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Abstract Sampling from probability distributions in high dimensional spaces is generally
impractical. Diffusion processes with invariant equilibrium distributions can be used as a
means to generate approximations. An important task in such an endeavor is to design an
equilibrium-preserving drift to accelerate the convergence. Starting from a reversible diffu-
sion, it is desirable to depart for non-reversible dynamics via a perturbed drift so that the
convergence rate is maximized with the common equilibrium. In the Gaussian diffusion
acceleration, this problem can be cast as perturbing the inverse of a given covariance matrix
by skew-symmetric matrices so that all resulting eigenvalues have identical real part. This
paper describes two approaches to obtain the optimal rate of Gaussian diffusion. The asymp-
totical approach works universally for arbitrary Ornstein–Uhlenbeck processes, whereas the
direct approach can be implemented as a fast divide-and-conquer algorithm. A comparison
with recently proposed Lelièvre–Nier–Pavliotis algorithm is made.

Keywords Diffusion acceleration · Convergence to equilibrium · Ornstein–Uhlenbeck
process · t-Circulant matrices · Inverse eigenvalue problem · Recursive algorithm · MCMC

1 Introduction

1.1 Motivation

When dealing with applications in areas that involve uncertainties, it often is necessary
to collect samples subject to some probability distributions. Taking samples directly from
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probability distributions in high-dimensional spaces or large finite sets is usually impractical,
especially when the underlying density functions are not completely known. One possible way
to circumvent this difficulty is by approximating the underlying distributions via diffusion
processes whose equilibrium distributions are the desired distributions. For practical reasons,
it is further preferred that among all possible diffusions we can realize the equilibrium quickly.
Accelerating the rate of convergence therefore is an important issue.

How good the approximation and acceleration are depends on the employed diffusion
processes (or more generally, the Markov processes/chains) and the measurement criteria.
In earlier research, the convergence rate of transition probability to equilibrium in the vari-
ational norm and the spectral gap of the infinitesimal generator have been proposed as the
comparison criteria [17,18]. When the sample space is large, finite, and discrete, one often
resorts to the Markov chain Monte Carlo methods. Criteria including, for instance, geometric
ergodicity, asymptotic variance, and the modulus of the second largest eigenvalue, have also
been developed in a similar spirit for assessing the performance of Monte Carlo algorithms.

The use of diffusions for sampling has many important applications. See, for examples,
[2–5,13,15,20,21,23,25–28] and the many references contained therein. The issue of rate
of convergence to equilibrium for various families of Markov processes/chains has also
been an extensively studied subject. Many of the theoretical results, though only conceptual
algorithms, have the potential to advance new methods for more effective Monte Carlo sim-
ulation. In statistical physics, considerable progress has been made for the problem of trend
to equilibrium for various classes of diffusion equations. See [22,31] and other references
therein.

Of particular interest is the scheme of perturbing an original reversible system by proper
skew-symmetric dynamics to accelerate the convergence. Consider the discrete case where a
reversible Markov chain with equilibrium distribution π is given. That is, given a transition
matrix P which is symmetric with respect to the inner product weighted by π , we seek
for a suitable skew-symmetric matrix Q so that π is invariant with respect to the Markov
chain associated with the transition matrix P + Q and yet the convergence occurs as fast
as possible [7,6,14]. Similarly, in the continuous case, we seek for a proper additive skew-
symmetric perturbation drift to a given reversible diffusion so that the same equilibrium π

is maintained and realized by the resulting non-reversible diffusion as quickly as possible
[13,17,16,18,26].

1.2 General Principle of Acceleration

For self-containment, we briefly describe the notion of diffusion acceleration introduced in
[17,18]. Let U : R

n → R be a smooth potential satisfying the condition that
∫

Rn e−U (x) dx <
∞. Suppose that the probability distribution π which we are interested in sampling has the
density

ρ(x) = 1

Z
e−U (x), (1)

where the normalizing constant Z = ∫
Rn e−U (x) dx is the partition function.

Let W (t) be a standard Brownian motion in R
n . A commonly used reversible diffusion

for approximating π(x) is of the form

d X (t) = −∇U (X (t))dt + √
2dW (t), t > 0, X (0) = x0, (2)
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which is known as a gradient diffusion. Let pt (x) denote the probability density function of
the solution X (t) to (2) at time t. Then pt (x) satisfies the Fokker–Planck equation

∂p

∂t
= ∇ · (∇U p)+�p. (3)

The exponential convergence of the density function pt to the equilibrium π through the
spectral gap of the Fokker–Planck equation (3) appearing in a Poincaré inequality is discussed
in [21]. In contrast, we consider the convergence through the infinitesimal generator of the
diffusion herein. By a change of variable to the unknown of the Fokker–Planck equation (3)
via pt (x) = qt (x)ρ(x), it can be shown that the function qt (x) is a solution of the backward
Kolmogorov equation

∂q

∂t
= −∇U · ∇q +�q. (4)

Let L2(π) denote the L2 space weighted by π . With a suitable domain, the differential
operator appearing on the right-hand side of (4) is the infinitesimal generator of the gradient
diffusion (2). More precisely, we have

L0 f = −∇U · ∇ f +� f, (5)

for f ∈ D(L0) ⊂ L2(π). The subscript 0 is meant to indicate that no additional drift is
added to the diffusion (2). It is standard that the operator L0 is self-adjoint on L2(π). This is
equivalent to the fact that the gradient diffusion (2) is reversible.

Note that the gradient diffusion is just one of the diffusions with the desired equilibrium.
It is natural to consider a pool of diffusions with the common desired equilibrium, while
searching a diffusion that possesses a better (or the best if it exists) rate of convergence. Since
the gradient diffusion is the only reversible diffusion, any “better” diffusion with invariant
equilibrium is necessarily non-reversible.

A suitable non-reversible modification has some specific characteristics. In order to pre-
serve π , the new drift necessarily assumes the additive form [17, Proposition 2.2]. So we
consider a family of diffusions

d X (t) = −∇U (X (t))dt + C(X (t))dt + √
2dW (t), t > 0, X (0) = x0. (6)

where, also for the sake of keeping π invariant, the vector field C must be weighted
divergence-free with respect to π , that is, ∇ · (Ce−U ) = 0. The infinitesimal generator
of the diffusion (6) is

Lc = −∇U · ∇ + C · ∇ +�, (7)

with the corresponding L2(π)-adjoint operator given by

L∗
c f = −∇ · ((−∇U + C) f )+� f. (8)

It is not hard to see that Lc is not self-adjoint if C is not zero. Hence, the diffusion (6) is
non-reversible. The spectral gap of Lc defined by

λ(C) := sup{real part of u | u ∈ σ(Lc) and u 	= 0} (9)

has been used to gauge the closeness of the distribution of X (t) and the equilibrium π at
large time t . It is known that λ(C) ≤ λ(0) generically [18, Theorem 1]. Thus, adding a
weighted divergence-free and skew-symmetric perturbation C · ∇ always has the advantage
of accelerating the convergence.
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1.3 Application to Gaussian Diffusion

In the case of Gaussian diffusion, the potential U is quadratic and the extra drift C is linear.
The gradient diffusion (2) for the case when

U (x) = 1

2
〈−Dx, x〉, (10)

where D is a negative-definite real matrix, leads

d X (t) = DX (t)dt + √
2dW (t), t > 0, X (0) = x0, (11)

which is reversible with equilibrium π and density ρ(x) = 1
Z exp( 1

2 〈Dx, x〉). Departing
from the reversible dynamics by adding a linear drift while maintaining π invariant leads to
the following Ornstein–Uhlenbeck process

d X (t) = B X (t)dt + √
2dW (t), t > 0, X (0) = x0, (12)

where the stability matrix B must be of the form B = D + C for some matrix C satisfying
the relation 〈Cx, Dx〉 = 0 for all x ∈ R

n [17, Theorem 3.1]. It is not difficult to see that C
must be of the form C = SD for some skew-symmetric matrix S.

For a given matrix A ∈ R
n×n , let λM (A) and λm(A) denote the maximum and mini-

mum real parts of eigenvalues of A, respectively. One way to measure the convergence rate
of the covariance of X (t) is via the quantity exp(2λM (B)t). From the inequalities

λm(D) ≤ λm(B) ≤ λM (B) ≤ λM (D), (13)

we immediately see that the diffusion with drift D has the worst rate, whereas improvement
can be made with any skew-symmetric matrix S.

Apparently, the most desirable rate of convergence is the optimal value given by [17]

inf
S

{λM (D + SD) | S is skew-symmetric and SD ⊥ D} = trace(D)

n
. (14)

The purpose of this paper is to propose a computational mechanism to attain this optimal
rate of Gaussian diffusion acceleration.

Following (9), it is essential to know the spectrum of the infinitesimal generator of the
Ornstein–Uhlenbeck process (12)

Lou = Bx · ∇ +� (15)

on L2(π). Indeed, such a result is fully understood as [24]

σ(Lou) =
{

r∑

i=1

niλi

∣
∣
∣ ni ∈ N

}

, (16)

where λ1, . . . , λr are the (distinct) eigenvalues of B. It is clear that the spectral gap of Lou

is λM (B).

1.4 Presentation Outline

We plan to cast the optimal Gaussian diffusion acceleration as an inverse eigenvalue problem
[10]. Specifically, we answer the following two problems in this paper.
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Optimal Gaussian Diffusion Acceleration 575

Problem 1 Find a unified strategy for constructing a skew-symmetric matrix S, independent
of D, so that the optimal rate is achieved asymptotically in the sense of having the limiting
behavior

lim
α→∞ λM (D + αSD) = Trace(D)

n
. (17)

Problem 2 For each given D, and a skew-symmetric matrix S, dependent on D, so that the
optimal rate is attained in the sense that

λM (D + SD) = Trace(D)

n
. (18)

The first problem differs from the second problem in two aspects. First, the skew-symmetric
matrix S for Problem 1 is to be universal for all negative-definite matrices D, whereas the
skew-symmetric S for Problem 2 varies in D. Second, Problem 1 concerns an asymptotic
convergence to the optimal rate, whereas Problems 2 concerns a direct hit for the optimal
rate.

The reason for considering Problem 1 is that the parameter α can be interpreted as the
magnitude of perturbation. Our first contribution in this regard is to characterize a special
class of skew-symmetric matrices whose perturbation causes not just λM , but the real part
of all eigenvalues, to converge to the optimal rate. This answers more than just Problem 1.

The attainability of the optimal rate by a certain skew-symmetric matrix desired in Prob-
lem 2 was first hinted in [17]. A formal proof of the very existence of an optimizer was
established recently in [21], which was also suggested as an constructive algorithm. Its
drawback, in our opinion, is the need of repeated Gram–Schmidt orthogonalization prone
to numerical instability. In contrast, our second contribution in this paper is to convert an
induction argument used in [17] into a fast divide-and-conquer algorithm which constructs
the optimizer recursively and effectively without the concern of stability as that in [21]. This
approach fully answers Problem 2.

2 Asymptotic Approach to the Optimum

To study the asymptotic behavior of λM (D+αSD)whenα goes to infinity, we may perform
an orthogonal similarity transformation if needed to assume, without loss of generality, that
D is a diagonal matrix to begin with. Since D is negative-definite, we may further carry out
the similarity transformation

(−D)1/2(D + SD)(−D)−1/2 = D − (−D)1/2S(−D)1/2, (19)

where the matrix

K := (−D)1/2S(−D)1/2 (20)

remains to be skew-symmetric. Thus it suffices to consider perturbations of the form D−αK ,
which effectively simplifies the analysis below.

2.1 A Special Perturbation

In the 2-dimensional case, any skew-symmetric matrix K will guarantee the convergence
of λM (D − αK ) to the optimal rate. It is also trivial to construct a matrix K to attain the
optimal rate.
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For higher dimensional cases, we begin with a specific skew-symmetric matrix defined
by

K0 :=

⎡

⎢
⎢
⎢
⎢
⎣

0 1 · · · 1

−1
. . .

...
...

. . . 1
−1 · · · −1 0

⎤

⎥
⎥
⎥
⎥
⎦
, (21)

whose properties eventually motivate us to consider more general cases. We shall show
that this constant matrix K0 defined above works universally for all D. Our analysis relies on
the fact that we can characterize the spectral information of K0 completely in the following
lemma.

Lemma 1 Suppose that (λ̂, x̂) is an eigenpair of the matrix K0 with ‖x̂‖2 = 1. Then

1. There are n eigenpairs whose eigenvalues are purely imaginary and whose eigenvectors
form a unitary matrix.

2. The k-th eigenvalue λ̂k is of the form λ̂k = 1+ck
1−ck

, where ck = e(π(1+2k)i)/n is an n-th root
of negative unity.

3. If x̂ = [x̂1, · · · , x̂n]�, then x̂ j
¯̂x j = 1/n for all 1 ≤ j ≤ n.

Proof The first result is true for any skew-symmetric matrices. Only the last two assertions
relevant to K0 need be proved. From the equation K0x̂ = λx̂, we can induce easily the system
of equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x̂2 + x̂1 = λ̂(x̂1 − x̂2),

x̂3 + x̂2 = λ̂(x̂2 − x̂3),
...

x̂n + x̂n−1 = λ̂(x̂n−1 − x̂n).

It follows that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x̂2 = λ̂−1
λ̂+1

x̂1 := cx̂1,

x̂3 = λ̂−1
λ̂+1

x̂2 = c2 x̂1,

...

x̂n = λ̂−1
λ̂+1

x̂n−1 = cn−1 x̂1.

Using the facts that (c + c2 + c3 + · · · + cn−1)x̂1 = λ̂x̂1 and λ̂ = 1+c
1−c , we see that cn = −1

and hence |x̂1| = |x̂2| = · · · = |x̂n |. Since ‖x̂‖2 = 1, we must have |x̂k |2 = 1/n for all
1 ≤ j ≤ n. ��

The eigenvalues and eigenvectors of D − αK0 are continuous functions of α when α is
large enough [1,19]. Denote this fact by

(D − αK0)x(α) = λ(α)x(α). (22)

Suppose that (λ(α), x(α)) is an eigenpair with ‖x(α)‖2 = 1. Then

λ(α) = 〈(D − αK0)x(α), x(α)〉 = 〈Dx(α), x(α)〉 − α〈K0x(α), x(α)〉. (23)
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Fig. 1 Real and imaginary parts of the eigenvalue curves of D − αK .

Observe that the first term on the right-hand side of (23) is real and negative, while the second
term is purely imaginary because 〈K0x(α), x(α)〉 = 〈x(α), K �

0 x(α)〉 = 〈x(α),−K0x(α)〉 =
−〈K0x(α), x(α)〉. We know therefore

λ(α) = 〈Dx(α), x(α)〉. (24)

Trivially, D − αK0 and D/α − K0 have the same eigenvectors. In the meantime, by
continuity, eigenvectors of D/α − K0 converge to those of −K0 when α goes to infinity1.
Suppose that x(α) → x̂,→ ŷ, where −K0x̂ = λ̂x̂. As α goes to infinity, by (24), λ(α)
converges to 〈Dx̂, x̂〉. By using Lemma 1 and that D being diagonal, we find that

〈Dx̂, x̂〉 = 〈D, x̂x̂∗〉 = Trace(D)

n
. (25)

Since the above argument is applicable to every eigenpair (λ(α), x(α)), we have established
the following result which is new.

Theorem 1 In the Ornstein–Uhlenbeck process (12), suppose that the skew-symmetric
matrix K0 is added to a negative diagonal matrix D such that the drift term is B = D −αK0.
Then the optimal rate of convergence can be reach asymptotically via any of the eigenvalue
curves, that is, limα→∞ λ j (D − αK0) = Trace(D)

n for every 1 ≤ j ≤ n.

Example 1 Demonstrated in Fig. 1 is a numerical example of Theorem 1 for the matrix

D = diag {−3.6517,−2.4430,−2.8926,−1.1864,−2.2942} .
All eigenvalues are drawn. Of particular interest is that in the initial state, curves of

λ(α) and �λ(α)might merge or bifurcate, indicating eigenvalues are evolving from distinct

1 Complex eigenvalues cannot be ordered. The continuous dependence of one particular eigenvalue and its
associated eigenvector among other eigenpairs therefore has to be carefully discerned.
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reals to complex conjugates or vice versa. Since complex numbers cannot be ordered, if all
eigenvalues are generated simultaneously, we cannot tell which is which as a continuous
function of α. Change of colors in any particular curve in Fig. 1 indicates the different order
that eigenvalue is computed by the Matlab algorithm. After piecing together, continuity
is preserved. It should be noted, however, that at certain points the eigenvalues are not
differentiable.

In this particular example, we see that the function λM (D − αK0), namely, the top
curve, is monotone decreasing. This is not always the case and counterexamples can easily
be found. When α is sufficiently large, nevertheless, eigenvalues of D − αK0 for any D
should behave proportionally (indeed, α times) to those of −K0, which effectively ends the
stage of merging or bifurcating. Convergence of real parts of all eigenvalue values is evident.

Upon a close examination of the argument above, we actually have the following general-
ization which solves not only Problem 1, but also remains valid for any real diagonal matrix
D without definiteness restrictions.

Theorem 2 Given an arbitrary diagonal matrix D, suppose that K is a skew-symmetric
matrix with the properties that

1. Its eigenvalues are pairwise distinct;
2. Each normalized eigenvector x̂ = [x̂1, · · · , x̂n]� is such that x̂ j

¯̂x j = 1/n for all 1 ≤ j ≤
n.

Then limα→∞ λ j (D − αK ) = trace(D)
n for every 1 ≤ j ≤ n.

Proof The first property ensures that the eigenvector x(α) of the pencil D−αK is continuous
for α large enough [1,19], whence x(α) → x̂ for some eigenvector x̂ of K . By the fact that
D is diagonal, the second property guarantees that λ j (D − αK ) converges to the optimal
rate trace(D)

n for all 1 ≤ j ≤ n. ��
The question now is what matrices other than K0 can respect spectral properties described

above. We characterize a more general class of matrices for the purpose of asymptotic per-
turbation in the next section.

2.2 t-Circulant Matrices

Given an arbitrary row vector c := [c0, . . . , cn−1] and a constant t , a square matrix of the
form

C(c; t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

c0 c1 c2 . . . cn−1

tcn−1 c0 c1 cn−2

tcn−2 tcn−1 c0 cn−3
...

...
...

tc1 tc2 tc3 . . . c0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(26)

is called a t-circulant matrix [11]. The special case C(c; 1) is precisely the well-known
circulant matrix which has been extensively studied in the literature [12]. Let 	t denote the
specific matrix

	t :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0
0 0 1 0
...

. . .
. . .

...

0 1
t 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(27)
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and define the characteristic polynomial

pc(x) :=
n−1∑

k=0

ck xk . (28)

It is easy to see that

C(c; t) =
n−1∑

k=0

ck	
k
t = pc(	t ). (29)

Because of this representation, many important properties of t-circulant matrices are similar to
those of circulant matrices. For instance, t-circulant matrices are closed under multiplication
and are commutative under multiplication, all played out by fundamental role of the matrix
	t [12].

Let ω denote the primitive n-th root of unity

ω := exp(
2π ı

n
). (30)

Define the diagonal matrix

� := diag(1, ω, ω2, . . . , ωn−1), (31)

and let F = [ fi j ] denote the so-called discrete Fourier matrix where

fi j := 1√
n
ω(i−1)( j−1), 1 ≤ i, j ≤ n. (32)

It is well-known that F is a unitary matrix and

	1 = F�F∗. (33)

It follows from (29) that

C(c; 1) = Fpc(�)F
∗. (34)

is the spectral decomposition of the circulant matrix C(c; 1).
In a similar way, let λ denote the primitive n-th root of t

λ := |t |1/n exp

(
(θ + 2π)ı

n

)

, (35)

where θ is the principal argument of t , and define

 := diag(1, λ, λ2, . . . , λn−1). (36)

It can be shown that

	t = (F)(λ�)(F)−1 (37)

and, thus,

C(c; t) = (F)pc(λ�)(F)−1. (38)

Each column vector of F has length

μ(t) :=
√

t2 − 1

n(|t |2/n − 1)
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which converges to 1 as t approaches ±1.
Note that fi j f i j = 1

n for all 1 ≤ i, j ≤ n. Thus, for any c, the circulant matrix C(c; 1)
seems to be a good candidate since its eigenvectors satisfy the second property of Theorem 2.
For our application, however, we also need skew-symmetry. By (26), we need c0 = 0 and
ci = −tcn−i , i = 1, . . . , n − 1. It follows that we have two possible choices

ci =
{−cn−i , if t = 1,

cn−i , if t = −1,
(39)

whereas we also need eigenvalues of C(c;±1) be distinct.
It turns out that, when n is even, the case t = 1 does always have a zero eigenvalue with

multiplicity at least two. Therefore, t = 1 should not be used in the acceleration scheme. On
the other hand, for generic c satisfying ci = cn−i , the eigenvalues pc(λω

j ), j = 1, . . . , n,
of the (-1)-circulant skew-symmetric matrices C(c;−1) are distinct. The matrix K0 defined
in (21) corresponds to the special case with t = −1 and c = [0, 1, 1, . . . 1].

In conclusion, we have made two contributions to this asymptotic approach. First, we
identify a general class of skew-symmetric (−1)-circulant matrices that can serve to solve
Problem 1. No such a general characterization is known before in the literature. Our discovery
is new. Second, we offer a mathematical proof showing that any of this class of skew-
symmetric (−1)-circulant matrices works independently of D. Once one is found, it works
universally for all D. The choice of c should have an effect on how fast λ j (D − αK )
reaches its limit point when α goes to infinity, but should not be critical because any choice
will allow to achieve the optimal acceleration rate for the Gaussian diffusion process.

3 Attainability of the Optimum

Thus far we have been using a fixed skew-symmetric (−1)-circulant matrix K to introduce the
perturbation D −αK . The resulting diffusion process is shown to converge to its equilibrium
at a rate which is asymptotically optimal as α goes to infinity. In this section, we take a
complete different perspective. We want to achieve the optimal rate of acceleration by one
single additive perturbation.

The existence of a single skew-symmetric matrix K such that the additive perturbation
D − K attains the optimal rate was first hinted in [17]. This very fact was formally proved
in a recent paper [21]. One common feature in both approaches is to construct a particular
orthogonal matrix, though in different context. To contrast the dissimilarity, we term the
construction based on [17] the H approach and that in [21] the Q approach, respectively. For
completion, we briefly review the theory of both approaches. Our focus in the subsequent
discussion is more on the computational aspect.

3.1 The Q Approach

The following theorem represents a condensed version of a much more detailed discussion
in [21]. We highlight only a few points that are essential for both the theory of existence and
the construction of the optimal perturbation [21, Proposition 2 and Lemma 2].

Theorem 3 Given a symmetric and negative-definite matrix D, let K denote a skew-
symmetric matrix. Then the following two conditions are equivalent:
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Optimal Gaussian Diffusion Acceleration 581

Algorithm 1 Constructing orthonormal basis (implicit Q) for optimal non-reversible pertur-
bation
Require: An arbitrary orthonormal basis {ψ1, . . . , ψn} of R

n

Ensure: An orthonormal basis satisfying the first equation in (41)

for k = 1, · · · , n − 1 do
1. Permute the subsequence {ψk , . . . , ψn}, if necessary, so that

〈ψk , Dψk 〉 = min
j=k,...,n

〈ψ j , Dψ j 〉 < trace(D)

n

and

〈ψk+1, Dψk+1〉 = max
j=k,...,n

〈ψ j , Dψ j 〉 > trace(D)

n
.

2. Compute the scalar s such that
ψ̂ := cos(s)ψk + sin(s)ψk+1

satisfies

〈ψ̂, Dψ̂〉 = trace(D)

n
.

3. Employ the Gram–Schmidt process to orthogonalize the vectors {ψ̂, ψk+1, . . . , ψn} to
{ψ̂, ψ̂k+1, . . . , ψ̂n}.

end for

1. The matrix D − K is diagonalizable with

λ(D − K) = Trace(D)

n

for every eigenvalue of D − K.
2. There exists a real, symmetric, and positive-definite matrix Q such that

KQ − QK = Q D + DQ − 2Trace(D)

n
Q. (40)

3. Suppose that {(λk, ψi )}n
k=1 are eigenpairs of Q and that ψ1, . . . , ψn forms an orthonor-

mal basis of R
n. Then

〈ψ j , Dψk〉 =
{

trace(D)
n , if j = k,

λk−λ j
λk+λ j

〈ψ j ,Kψk〉, if j 	= k.
(41)

The third condition in Theorem 3 can be converted into an algorithm which we refer to as
the Q approach because of its dependence on the symmetric and positive-definite matrix Q.
The procedure proposed in [21] involves two steps. The first step is critical. It requires the
construction of an orthonormal basis {ψ1, . . . , ψn} satisfying the first equation in (41). This
construction is summarized in Algorithm 1. Noticeable in the algorithm is the necessity of
repeated orthogonalization. Once the orthonormal basis {ψ1, . . . , ψn} is obtained, the second
step is to choose distinct and positive eigenvalues {λ1, . . . , λn} and define the skew-symmetric
matrix K according to the second equation in (41).

There are a few potential drawbacks of the algorithm proposed in [21]. First, the Gram–
Schmidt orthogonalization process utilized in the third step of the loop in Algorithm 1 is
prone to be numerical unstable, especially when the given matrix D is ill-conditioned. This
part of calculation could be replaced by the Q R decomposition. Even so, the nature of
progressive orthogonalization only among {ψ̂, ψk+1, . . . , ψn} can still cause loss of orthog-
onality in the final {ψ1, . . . , ψn}. Second, as the re-orthogonalization is needed throughout
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the loop, the computation overhead is quite high. In contrast, the H approach which employs
the divide-and-conquer technique that is similar to the fast Fourier transform calculation is
computationally more efficient.

3.2 The H Approach

The theoretical basis of the H approach is rooted in following result [17, Lemma 4.1] which
originally was proved by mathematical induction.

Theorem 4 Suppose A ∈ R
n×n is symmetric with respect to a prescribed inner product in

R
n. Let m denote the greatest integer less than or equal to the fraction n

2 . Then there exists
an orthogonal decomposition,

R
n = H0 ⊕ H1 ⊕ · · · ⊕ Hm

with respect to the prescribed inner product such that:

1. For 1 ≤ k ≤ m, the subspace Hk is of dimension two. Also, trace(Pk A) = 2
n trace(A),

where Pk denotes the orthogonal projection onto Hk;
2. If n is odd, then H0 is of dimension one and trace(P0 A) = 1

n trace(A), where P0 is the
projection onto H0.

Note that only symmetry is needed in Theorem 4, whereas the notion of symmetry depends
on the inner product being used. The theorem is applicable to any prescribed inner product in
R

n . For our application, we shall employ the standard Euclidean inner product only. Under
such a situation, Theorem 4 can be interpreted as follows, whereas our goal is to construct
the orthogonal matrix U stated in the corollary.

Corollary 1 Given a symmetric matrix A ∈ R
n×n, there exists an orthogonal matrix U ∈

R
n×n such that the quantity trace(A) is redistributed through the diagonal of the matrix

T := U� AU in the following way:

1. From the bottom up, each 2×2 diagonal blocks of T shares equally 2
n portion of trace(A).

2. If n is odd, then the (1, 1) element of T is precisely 1
n trace(A).

Our contribution is at converting the otherwise a theoretical proof by induction of the above
theorem into a recursive algorithm that computes the needed perturbation effectively. With the
aid of modern programming languages that allow a subprogram to invoke itself recursively,
induction proofs can often be implementable for numerical computation. Successful cases
of such an adoption can be found in, for example, [8,9].

The basic idea is to split the basis of orthonormal eigenvectors as evenly as possible into two
groups each of which spans lower dimensional subspaces. Compute the matrix representation
of A restricted to these subspaces. The lower dimensional decompositions of the restricted
transformations are guaranteed solvable according to the induction hypothesis. After finding
the decompositions for the lower dimensional problems, a mechanism is proposed to rivet
the two subproblems together to form the higher dimensional problem.

By repeating the above argument, each of the two subproblems can further be downsized. In
this way, the original problem is first divided into subproblems whose matrix representations
are 2 × 2 or 3 × 3 blocks of which solutions are explicitly known. We then solve the original
problem by conquering these small blocks to build up the original size. This divide and
conquer process is similar to that occurred in the radix-2 fast Fourier transform.

A working copy of our recursive algorithm is displayed in Table 1. To help interested
readers to grasp the key ingredient in our computation, we supplement the following basic
mechanism concerning the projection and the representation of the restricted map.
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Table 1 A MATLAB code implementing the H approach
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Lemma 2 Suppose that V ⊂ R
n is a k-dimensional invariant subspace under A. Let columns

of the matrix V ∈ R
n×k denote an orthonormal basis of the subspace V . Then

1. With respect to the original basis of R
n×n, the orthogonal projection PV (x) of any

x ∈ R
n onto the subspace V is given by V V �x ∈ R

n.
2. With respect to the specific basis V , the matrix representation of the restricted map A|V

of A is given by V � AV ∈ R
k×k .

For clarity, we briefly explain the structure of the algorithm below. These statements
constitute essentially the induction proof in [17, Lemma 4.1], but we convert them into
simple yet effective and computable tasks in the algorithm.

(a) If the size of the underlying matrix is 2×2, the goal is automatically accomplished. Take
U to be the orthogonal matrix of orthonormal eigenvectors.

(b) If the size of the underlying matrix is 3 × 3,

(i) Take the (normalized) average of its orthonormal eigenvectors as the first vector of
U . This will ensure the second bullet in Corollary 1.

(ii) Compute an orthonormal basis for the 2-dimensional subspace which is orthogonal
to the normalized average. These two basis vectors constitute the remaining two
columns of the 3 × 3 orthogonal matrix U .

(c) If the size of the underlying matrix is (2m)× (2m),
(i) Split the orthonormal eigenvectors evenly into two groups of size m.

(ii) Compute the m ×m matrix representation of the restriction of the underlying matrix
to the subspace spanned by each of the subgroup of orthonormal eigenvectors.

(iii) Apply the recursion to obtain two m × m orthogonal matrices associated with these
restricted maps.

(iv) Express these orthogonal matrices in terms of the original basis of orthonormal
eigenvectors. (The resulting matrices are of size (2m)×m with orthogonal columns.
Matrices of this type are called Stiefel matrices.)

(v) Depending on whether m is even or odd, assemble the two 2m × m Stiefel matri-
ces into an (2m) × (2m) orthogonal matrix in accordance with the specific recipe
described in the algorithm. (This is the process of conquering.)

(d) If the size of the underlying is (2m + 1)× (2m + 1),
(i) Take the (normalized) average of all its orthonormal eigenvectors as the first vector

of U .
(ii) Compute the 2m×2m matrix representation of the underlying matrix when restricted

to the subspace orthogonal to the normalized average.
(iii) Apply the recursion to compute the (2m)× (2m) orthogonal matrix associated with

this restricted map.
(iv) Express this orthogonal matrix in terms of the original basis of orthonormal eigen-

vectors.

The recursive nature of the above algorithm is intriguing because it self-organizes an
otherwise fairly complicated computation. Consider a problem of size n = 2t , for example,
the recursion breaks down the matrix into 2t−1 blocks of size 2 × 2 through 2t−1 − 1 self-
callings. It appears that each calling should involve an eigenvalue computation which would
be expensive. However, we hasten to point out that such a computation is redundant. As soon
as the first call of [U,D] = eig(A) is calculated, the matrix representations A1 and A2 of
the restricted maps are necessarily diagonal and the spectral decompositions in the next levels
of splitting can be totally spared. Throughout the process of dividing only one eigenvalue
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computation is needed, whereas throughout the process of conquering most calculations
involve only matrix arithmetic such as addition or augmentation. Our experiments in Sect.3.3
clearly evidence the computational advantages of the H approach over the Q approach.

Suppose the matrix T = U� AU referred to in Corollary 1 is now in hand. We now explain
how the optimal skew-symmetric perturbation K can be constructed. Write

T = T− + T0 + T �− ,

where T0 denotes the block diagonal of T and T− denotes the lower triangular portion of
T below the block diagonal T0. Recall that T0 consists of all 2 × 2 diagonal blocks starting
from the lower right corner of T and, if n is odd, the (1, 1) entry of T . By construction, each
of these 2 × 2 blocks has trace equal to 2

n trace(A) and, if n is odd, the (1, 1) entry of T is
precisely 1

n trace(A). Let K0 denote a block diagonal skew-symmetric matrix whose block
structure is conformal to that of T0. The off-diagonal entries of K0 will be specified later.
Define

K := T− + K0 − T �− . (42)

Then K is skew-symmetric. Consider the matrix

T − K = (T0 − K0)+ 2T �− (43)

which is pseudo-upper triangular and, hence, has eigenvalues precisely equal to those of its
diagonal blocks. A typical 2 × 2 block is of the form

[
a b + k

b − k c

]

,

where a + c = 2
n trace(A) and k is an unspecific real number. Trivially, if |k| is large enough,

then then both eigenvalues in this block will be complex with real parts equal to 1
n trace(A).

In this way, there exists a skew-symmetric matrix K such that the real part of every eigenvalue
of T − K is equal to precisely 1

n trace(A). Taking

K = UKU�, (44)

we have thus answered an interesting inverse eigenvalue problem—perturb a given symmetric
matrix A, not necessarily negative-definite, by an additive skew-symmetric matrix K so that
the real part of every eigenvalue of A − K has precisely the same value 1

n trace(A).
We remark that such a result might be of interest in other fields. For instance, it can be

considered as special type of the pole assignment problem in control theory as well as a
dual problem mentioned in [29] for the stabilization of a positive-definite matrix by matrix
multiplication.

For the application to our Gaussian diffusion process (12), we have now a constructive
way to select the perturbation so as to achieve the optimal rate of convergence.

Theorem 5 In the Ornstein–Uhlenbeck process (12), there exists a skew-symmetric pertur-
bation K such that if the drift term is B = D − K with D a negative-definite matrix, then
the optimal rate of convergence can be reach precisely, that is, λk(D − K) = Trace(D)

n for
every 1 ≤ k ≤ n.
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Example 2 Corresponding to the same diagonal matrix D in Example 1, we find that the
recursive algorithm returns the orthogonal matrix

U =

⎡

⎢
⎢
⎢
⎢
⎣

0.4472 −0.0204 0.6460 0.1881 0.5890
0.4472 0.5476 0.3138 −0.1697 −0.6106
0.4472 −0.4213 −0.2061 0.6790 −0.3449
0.4472 −0.5612 −0.0960 −0.6890 −0.0336
0.4472 0.4553 −0.6577 −0.0085 0.4002

⎤

⎥
⎥
⎥
⎥
⎦

which leads to

T =

⎡

⎢
⎢
⎢
⎢
⎣

−2.4936 −0.1894 −0.4054 −0.6259 −0.2413
−0.1894 −2.0966 0.0000 0.6186 0.0000
−0.4054 0.0000 −2.8905 −0.0000 −0.5270
−0.6259 0.6186 −0.0000 −2.0966 −0.0000
−0.2413 0.0000 −0.5270 −0.0000 −2.8905

⎤

⎥
⎥
⎥
⎥
⎦
.

The matrix K in (42) is of the form

K =

⎡

⎢
⎢
⎢
⎢
⎣

0 0.1894 0.4054 0.6259 0.2413
−0.1894 0 −k1 −0.6186 −0.0000
−0.4054 k1 0 0.0000 0.5270
−0.6259 0.6186 −0.0000 0 −k2

−0.2413 0.0000 −0.5270 k2 0

⎤

⎥
⎥
⎥
⎥
⎦
,

where k1, k2 are arbitrary numbers with modulus greater than 0.7939. Once k1, k2 are chosen,
all eigenvalues of D − UKU� have real part equal to −2.4936.

3.3 Performance Comparison

Our H approach differs from the Q approach in several aspects. It might worth mentioning
a few the most significant distinctions in this section.

3.3.1 Loss of Orthogonality

We have already pointed out that the repeated re-orthogonalization needed in the Q approach
is potentially unstable. The numerical instability of the Q approach can be seen in Fig. 2
where we plot the loss of orthogonality ‖��� − I‖ of the matrix � = [ψ1, . . . , ψn]
constructed from Algorithm 1 for 20 runs of the case n = 500. Despite that the Gram–
Schmidt process originally suggested in [21] for the segment of vectors {ψ̂, ψk+1, . . . ψn}
has been replaced by the more stable Q R decomposition, the resulting basis gradually deviates
from being orthogonal to the segment of vectors {ψ1, . . . , ψk−1}. The consequence of this
loss of orthogonality is that the resulting skew-symmetric perturbation will also drift from
being optimal. This is a major structural disadvantage inherent in the Q approach. Such a
phenomenon does not occur in the H approach.

3.3.2 Floating-Point Arithmetic Overhead

Computing the sequence of Q R decompositions required by the Q approach alone is expen-
sive. Excluding other overhead incurred in the algorithm, merely this part of orthogonalization

will cost approximately O( n4

2 ) floating-point operations (flops) by using the formula given
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Fig. 2 Loss of orthogonality from 20 repeated experiments of the case n = 500.

in [30]. In contrast, the divide-and-conquer nature in the H approach is similar to that of the
fast Fourier transform. Although lots of matrix multiplications and additions are involved in
the H approach, the matrix sizes are continually halved. The overhead of the H approach
consists of approximately O(2n3) flops from matrix to matrix arithmetic plus those involved
in one eigenvalue computation of A. It follows that, in theory, the H approach is preferable
to the Q approach in view of the less arithmetic cost by one order.

3.3.3 Actual CPU Time

Counting the flops provides a theoretical basis for cost assessment, but is only the first step
in the performance evaluation. The overall efficiency of an algorithm should also take into
account any other activities involved in the computation, which is especially imperative
when extensive memory swapping and I/O tasks take place in the algorithm. The divide-
and-conquer mechanism in the H approach is precisely of that nature as it requires repeated
memory writing and retrieving internally. This intramural housekeeping process, if of sub-
stantial amount, may downgrade the performance. Since it is difficult to track the I/O activi-
ties in detail, comparing the CPU time measuring all possible workloads within a controlled
laboratory setting should be regarded as the ultimate gauge of efficiency. As a result, it is
important to note from the experiment below that the CPU time of either the Q approach or
the H approach is no longer a polynomial in n as the flops count predicts.

We set up an identical environment on the platform, iMac, OSX 10.8.4, 3.4 GHz Quad-
core i7, 16 GB 1,333 MHz DDR3, and compare the CPU time. For this comparison, we
randomly generate the test matrix D with sizes varying from 100 to 1000 and measure the
elapse time needed for the orthonormal basis computation. The experiment is repeated 20
times for each size. We plot the average CPU times of both the Q approach and the H
approach for each size of the problem with a logarithmic scale on the vertical axis in Fig. 3.
We observe two interesting phenomena based on the observation from Fig. 3. First, the
average running times of both methods appear linear in the logarithmic scale, suggesting an
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Fig. 3 Average CPU time of Q approach and H approach from 20 repeated experiments of sizes 100–1000.

exponential growth of CPU time in n. Indeed, a linear regression by fitting these logarithmic
data with straight lines shows that2

log10 CPUQ ≈ 0.0019n + 0.0648,

log10 CPUH ≈ 0.0020n − 2.0321.

Second, the running times appear to differ mainly by the constants only in the above expres-
sion. The H approach consistently uses less than 1 % CPU time of the Q approach, showing
that our H approach is significantly cheaper.

3.3.4 Free Parameters

In order to determine the final perturbation matrix K, some additional parameters need be
selected, but this can easily be done. For instance, in Example 2 we see that the H approach
requires two larger free parameters k1 and k2. In general, the H approach allows � n

2 � free
parameters to define the skew-symmetric perturbation matrix while the Q approach requires
the selection of n distinct eigenvalues {λ1, . . . , λn}.

4 Conclusion

The problem of skew-symmetric perturbation of a reversible system originates from the desire
to accelerate approximation of diffusions to its equilibrium. In the case of Gaussian diffusions
(12), the dynamics of spectral gaps lead to an interesting inverse eigenvalue problem—
perturbing a symmetric and negative-definite matrix with skew-symmetric matrices to achieve
optimal convergence. Two types of perturbations are investigated in this paper.

2 We remark that fitting these data with polynomials of higher degrees would be of little avail. It can easily
be checked numerically that the coefficients associated with the higher degree terms are nearly zero.
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One is to study the limiting behavior of growing perturbation of the form D − αK as α
goes to infinity, where K comes from a specially selected class of skew-symmetric (−1)-
circulant matrices. This class of matrices can be regarded as representing the best direction
of perturbation in the sense that each of its members works universally for all D.

The other is to study the attainability of optimal rate by one direct additive perturbation in
the form D − K, where K is fixed, problem dependent, and no limiting behavior is involved.
A novel divide-and-conquer algorithm is proposed for the construction of an optimal K and is
shown empirically superior in both stability and overhead as well as theoretically preferable
to the recently proposed algorithm in [21].

This research on both the asymptotic approach and the recursive approach leads to results
that are innovative and interesting in the field.
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