In this case, the corresponding finite trajectory matrix still enjoys
a Vandermonde factorization after appropriately truncating that of (8). In other words, the
formation of the basic SSA is a special case of our general theory. Since the set of infinitely
many samples {s0, s1, . . .} is supposedly carrying more or even complete information, a
classical question that immediately arises is how much information of the original signal can
be retrieved from a finite number of samples. Keys to our global optimization approach, as will
be explained below, are the variables β�, λ�, � = 1, . . . , d , which serve as a parameterization
of any Hankel matrices of rank d .

The converse of the above characterization is worth noting. Given a Vandermonde factor-
ization in the form of (8), then by (5) the polar form of the complex number β� determines
the magnitude a� and phase angle φ�. In the meantime, by (6) the polar form of the quantity
λ� determines the decay rate α� and the frequency ν� up to a scaling byΔt . The dependence
on the scalingΔt is due to the fact that whenever a measurement of decay rate and frequency
is referred to, the meaning of a unit time ought to be defined first. OnceΔt is specified, then
a composite signal is completely determined from a given Vandermonde decomposition. In
other words, we can go back and forth interchangeably between a bounded low rank Hankel
matrix and a sinusoidal signal through the relationship (7).

In practice, the true signal s(t) is unknown and often the observed data {zk} are conta-
minated. Since the samples are taken independently, we may assume the popular AWGN
channel model,
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zk := sk + εk, (9)

i.e., white Gaussian noise εk with specified signal-to-noise ratio (SNR) is added linearly
per sample. Through embedding, the corresponding trajectory matrix Z can be forced to
maintain the Hankel structure. But the property of rank d is generally lost. Indeed, Z could
easily be of “full” rank. In the SSA, the idea is to approximate Z by a Hankel approximation
of rank d , whence the signal information of s(t) is partially retrieved. As we have pointed out
earlier, the SSA does not even make use of the semi-infinite matrix Z in its entirety. Only a
segment of finite length n is fed into the procedure. To what extent this process of alternating
projection can recover the essential information is the question we want to investigate in this
study.

3 Vandermonde parameterization

In the preceding section, we have used a sinusoidal signal to introduce the Vandermonde
factorization of a trajectory matrix. In this section, we want to bring forth the fact that any
Hankel operator, finite dimensional or not, always enjoys such a factorization so long as it is
of finite rank. So suitable for the SSA, our theory can be applied regardless of wherever the
time series might arise. The Vandermonde factorization offers an effective characterization
of a Hankel operator in 2d parameters, provided the operator is of rank d . Later on, we shall
make use of these parameters to set up a global optimization framework.

We mention in passing that the importance of Hankel operators goes beyond its involve-
ment in the SSA. They appear frequently in many other seemingly disparate areas of classical
mathematics [1,33,47]. Their applications cover a wide range of disciplines outside math-
ematics. See, for example, [14,18] and the many references in [48]. It is thus of practical
significance to characterize a general low rank Hankel operator in the least possible para-
meters. To derive Vandermonde parametrization which will be used by global optimization
to establish basis of comparison for assessing the effectiveness of the SSA, we now recall
several classical results in the literature.

We begin with the characterization of a bounded Hankel operators over the space �2

of square summable (semi-infinite) sequences [6,42,50]. The following theorem states that
whether the time sequence {h0, h1, . . .} determines a bounded operator H on �2 is equivalent
to whether the sequence itself represents the Fourier coefficients of an essentially bounded
function over the unit disk [47, Theorem 2.1].

Theorem 1 The Hankel matrix H represents a bounded operator over �2 if and only if there
exists a function ψ ∈ L∞ on the unit circle such that its

hm = 1

2π

2π∫

0

ψ(θ)e−imθdθ, m = 0, 1, . . . (10)

In this case, the operator norm of H is bounded above by ‖ψ‖∞.

We have learned from the preceding section that the the number of components of a
sinusoidal signal is the same as the rank of the corresponding trajectory matrix. What can
be said about the converse, which is needed for the rank reduction step in the SSA? Given
a time series {h0, h1, ...}, the associated generating function is defined by the formal power
series
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G(z; {hn}) :=
∞∑

n=0

hnzn . (11)

The following criterion is a classical result by Kronecker [47, Theorem 4.1].

Theorem 2 The Hankel matrix H has finite rank if and only if the power series (11) deter-
mines a rational function. In this case,

rank(H) = deg(zG(z; {hn})), (12)

where the degree of a rational function is the maximum of the degrees of its minimal constituent
polynomials.

Finding the limit of the generating function G(z; {hn}) is not always an easy task. An
equivalent but more direct observation of finite rank is through a linear recursive relationship
(LRR) among elements of H [15, Chapter XV, Theorem 7].

Theorem 3 The Hankel matrix H is of finite rank d if and only if there exist constants
γ0, . . . , γd−1 such that

hi = γd−1hi−1 + γd−2hi−2 + . . .+ γohi−d , i = d, d + 1, . . . (13)

and d is the least integer having this property.

While Theorem 3 is long known as a necessary and sufficient condition concerning the
finite rank of a semi-infinite Hankel matrix, it is interesting to note that the LRR (13) has
been redeveloped by practitioners of the SSA from the finite-dimensional point of view as a
forecasting scheme [19,24,29]. It is worth noting the interchange between finite and infinite
cases as follows.

Assume the scenario that the semi-infinite Hankel matrix H in Theorem 3 is already
known to be of rank d . Then it can be argued that the d × d leading principal submatrix Ĥ ,
i.e., the trajectory matrix of the finite series {h0, . . . , h2d−2}, is necessarily nonsingular. The
finite difference equation (13) can be written in the form of a linear system

⎡
⎢⎢⎢⎢⎢⎣

h0 h1 h2 . . . hd−1

h1 h2 h3 hd

h2 h3 hd+1
...

hd−1 hd h2d−2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

γ0

γ1
...

γd−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

hd

hd+1
...

h2d−1

⎤
⎥⎥⎥⎦, (14)

known as Yule-Walker equations in signal processing, for the coefficients γ0, γ1, . . . , γd−1.
We thus see that the parameters γ0, . . . , γd−1 in the LRR and consequently the entire semi-
infinite time series are uniquely determined by Ĥ and one extra element h2d−1. In other
words, to uniquely determine a Hankel matrix of rank d , we need to know exactly 2d many
elements {h0, h1, . . . , h2d−1}. Obviously, linear systems similar to (14) can also be formed
for the same set of parameters γ0, γ1, . . . , γd−1 by taking up any segment of 2d succes-
sive elements in the infinite time series, so long as the corresponding trajectory matrix is
nonsingular.

Once the parameters γ0, . . . , γd−1 are in hand, we can take one step further. That
is, we can express the entry of H at any location in term of roots of the characteristic
polynomial

p(λ) := λd − γd−1λ
d−1 − . . .− γ1λ− γ0, (15)
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without the need of the recursive reference to other entries. This formulation leads to a natural
parameterization of H which will be used to reassess the rationales behind the SSA.

To fix the ideas, let λ�, � = 1, . . . , r , denote the distinct roots of p(λ) in (15) and each
of which has multiplicity ρ�. So

∑r
�=1 ρ� = d . A general solution to the difference equation

(13) can be formulated as follows. Let

Vp(λ) := [V (1), . . . ,V (r)] ∈ C
d×d ,

be a block matrix whose block V (�) = [v(�)i j ], � = 1, . . . , r , is of size d × ρ�, where

v
(�)
i j := ci jλ

i− j
� , i = 0, 1, . . . , d − 1, j = 0, 1, . . . , ρ� − 1, (16)

and ci j = 0 if i < j ; and ci j = i !
(i− j)! j ! otherwise. A typical block looks like

V (�) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0

λ� 1 0 . . .

λ2
� 2λ� 1 . . .

λ3
� 3λ2

� 3λ�

...
. . .

λ
ρ�−1
� 1

λ
ρ�
� ρ�λ�

...
...

...

λd−1
� (d − 1)λd−2

�
(d−1)(d−2)

2 λd−3
� . . .

(
d − 1
ρ� − 1

)
λ

d−ρ�
�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
d×ρ� .

For convenience, note that in the above we start counting indices of the entries from (0, 0). In
order to enforce the initial values h0, . . . , hd−1 on the general solution of (13), we introduce
the linear system

Vp(λ)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β
(0)
1
...

β
(ρ1−1)
1
...

β
(0)
r
...

β
(ρr −1)
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

h0

h1

h2
...

hd−1

⎤
⎥⎥⎥⎥⎥⎦
, (17)

known as the confluent Vandermonde system [34], for the undetermined coefficients
β
(0)
1 , . . . , β

(ρ1−1)
1 , . . . , β

(0)
r , . . . , β

(ρr −1)
r . Trivially, the equations in (17) are equivalent to

hi =
r∑
�=1

ρ�−1∑
j=0

β
( j)
� ci jλ

i− j
� , i = 0, 1, . . . , d − 1.
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It can further be verified recursively that

hi =
d−1∑
s=0

γshi−d+s =
d−1∑
s=0

γs

⎛
⎝

r∑
�=1

ρ�−1∑
j=0

β
( j)
� ci−d+s, jλ

i−d+s− j
�

⎞
⎠

=
r∑
�=1

ρ�−1∑
j=0

β
( j)
�

(
d−1∑
s=0

(
ci−d+s, jγsλ

i−d+s− j
�

))

=
r∑
�=1

ρ�−1∑
j=0

β
( j)
� ci jλ

i− j
� , i = d, d + 1, . . . (18)

For any given time series {h0, h1, . . .}, we have thus shown that if the corresponding trajectory
matrix H is of rank d , then each hi may be represented by the parameters β( j)

� and λ�, referred
to as the Vandermonde parameters, according to the formula (18).

In the literature, the so called Vandermonde factorization for a semi-infinite Hankel matrix
H of rank d is simply a rewriting of the same parametric representation (18). More specifi-
cally, let V∞ denote the confluent Vandermonde matrix of size ∞× d obtained by extending
the matrix Vp(λ) defined in (16) downward to infinite length. We can rearrange the expression
(18) and establish the following identity [5,12].

Theorem 4 Suppose H is a semi-infinite Hankel matrix of rank d. Then there exists a d × d
block diagonal matrix D∞ whose �-th block is of size ρ� × ρ� and is Hankel and upper
anti-triangular such that

H = V∞ D∞V �∞. (19)

Assume for simplicity the generic case that all roots of p(λ) are distinct. Then the solution
to the LRR (13) can be written as

hi =
d−1∑
s=0

γshi−d+s =
d−1∑
s=0

γs

(
d∑
�=1

β
(0)
� λi−d+s

�

)
=

d∑
�=1

β
(0)
�

(
d−1∑
s=0

γsλ
i−d+s
�

)

=
d∑
�=1

β
(0)
� λi−d

�

(
d−1∑
s=0

γsλ
s
�

)
=

d∑
�=1

β
(0)
� λi

�, i = d, d + 1, . . . , (20)

which, in turn, establishes the very same Vandermonde factorization as that in (8), even
though the series {h0, h1, . . .} may not geminate from a sinusoidal signal at all. Together
with the remarks made in the second to the last paragraph of Section 2, we may say that any
time series with finite rank trajectory matrix is equivalent to a sinusoidal signal.

Truncating a semi-infinite series (or trajectory matrix) into a finite series (or trajectory
matrix) does preserve all the properties we have discussed thus far. The reality is that we
usually begin with a finite series (or trajectory matrix) in practice, such as the SSA application.
So can the finite dimensional problem contains enough information about the underlying
infinite dimensional problem? The answer, known as the singular extension theory [33, II.9],
is not trivial. Padding a given m ×k Hankel matrix with zeros to expand it into a semi-infinite
Hankel matrix usually results in a semi-infinite matrix with higher rank. One feasible way
of extension is already manifested in the course of our discussion. That is, given any d × d
nonsingular Hankel matrix, we embed this matrix as the leading principal submatrix of a
nontrivial semi-infinite Hankel matrix H by specifying an extra value for h2d−1. Only after
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having solved the corresponding Eq. (14), we will have created the recursive relationship
(13) and the resulting H is of rank d .

4 Least squares approximation

We have argued that almost all time series with a rank-d trajectory matrix can be interpreted
as discrete samples of a noise-free sinusoidal signal with d components in the form (4). For
contaminated series {z0, z1, . . .}, however, the rank condition is usually lost. Seeking out
the noise-free signal (4) means finding suitable values {β1, . . . , βd} and {λ1, . . . , λd} for its
Vandermonde parameters. In this section, we set up the least squares approximation for this
purpose.

Consider the scenario that the SSA is applied to the finite time series {z0, z1, . . . , z2p−2}
with a square Hankel embedding, that is, suppose that the corresponding trajectory matrix Z
is of size precisely p × p. Without knowing any specfic parametrization, the SSA alternates
between the best rank d approximation and the best Hankel approximation with respect to
the Frobenius matrix norm. In contrast, since we now know that an element in a generic
Hankel matrix of rank d should look like (20), the SSA application amounts to solving the
minimization problem

min
β�,λ�∈C

|λ�|≤1, �=1,...,d

p−1∑
i=0

(i + 1)

∣∣∣∣∣zi −
d∑
�=1

β�λ
i
�

∣∣∣∣∣
2

+
2p−2∑
i=p

(2p − 1 − i)

∣∣∣∣∣zi −
d∑
�=1

β�λ
i
�

∣∣∣∣∣
2

. (21)

As p → ∞, the scheme eventually is dealing with the problem

min
β�,λ�∈C

|λ�|≤1, �=1,...,d

∞∑
i=0

(i + 1)

∣∣∣∣∣zi −
d∑
�=1

β�λ
i
�

∣∣∣∣∣
2

. (22)

Noticeable in both formulations is that the term-wise errors are not equally weighted. Does
this make any sense? Take the extreme case (22) as a point of argument. We see that the weight
is increased at a constant rate even when the signal gradually decays to zero. In a sense we
are imposing more penalty on the noise for weaker signals. There are two consequential
concerns. One is that the weights grow unboundedly and there is no satisfactory theory to
guarantee the convergence of such a weighted infinite series in general. The other is that the
weight scheme might have biased the outcome of the optimizers (β�, λ�) for overly correcting
the higher order terms which are composed mostly of noises. On the other hand, we think that
the bell-shape weight distribution 1, 2, . . . , p, p − 1, . . . 1 in the finite case (21) is more an
artifact due to our obstinacy in maintaining the Hankel structure than any other mathematical
reason [9,45].

In what follows, we consider to fit the data by means of solving

min
β�,λ�∈C

|λ�|≤1, �=1,...,d

2p−2∑
i=0

∣∣∣∣∣zi −
d∑
�=1

β�λ
i
�

∣∣∣∣∣
2

(23)

from the first 2p − 1 samples, that is, we regard all noises in (9) as being uncorrelated,
independent, and having equal variance. For the SSA computation, it is preferred to keep p
as small as is necessary because the size of the associated trajectory matrix does affect the
overhead in the sequence of matrix decomposition. But in our formulation, the size p matters
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only to the summation and there are a fixed number of only 2d parameters to be estimated.
Note that we allow λ� to range over a closed unit disk. The following arguments assure that
the minimum in (23) does exist.

Define

Λ := Λ(λ1, . . . , λd) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I I . . . I

λ1 λ2 . . . λd

λ2
1 λ2

2 λ2
d

...

λ
2p−2
1 λ

2p−2
2 λ

2p−2
d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, β :=

⎡
⎢⎢⎢⎣

β1

β2
...

βd

⎤
⎥⎥⎥⎦, z :=

⎡
⎢⎢⎢⎣

z0

z1
...

z2p−2

⎤
⎥⎥⎥⎦.

Trivially, we can rewrite (23) in vector form

min
β�,λ�∈C

|λ�|≤1, �=1,...,d

‖Λβ − z‖2. (24)

This is a nonlinear least squares problem over the complex field. For each given Λ of full
column rank, the unique optimal solution for β is given by [38]

β := L(Λ; z) := (Λ∗Λ)−1Λ∗z (25)

where ∗ stands for the conjugate transpose. The problem is thus reduced to finding λ for the
minimization problem

min|λ1|,...,|λd |≤1
‖Λ(Λ∗Λ)−1Λ∗z − z‖2. (26)

An example of such an objective function for the case d = 1 with randomly generated noise
is illustrated in Fig. 1, showing the presence of multiple minimizers. Most importantly, in
all cases a minimizer over the compact d-dimensional torus must exist. Since we are dealing
with a compact set, it is possible to exploit global optimization techniques to search for the
absolute minimizer, which will be delineated later. We are interested in using the global
solution to compare the result constructed from the SSA algorithm.
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Fig. 1 An example of objective function for (26). (The surface has been rotated with AZ = 124 and EL = 38)
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5 Absolute solution versus SSA solution

The feasible set in our least squares formulation for the SSA is compact, so the absolute
minimizer always exists. In this section, we report some numerical experiments on employing
the global optimization techniques to find the absolute minimizer. We stress again that our
goal is not to propose a new method for the SSA. Rather, because our parametrization makes
it possible to locate the absolutely best optimizer, we want to employ this more expensive
method to yield an absolute baseline for comparison with results obtained from the SSA
algorithm. As will be seen, our discovery is rather surprising.

5.1 Global optimization

Any existing global optimization software should suffice to meet our need for building a
baseline of comparison. For completion, we briefly review only the general notion of global
optimization and describe how we set up the experiments.

The objective of global optimization is to find the globally best solution in the presence of
multiple local optima. This is an extremely important tool for almost all fields of applications
where optimization is needed. Over the years, many strategies for global optimization have
been proposed. Research results are too numerous to count and the research is ongoing.
Far from being complete, we mention books [31,44] for introduction and [37,43,49,59]
for comprehensive survey on continuous global optimization. Over all, it might be fair to
say that one prevailing scheme that allows general structural constraints and makes possible
straightforward generalizations and extensions of existent local algorithms is the notion of
adaptive partition.

A partial list of practical methods with a view towards efficient computer-based implemen-
tations includes multistart framework equipped with sophisticated scatter search algorithm
[52]; generic algorithms motivated by the process of natural selection and the survival of
the fittest principle [30,56]; simulated annealing based upon the physical analogy of cool-
ing crystal structures that spontaneously attempt to arrive at some stable and, hopefully,
global equilibrium [51,36]; and pattern search methods which compare instantiations and
explore new regions with the goal of conducting a global search [3,35]. Depending on the
applications, there are also other more specialized techniques such as the stochastic global
optimization. See, for examples, the discussions in [43,58] and the references contained
therein.

It is not the intention of this paper to propose a new global optimization method. Rather,
we employ global optimization techniques to help to establish an absolute baseline to evaluate
the performance of the SSA. Toward that goal, our effort has been to set up the framework
for global optimization calculation. Once this framework is established, any existent global
optimization software can serve our purpose. For demonstration, we take advantage of the
global optimization toolbox available in Matlab and choose to use the MultiStart method
with solver fmincon to carry out our experiments. As the optimization solver makes use of
derivatives, exact gradient information has the benefit of improving efficiency and precision.
We supply such a calculation of gradient in the Appendix.

We carry out our experiment by setting up test data in the following way. Our design is
based on two assumptions. First, as we have advanced in this discourse, it suffices to use
noise-free sinusoidal signals as the control group. Second, we assume that the expected rank
d is known a priori, which itself is a difficult problem in practice. We generate a sinusoidal
signal s(t) in the form of (4) with d components as the basis for comparison. This exact
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Fig. 2 Overhead of SSA in terms of iterations needed for convergence. SNR > 0 (red compact box style);
SNR < 0 (blue empty box style). (Color figure online)

signal is random in the sense that its parameters a� ∈ [0, 6], α� ∈ [0, 5], and φ� ∈ [0, 1] are
uniformly distributed pseudorandom numbers, while the frequencies ν� are pseudorandom
integers from a uniform discrete distribution over [0, 400]. Sampling rate is set at 29 and we
take 210 −1 samples sk := s(tk) over the time interval [0, 2). Additive white Gaussian noises
based on the AWGN channel model with fixed SNR are then added to the signal in the way
of (9) as the observed signal. We apply both the SSA algorithm and the MultiStart method
to the observed signals. The goal is to examine the closeness of the reconstructed signals by
the algorithms to the original signal.

5.2 Overall effect of error strength

We first experiment with the effect of error strength2 on the performance of the SSA method.
We want to examine the impact on both the overhead and the accuracy.

For simplicity of demonstration, we choose not to perform the group selection and consider
only the case with embedding dimension 512, i.e., the trajectory matrix Z is always of size
512×512. With each fixed d = 1, . . . , 5, we randomly generate 100 signals. The alternating
projection scheme is applied to each randomly perturbed time series until two consecutive
Hankel projections differ by less than 10−12 when we regard that convergence has been
achieved. Each iteration involves the SVD of a 512×512 Hankel matrix, which is not cheap.
Depicted Fig. 2 are the boxplots for numbers of iterations needed by the SSA to attain a
rank d Hankel approximation of the original Z subject to four different strengths of noise
±0.5 and ±3 dB. It seems to suggest that the strength of noise is not critical for convergence.
However, from Fig. 3, it is quite obvious that stronger noise (negative SNR) does affect the
quality of approximation.

We caution that, because the manifold of rank d matrices is not convex, the alternating
projection scheme, central to the SSA algorithm, may not return at its convergence a rank
d Hankel approximation to the given trajectory matrix Z . Even if it does, the limit point
may not be the nearest rank d Hankel approximation to Z . See a counterexample in [9]. In
contrast, our formulation directly searches for the best fitting signal in the sense of (24).

2 We measure the strength by the logarithm unit dB. Recall that one decibel is ten times the base-10 logarithm
of the ratio of the measured quantity to the reference level. Positive dB means that the signal is stronger than
the noise; otherwise, the noise is stronger.
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Fig. 3 Errors between the true time series {sk } and the reconstructed time series {hk } by SSA. SNR > 0 (red
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Fig. 4 Contrast of errors between the true time series {sk } and the reconstructed time series {hk } by the global
optimization method (red compact box style) and by the SSA algorithm (blue empty box style). (Color figure
online)

In yet another experiment with randomly generate signals, we contrast the errors of the
signals reconstructed by the SSA algorithm with those by our global optimization approach
for each d = 1, . . . , 5 with AWGN noises at SNR = ±3 dB in Fig. 4. Recall that this is
the primary purpose of this paper. We see that in general the global optimization approach
gives rise to better approximation to the original time series {sk} than the SSA algorithm. The
advantage of the global optimization approach to the SSA algorithm becomes more obvious
when the noise is stronger (e.g., dB = −3). For weakly perturbed signals, the SSA performs
almost compatibly to that by global optimization approach.

5.3 Sample by sample comparison

The boxplots in Fig. 4 indicate to us the overall trend. It is informative to also check out
the errors produced by each independent random test. We take the ratio of the SSA error to
the global optimization error sample by sample and plot the histogram of logarithm of these
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Fig. 5 Histogram of sample-by-sample SSA error to global optimization error ratios

ratios in Fig. 5. For comparison, we plot the histogram for all ranks together, distinguished
by colors, while containers in each cluster share the same bin value which is the midpoint
of the corresponding cluster range shown in the drawing. A negative logarithm of the ratio
indicates that the SSA reconstruction is superior to the global optimization reconstruction.

From the histogram we observe that, except for the case d = 1, the global optimization
usually has a higher percentage of producing a better reconstruction when the noise is strong.
In contrast, when the noise is relatively weak (e.g., dB = 3), the simpler SSA performs
amazingly well, comparing to the more complicated global optimization.

5.4 Effect of weight scheme

One might wonder why sometimes the SSA algorithm gives better approximation to
{sk}. Should not the global optimization does the best? It is worth noting the multi-
ple factors that might cause this to happen. Firstly, the quantity being minimized in the

global optimization is the sum
∑2p−2

i=0

∣∣∣zi − ∑d
�=1 β�λ

i
�

∣∣∣2 (see 23), not the absolute error
∑2p−2

i=0

∣∣∣si − ∑d
�=1 β�λ

i
�

∣∣∣2. Because the true time series {sk} is practically not available in

reality, the global optimization offers at its best an optimal approximation to the series {zk},
not {sk}. Secondly, the machinery we employed in the global optimization is the scheme
Multistart which uses uniformly distributed start points within predefined bounds. In our
experiment we allow merely 40 start points. It is possible to improve the objective value,
or to confirm the global solution, by more start points. Thirdly, we have mentioned that not
necessarily the SSA algorithm will produce the best rank d Hankel approximation at its
convergence. Even if it does, the SSA is a specially weighted least squares problem (see 21),
whereas our formulation (23) is not. So we are comparing nearness to a “blackbox” {sk} from
two different objective functions.

If we really want to consider

min
β�,λ�∈C

|λ�|≤1, �=1,...,d

2p−2∑
i=0

ωi

∣∣∣∣∣zi −
d∑
�=1

β�λ
i
�

∣∣∣∣∣
2

(27)
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Fig. 6 Histogram of weighted sample-by-sample SSA error to global optimization error ratios

with weights ωi > 0, the normal Eq. (25) per fixed Λ becomes

Λ∗WΛβ = Λ∗W z, (28)

with W := diag{ω0, ω0, . . . , ω2p−2, ω2p−2}. Equivalently, with the change of variables by
diagonal scaling

Υ := W
1
2Λ, c := W

1
2 z, (29)

the weighted least squares problem (27) can be reformulated as

min|λ1|,...,|λd |≤1
‖Υ (Υ ∗Υ )−1Υ ∗c − c‖2, (30)

which is analogous to (24) and our code can easily be modified accordingly.
If in particular we use the special SSA weight scheme, a rather surprising reversal situation

then is observed. As can be seen in Fig. 6, there are many more samples showing a negative
value in its logarithm of SSA error to global error ratio than those in Fig. 5, indicating that
the SSA generally performs better than the global optimization. The contrast is especially
strong at the presence of stronger noise.

6 Forecasting

An important application of the SSA is to predict future values based on the underlying
model constructed from existent data. In this regard, our global optimization framework has
the advantage of working directly with the Vandermonde parameters β�’s and λ�’s. That is,
once these parameters are estimated, the forecasting is a natural consequence as is described
in (20). Though it is not the primary goal of this paper, we demonstrate this capacity in this
section by comparing forecast values obtained from the global optimization and the basic
SSA.

For completion, we briefly review how forecasting by the basic SSA is accomplished. More
details can be found in [19,23,29]. Suppose that u1, . . . ,ud are the left singular vectors at
convergence of the SSA applied to the given time series {z0, . . . , zn}. Ideally, we would prefer
to see that a rank-d Hankel matrix Z̃ has been found. Otherwise, the final reconstructed series
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{h0, . . . , hn} is obtained by diagonally averaging entries of Z̃ . Let each singular vector ui be
partitioned as

ui =
[

ũi

πi

]

with ũi denoting the first p − 1 entries and πi is the last entry of ui . Assuming
ν := π2

1 + · · · + π2
d < 1, define

⎡
⎢⎣

ap−1
...

a1

⎤
⎥⎦ :=

d∑
i=1

πi ũi

1 − ν2 . (31)

Then it has been proposed [29, Section 3.2] (See also [19, Theorem 5.2]) that the finite
difference scheme

hk :=
p−1∑
i=1

ai hk−i , k = n + 1, . . . (32)

be used as a forecasting scheme. In contrast, the Vandermonde parameters naturally give rise
to any future values via the closed form (20). If necessary, we can generate the LRR (13)
via (14). In that case, note the fundamental difference that the LRR (13) uses only d starting
values {h0, . . . , hd−1} and is of minimal order.

6.1 Trend detection

We use the real-valued signal

s(t) = 3(.1)t + sin(.2π t) (33)

to demonstrate the forecasting capacity of both approaches. We sample the signal at the rate
29 over interval [0, 2). It can be verified that the exact time series corresponds to the case

d = 3 with exact Vandermonde parameters β = [3,−.5ı, .5ı] and λ = [.1, e
.2π ı
29 , e− .2π ı

29 ].
We then add real-valued AWGN noises with specified SNR to create artificial observed data
{zk}. Out of the 1023 samples, we use the first n = 511 to construct the basic model which
then is used to predict the remaining 512 future values. For the SSA, the window length is
set at p = 
 n

2 � = 256. For the global optimization, 40 initial values are taken. In the latter,
we must point out that the optimization takes place over a complex domain, so the computed
Vandermonde parameters and the reconstructed signal could be complex-valued. To retrieve
real-valued approximation, we simply project the signal to the real line.

Two possible scenarios are depicted in Fig. 7. Note that in both cases, we have used only the
information over the interval [0,1) to construct the model. As is expected, the Vandermonde
parameters obtained from global optimization are fairly consistent in predicting values over
the interval [1,2) by using (20). The trend of the original signal is reasonably identifiable,
though in the picture on the right of Fig. 7 the prediction begins to deviate. We notice that in
both scenarios the SSA results suffer from considerable fluctuations around the true curve.
Conceivably, its forecasting of values over the interval [1,2) will not be as accurate as that
from the global optimization. Instead of displaying the forecast values by the SSA, we report
the following measurement.
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Fig. 7 Detecting trends and making forecasting under strong noise SNR = −3 by SSR (red) and global
optimization (green). (Color figure online)

To gauge the effectiveness of the forecasting in general, we employ the notion of root-
mean-square errors (RMSE) defined by [32]

RMSE :=
√√√√ 1

512

1023∑
k=512

(zk − hk)2, (34)

where zk and hk stand for the observation and the forecasting values at time tk , respectively.
We repeat the experiment 50 times for each SNR = ±3 by generating different AGWN
noises and collect the resulting RMSE for each test. The results are depicted in Fig. 8. The
figure on the left indicates that the average RMSE by the global optimization is about 66 %
of that by the SSA under weak noise (SNR = 3dB); whereas the ratio is about 80 % under
strong noise (SNR = −3dB). Also indicated is that the RMSE for SSA has lots of outliers,
making the mean calculation biased toward the higher end. The figure on the right is the
histogram of sample to sample future SSA error to the global optimization error. A positive
logarithm of this ratio indicates that the global optimization forecasting is more accurate the
the SSA forecasting. Together with phenomenon observed in Fig. 7, we think the forecasting
capacity of the global optimization should be quite convincing.

6.2 Real data application

Thus far, all our experiments have been done under the “controlled” condition that the rank of
the underlying signal is precisely known a priori. These experiments are designed to provide
an absolute base to evaluate the performance of the basic SSA. In real applications, the
determination of a suitable rank is not easy and plays a critical role in the effectiveness of
the reconstructed model. We realize that for each individual real data set, a lot endeavors
need to be taken to select as appropriate rank, to fine tune the parameters, and to interpret
the resulting model. We notice that most of the many research articles have had to deal with
one individual case each time. In the section, we consider two real data sets and demonstrate
how the global optimization method performs under these uncertainties.

Depicted by the blue curve in Fig. 9 are the daily closing gold prices for 97 succes-
sive trading days recorded by Hipel and Mcleod in 1994 [19]. Needless to say, many
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Fig. 9 Approximation of 97-day gold price (blue) by using the first 89 daily prices via SSA (red) and global
optimization (green). Prices for day 90 to 97 are by forecasting. (Color figure online)

factors would have affected some abrupt changes of gold price in the series. The funda-
mental question is whether the gold price can be forecast based on past values. For our
experiment, we take the first 89-day prices and wish to compare the forecast the last 8-
day prices. We take the suggestion in [19] by setting the window length at p = 45. Also
suggested is the rank at about d = 5 or 6, but we choose to try all ranks from 3 to 8.
For the global optimization, we try 50 starting values. Approximations by both methods
at d = 3 are nearly identical. The SSA approximations for d = 4 and d = 5 is distin-
guishable, but for higher ranks the SSA approximations are almost identical. It is worth
noting that for d ≥ 5, the SSA approximations fluctuate almost at the same rhythm as the
observed daily prices. This behavior is critically important and show the amazing ability
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Fig. 10 Approximation of 1973–1978 monthly accidental deaths (blue) in the USA by the first 63 monthly
data via SSA (red) and global optimization (green). Data after the 64th month are by forecasting. (Color figure
online)

of the SSA method. In contrast, the global optimization method is able to provide smoothing
of the otherwise fluctuant prices, but it fails to pick up the fluctuant point. On the other hand,
the SSA method fails to predict the deep dive of the gold price at the last 8 days, while on two
occasions (d = 6, 7) the global optimization predicts a continuing down slide of the gold
price. We have stressed the determination of a suitable rank d is itself a difficult problem.
This experiment strongly suggests that in real applications a lot more factors, some might be
even unknown, will affect the final construction of the model.

Similarly, depicted in Fig. 10 are the monthly accidental deaths in the USA from 1973 to
1978. This data set has been used by many studies for testing the efficiency of algorithms
[7,22,23]. We set the window length at p = 32 and use the first 63 monthly data to construct
the model. We try all ranks from d = 10 to 15. Except for the case d = 11 where the model
from the global optimization gives the wrong prediction, both methods perform reasonably
well, whereas we think that the simple and fast SSA method is superior to more expensive
global optimization approach.

It is important to point out one possible explanation on why the SSA method can outper-
form the global optimization method in both experiments above. We notice that the data stay
far away from the unit disk and change rapidly, whereas in our setup for the global optimiza-
tion we have restricted λ� (See 6) to be within the unit disk. As such, the global optimization
method is more suitable if the data inherit some asymptotic behavior when the powers of λ�
die out. When the data simply fluctuate as we have seen in the two real data sets, we rely
on β� to compensate the decline of the powers of λ�. We may also need more terms in the
summation (7), which might then bring in more noise than the lower rank approximation.

7 Conclusion

Alternating projection between two manifolds with the aim of seeking out a point of intersec-
tion, or a pair of points yielding minimum distance, has long been employed across the fields
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in a variety of applications. Starting with a Hankel matrix embedded with a contaminated
time series, the SSA exploits this notion to find, in particular, a low rank Hankel approxima-
tion. The idea is simple enough for quick implementation and has gained popularity among
practitioners.

This paper investigates the effectuality of the SSA algorithm by comparing its recon-
structed time series with the absolute best approximation obtained from global optimization
techniques. The framework is built upon Vandermonde factorization of Hankel operators,
which provides natural parameters over compact feasible set and, hence, guarantees the
existence of a global solution.

Setting the stopping criterion at the nearness of two successive iterates within a uniformly
specified bound, we find that the convergence behavior of the SSA algorithm is generally
insensitive to the strength of the added noise. That is, so long as the size of the embedding is
fixed, it usually takes about the same order of iterations for the SSA to converge, regardless
of the SNR. On the other hand, as is expected, stronger noise does degrade the quality of the
final approximation to the original, uncontaminated signal.

What is most interesting is the empirical evidence that, despite of its simplicity, the SSA
does indeed perform remarkably well when comparing to the results from the more compli-
cated global methods. This is especially so when the SNR is relatively high. Since the global
methods, if successful, produce the best possible approximation to the Vandermonde para-
meters from the contaminated data, such a comparison justifies therefore that, for exploratory
model-building purpose, the simpler SSA algorithm might be sufficient as a handy tool. For
more rigorous affirmative procedure, however, we must stress that the SSA does not always
give rise to an optimal solution.

8 Appendix

In this section we explain how the gradient information can be derived for the global
optimization code MultiStart.

Let the objective function (26) be rewritten in the form

f (λ1, . . . , λd) = 1

2
〈ΛL(Λ; z)− z,ΛL(Λ; z)− z〉,

with inner product 〈p,q〉 := ∑
i pi qi for complex vectors. Employing polar coordi-

nates (ρi , θi ) when λi = ρi eıθi as variables in our global method, we identify Λ =
Λ(λ1, . . . , λd) = Λ(ρ1, . . . , ρd , θ1, . . . , θd). We now calculate the gradient of f with respect
to the real variables ρi and θi .

Using the fact thatΛ∗ (ΛL(Λ; z)− z) = 0, the action of the Fréchet derivative of f with
respect to Λ at a complex matrix H is given by

∂ f

∂Λ
.H = � (〈H, (ΛL(Λ; z)− z)L(Λ; z)∗〉),

where � stands for the real part of a complex-valued quantity and the same notation 〈·, ·〉
denotes the generalization to the Frobenius inner product of complex matrices. On the other
hand, the action of the Fréchet derivative of Λ with respect to variables ρ = [ρ1, . . . , ρd ]
and θ = [θ1, . . . , θd ] at vectors h,k ∈ R

d can be expressed as
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∂Λ

∂ρ
.h = diag{0, 1, 2, . . . , 2n − 2}︸ ︷︷ ︸

�

Λdiag {ρ}−1 diag{h},

∂Λ

∂θ
.k = ı�Λdiag{k},

respectively. By the chain rule, we obtain the actions of the gradient of f as follows:

∂ f

∂ρ
.h = ∂ f

∂Λ
.

(
∂Λ

∂ρ
.h
)

= � (〈�Λdiag {ρ}−1 diag{h}, (ΛL(Λ; z)− z)L(Λ; z)∗〉),
= � (〈diag{h}, diag {ρ}−1Λ∗�(ΛL(Λ; z)− z)L(Λ; z)∗〉),

∂ f

∂θ
.k = ∂ f

∂Λ
.

(
∂Λ

∂θ
.k
)

= � (〈ı�Λdiag{k}, (ΛL(Λ; z)− z)L(Λ; z)∗〉)

= � (〈diag{k},−ıΛ∗�(ΛL(Λ; z)− z)L(Λ; z)∗〉)

By the Riesz representation theorem, we see that the gradient of f can be expressed as

∂ f

∂ρ
= � (

diag
{
diag {ρ}−1Λ∗�(ΛL(Λ; z)− z)L(Λ; z)∗

})
,

∂ f

∂θ
= � (

diag
{−ıΛ∗�(ΛL(Λ; z)− z)L(Λ; z)∗

})
.
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